
Whalesong: Running Racket in the Browser

Danny Yoo
WPI, University of Utah
dyoo@hashcollision.org

Shriram Krishnamurthi
Brown University
sk@cs.brown.edu

Abstract
JavaScript is the language of the ubiquitous Web, but it only
poorly supports event-driven functional programs due to its single-
threaded, asynchronous nature and lack of rich control flow opera-
tors. We present Whalesong, a compiler from Racket that generates
JavaScript code that masks these problems. We discuss the imple-
mentation strategy using delimited continuations, an interface to
the DOM, and an FFI for adapting JavaScript libraries to add new
platform-dependent reactive features. In the process, we also de-
scribe extensions to Racket’s functional event-driven programming
model. We also briefly discuss the implementation details.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

General Terms Languages, Performance

Keywords Racket, Web, browsers, JavaScript

1. Introduction
Racket is a widely-used programming language, especially in edu-
cational contexts. In particular, Racket is the basis for the Bootstrap
project [17], which uses the functional subset of Racket to teach
computer science and algebra together to students from middle-
school onward. The curriculum combines functions with a func-
tional I/O model [9] to teach testing-friendly event-driven program-
ming without explicit loops. The combination of a simple computa-
tional model (functions and substitution) over rich values (strings,
images, etc.) proves to be sufficient for writing quite sophisticated
programs, including interactive games.

For various reasons, it is important for these programs to run
in the browser. First, it makes it possible for students to share the
fruits of their labor with family and friends. Second, many schools
have locked-down computer systems so that installing new run-
time systems is difficult or impossible. (An earlier paper describes
our cloud-based programming environment, WeScheme [20].) Fi-
nally, students want to be able to run their games on platforms other
than the desktop, such as tablets and mobile phones; the ubiquity
of browsers saves us from having to port Racket these platforms.
Thus, translating to JavaScript lowers barriers, and increases op-
portunities, in education.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DLS ’13, October 28, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-2433-5/13/10. . . $15.00.
http://dx.doi.org/10.1145/2508168.2508172

However, it is not straightforward to compile a language like
Racket to JavaScript, despite their superficial similarities. The
JavaScript run-time poses several crucial obstacles:

1. JavaScript’s single-threaded execution model does not easily
enable computations to be preempted or interrupted, making
it difficult to guard the programming environment’s behavior
against out-of-control computations (so that the programming
environment can, for instance, provide a “Stop” button).

2. JavaScript programs written in functional style can hit runtime
limitations with regards to the JavaScript stack ceiling. This is
exacerbated by the lack of cross-platform support for tail-calls
in JavaScript.

3. The asynchronicity of many JavaScript APIs poses difficulties
with a functional programming style because values may be
produced that are not yet fully initialized.

Furthermore, JavaScript poses a particular challenge in terms of its
cooperative multitasking and asynchronicity that complicates the
implementation of a reactive programming model on top of it.

Contributions This paper presents Whalesong, a compiler that
enables Racket programs to run in JavaScript, and thus on the Web.
This provides features not supported by JavaScript, such as inter-
rupts and cooperative timesharing. Though Whalesong supports the
Racket language [11], including its imperative, object-oriented, and
other parts, we focus here on the functional parts, since these are
actually the most interesting. This paper describes how Whalesong
extends a functional event-driven programming model; implements
these in the hostile JavaScript environment; offers an interface to
the DOM; and provides a foreign-function interface for interacting
with JavaScript libraries. We also discuss the implementation and
provide some performance details. Finally, Whalesong also pro-
vides a large run-time system to port Racket programming prim-
itives, including the numeric tower. This paper ignores these sig-
nificant but technically uninteresting aspects.

2. Background: The World Programming Model
We first introduce the World programming model [9], which is
the basis for interactive programming in the Bootstrap curriculum
and in several other curricula that use Racket. The model is also
smoothly extensible: for instance, Whalesong provides handlers
that automatically extend the model to respond to events on devices
like mobile phones (such as the receipt of text messages, or the
processing of GPS locations).

The World model uses a value called the world, which repre-
sents the program state in the context of an event-driven compu-
tation. Functions can compute new states or on-screen representa-
tions based on the arrival of new events. These events can come
at regular intervals, like timer ticks, or occur more unpredictably
through keyboard or mouse interactions. Unlike traditional event-
driven programming, where mutation is necessary to share infor-

mation across void-returning callbacks, the callbacks in World
programs are pure functions that consume and produce useful, non-
void values. The runtime of the World model takes responsibility
to hold onto the world between events.

Figure 1 shows a simple event-driven animation as an example:
a red ball falls down the screen, responding to timer ticks by
descending, and finally stops when it hits the floor. The program
represents the height of the ball as a single number. Each of the
functions (descend, draw, and hits-floor?) consumes the world and
performs an algebraic computation to produce a value. The descend
function describes how the ball sinks from one moment to the next.
The draw function produces an image of the ball that the run-time
system renders on-screen. The hits-floor? predicate describes when
the ball has reached the floor. Finally, the big-bang call in Figure 1
begins an event loop that uses the functions provided by on-tick,
to-draw, and stop-when to drive its behavior.

In general, there are three classes of functions representing the
reactive program:

• update: how the world changes
• output: how the world can be presented (e.g., on a screen)
• (optional) termination: how the computation can stop

In short, the World model is a functional instantiation of Model-
View-Controller, where the Model is the world value, the View is
managed by the drawing function, and the controller is the set of
update functions associated to each event type. On other platforms,
Whalesong supports additional updaters and effects: e.g., on-tilt to
sense the orientation of a mobile phone or other orientation-sensing
device is moved in three dimensions, and effects like emitting
sounds or sending text messages in addition to drawing.

Because users write pure functions, even when responding to
external state, they can exercise these functions in the REPL, and
even write unit tests to ensure that their functions are producing
valid results. Figure 1 demonstrates lightweight unit-testing with
its use of check-expect, which asserts that the value of the first
argument matches the expected value in the second argument. The
World model enables this lightweight unit testing because all the
functions consume and produce plain values, without the need to
“set up” and “tear down” to undo the effects of mutation as done in
testing frameworks such as JUnit.

big-bang as an expression The World framework does more than
just simplify the event-handling boilerplate: it enables the reactive
computation to be used in arbitrary expressions. When the function
bound to stop-when evaluates to a true value, the event loop ends;
its value is that of the last world before the loop ended, which can
be used as the basis for a subsequent computation (e.g., it might
represent a game’s state, which the game uses to configure the
initial state of the next round).

Although big-bang appears only as a top-level statement in
Figure 1, it too can be treated as a plain function that returns a
value. In this case, it returns the value of the world upon the event-
loop’s termination. Allowing big-bang to be used as just another
expression means that it can be composed, which allows for some
interesting uses. For instance, the world might represent a game’s
state, and each round might result in one event loop. When a level
finishes, its big-bang returns the final state at that level, which can
be used to configure the next level (e.g., starting with the right
number of remaining lives) with just algebraic composition.

In fact, Whalesong’s implementation of big-bang allows big-
bang expressions to be nested. This goes beyond the (former) im-
plementation in Racket itself in that each nested big-bang is treated
as its own “virtual machine”, i.e., a nested big-bang represents a
modal event loop. Thus it becomes straightforward to implement

Figure 1 Event-driven animation of a descending ball

(define WIDTH 320) ;; screen width
(define HEIGHT 480) ;; screen height
(define RADIUS 15) ;; ball radius

;; The world is a number (distance from the top of the screen).

(define RED-BALL (circle RADIUS "solid" "red"))

(define MID-WIDTH (quotient WIDTH 2))

;; descend: world→ world
;; Describes how the world updates in response to time.
(define (descend w) (+ w 5))
(check-expect (descend 5) 10) ;; a test case

;; hits-floor?: world→ boolean
;; Describes when the program should terminate.
(define (hits-floor? w) (> w HEIGHT))

;; Test cases.
(check-expect (hits-floor? 1000) true)
(check-expect (hits-floor? 0) false)

;; draw: world→ scene
;; Describes how the world should be drawn to screen.
(define (draw w)

(place-image RED-BALL
MID-WIDTH
w
(empty-scene WIDTH HEIGHT)))

;; The use of big-bang starts the World program.
(big-bang 0 ;; initially, the height is zero

(on-tick descend 1/15) ;; ... 15 frames a second
(to-draw draw) ;; ... use render to draw the scene
(stop-when hits-floor?)) ;; ... and stop when the ball hits the floor

yes/no prompts and other modal features in a program in the most
natural way: by simply nesting big-bang expressions.1

Implementation Challenges Unfortunately, implementing this
model in a browser’s JavaScript is not trivial. The main obstacles
lie in asynchronicity and event-driven event-loops:

• The functional model assumes that functions emit usable values
on return. However, most Web-based JavaScript APIs present
an asynchronous initialization API that notifies when a value is
ready to be used: between the start of initialization and notifi-
cation, the values returned by these APIs are in an undefined,
unsafe state.
For example, one of the functions Whalesong provides is
bitmap/url, which consumes a string URL and produces a
bitmapped image of the URL’s contents. This function can only
be built on top of the native JavaScript API for dynamically
loading images. The JavaScript approach to create a dynamic
image is to allocate a new Image value, and assign the URL
to its src attribute. The browser then calls the Image.onload
callback when the image has finished loading.
In fact, although the low-level image constructor produces a
value, that value is not safe for use until the image is fully

1 Racket’s implementation still does not behave this way. Outer handlers
continue to run while inner handlers are active, resulting in potentially
confusing behavior.

initialized. Any queries on an image’s attributes, such as width
or height, are ill-defined until then. Only after the asynchronous
API signals completion by applying its callback is the value safe
for use.2

• In order to receive any events from the browser, such as timer
ticks or button presses, the main thread of evaluation needs
to relinquish control to the browser. This has consequences
for big-bang: in order to receive events, big-bang needs to
give control back to the browser. It must do so by returning
to its caller, yet it cannot return a useful value to the caller
because it hasn’t finished its computation yet. This violates the
expectation that big-bang can be used as a function that returns
the world’s last value upon termination. In short, the big-bang
function itself can’t act functionally.
A programming environment faces a related problem: it should
be possible to interrupt a program’s execution so that users
can curtail out-of-control programs. However, an evaluating
program retains control, again preventing any user-interface
events (such as a “Stop” button) from being processed until
control has been relinquished to the browser.

In summary, the program’s thread of execution must yield to the
browser in order to receive new events, but the act of yielding will
erase the thread’s currently running program context.

3. Implementation using Delimited Continuations
In contrast to JavaScript’s limited control operators (function calls,
exceptions), languages like Racket support delimited continua-
tions [12] to provide mechanisms for non-local control flow. (Sec-
tion 6 explains how we implement them in JavaScript.) These in-
clude the following primitives:

save A save will reify the control context and allow it to be stored
somewhere.

prompt A prompt will mark a portion of the control context; this is
used in conjunction with aborts to implement linguistic features
like exception handling.

abort An abort will erase the current control context and return
control to the nearest prompt.

resume A resume will take a previously-saved control context and
resume computation from that point forward.

This granularity becomes useful when trying to maintain bound-
aries between subsystems. For example, the interactive REPL of
the programming environment uses finalization code that evalu-
ates after each expression, and although that code is in the con-
trol context, it should be inaccessible to top-level expressions; an
unconstrained capture may allow an expression to repeatedly call
the finalization code and break invariants. Likewise, a functional
callback should not be allowed to capture the internals of the outer-
most big-bang event-loop. Since the language must deal with both
REPLs and callbacks, the encapsulation provided by the delimited
continuation model is invaluable.

We adopt these continuation primitives and apply them toward
the problems discussed in Section 2 as follows:

3.1 Asynchronous Initialization
Each asynchronous API can be adapted as follows: on an entry into
a constructor with asynchronous initialization (such as bitmap/url),

2 In the special case for image loading, if all possible image URLs are
known in advance, then those images may be pre-loaded before program
evaluation. However, in the general case, URLs are dynamic and no such
pre-loading can be performed.

the runtime saves the current control context. It then assigns a
raw callback to resume computation as soon as the value is fully
initialized. Finally, it aborts the current computation and gives
control back to the browser. As an end result, the adapted function
effectively acts as though it were a blocking call in the language,
even though it is not truly blocking the browser from performing
other computations.

3.2 big-bang
big-bang is handled similarly to Section 3.1, though with a few
subtle complications. On an entry into a big-bang, the language
suspends evaluation by saving the current context and then abort-
ing. The internal event-loop of big-bang stores the saved control
context, and initializes low-level event handlers. Finally, it aborts
back to the browser to allow the JavaScript event-loop to handle
events. As raw events are handled, the World implementation calls
the functional callbacks to get new worlds. Eventually, when the
World framework detects the termination condition, it can take the
final world value, restore the control context, and resume the re-
mainder of the computation.

3.3 Exception Handling
The proper handing of exceptions also poses issues. When an
exception occurs in a functional callback, the exception should
propagate upward, through the event-loop into the original control
context. This exception-handling issue also comes up in the context
of adapting asynchronous APIs: if a user provides an incorrect URL
to bitmap/url, the adapter needs to translate such an error back to
an exception that is raised in the original calling context. For both
situations, the solution is the same: a default exception handler is
initialized to catch exceptions or JavaScript errors that reach the
top-level. If an exception does occur, the original calling context is
reinstated and the exception is thrown upward.

3.4 Virtual Machine Structure
To implement these operators in a JavaScript context requires the
cooperation of a runtime component and its compiler. The runtime
holds a reference to a virtual machine (VM), with an explicit array
representation for the control stack that is separate from the native
JavaScript control stack. Each element of this external stack is
a JavaScript object whose fields include label, marks, and tag
attributes. The label attribute holds JavaScript function values as
representations of return addresses in the low-level machine. The
marks attribute allows the runtime to attach key/value pairs to the
dynamic extent of an evaluation. Finally, the tag attribute allows
the runtime to annotate the boundaries for continuation capture.

During evaluation, the current continuation can be seen as the
currently running JavaScript function plus the elements in the ex-
plicit control stack. Because the VM exposes the stack as an acces-
sible value, the runtime can observe and make changes to it. For ex-
ample, continuation prompts can be implemented by mutating the
stack, and continuation capture can be performed by cloning slices
of the stack. Within the VM, function calls and recursion work in
the usual way. However, when the compiled version of a Racket
function returns, it doesn’t use the JavaScript return, but instead
it calls the function on the top of the VM’s control stack.

The head of the compiled code for each Racket function decre-
ments a counter in the VM; when the counter goes to zero, the
function raises a structured exception value including the function
value in its contents. When the runtime sees this class of exception,
it extracts the aborted function and the current contents of the con-
trol stack, schedules a restart of that function, and finally returns
control back to the browser. This allows external JavaScript code
to cooperatively multitask with program evaluation and user inter-
face elements to signal new events. Furthermore, it allows external

Figure 2 A program that counts elapsed time

;; The world is a number (elapsed time).

;; draw: world→ dom
(define (draw w)

‘(p ,(number->string w)))

(big-bang 0
(on-tick add1 1)
(to-draw draw))

programs to set flags in the VM to signal interrupts to the evaluator.
When the scheduled computation restarts, the computation aborts
if the VM’s break flag has been set. Otherwise, it calls the stored
function and restarts the rest of the computation.

4. World Programming with the DOM
The World programming model described in section 2 provides a
Model-View-Controller framework for organizing programs. The
View in this original formulation is stateless and exclusive to a sin-
gle World program; in contrast, the View in a typical web browser
page can hold state for each of the elements on a web page, gen-
erate events through user interactions, and even be shared across
program fragments from different sources.3

Let us look at how a World program can generate output by
defining a to-draw function. A to-draw function consumes a world
and produces an image to be displayed on screen. In a browser,
correspondingly, such a function might produce a Web page. For
example, the program in Figure 2 shows a counter that uses a Web-
facing World library; it counts the seconds since a program begins
executing.

The original framing of the World model describes a fixed set
of events, registered with big-bang, that can change the world. One
thing that makes the DOM interesting is that it provides a mecha-
nism for both presentation and control, because each element in the
DOM can be the source of events that can trigger computation: we
can bind a function to be called when an event is triggered on a el-
ement of the DOM tree. The click of a button and the modification
of a text field should be events that can change the world too.

Unlike the setting in the vanilla World model, this set of DOM
events is open because browsers continue to embrace new features
such as multi-touch events. Therefore, the adaptation of the model
should allow the binding of arbitrary event types, and not just a
fixed set that contains "click", "change", or "mousemove". We
can consider adding a function to our API: a function dom-bind
that enables a World program to connect world-updating functions
to the events of the DOM.

dom-bind : dom-tree string updater→ dom-tree

dom-bind consumes a representation of a DOM tree, an event type,
and the world updater to be associated to the particular event type;
it captures simple World programs that react to DOM events. For
example, the program in Figure 3 counts the number of clicks
of a button. Here, the "click" event does not provide auxiliary
information, but other DOM events, such as "change"—which the

3 This entire section represents another extension to Racket’s World model,
which only supports stateless output, such as images that can be constructed
as a whole and replaced in their entirety. The ideas of this section apply
equally well to other stateful views, such as object-oriented GUIs, though
we have not implemented them in such contexts.

Figure 3 A program that counts button presses

;; The world is a number (number of button-presses).

;; click: world event→ world
(define (click w event)

(add1 w))

;; draw: world→ dom
(define (draw w)

‘(p ,(number->string w)
,(dom-bind ’(input (@ (type "button")

(value "click me")))
"click"
click)))

(big-bang 0
(to-draw draw))

Figure 4 A problematic World program

;; The world is a number (elapsed time).

;; draw: world→ dom
(define (draw w)

‘(div (number->string w)
(input (@ (type "text")))))

(big-bang 0
(on-tick add1 1)
(to-draw draw))

DOM triggers when a text field’s content is modified—may provide
the world-updater the text of the new text content.

Problems This approach appears to be effective when there is
no state in the DOM, but the button-clicking example in Figure 3
begins to hint at a small problem: even if the structure of the
DOM has not changed significantly, draw is dynamically binding
an event handler on every transition of the world. This re-binding
is inefficient and, unlike a regular World program, doesn’t allow
a program to state all the observable events during initialization.
Instead, the event-binding is non-uniform, where some events are
bound in draw and others in the call to big-bang.

In addition, there is a more serious weakness: unlike the inert
canvas of World, certain types of DOM elements, specifically form
input elements, have state. The HTML5 DOM includes elements
such as text fields, sliders, and even calendar date pickers, each of
which hold internal values, including the internal position of the
cursor selection, the settings of flags, etc.

As an example, consider the program in Figure 4, which dis-
plays a counter and allows a user to type input into a text field. This
program does not behave as one might expect: the user can try to
type into the text field, but will find that the text abruptly disap-
pears. This happens because as soon as the on-tick function is
called, the new DOM tree constructed by draw is rendered by the
browser; as the world does not store the content of the text field,
draw has no functional way to preserve the field.

Since the output of draw is a function of the world alone,
perhaps the world should also contain the content of the text field.
A revised version of the program, Figure 5, attempts to correct the
problem. However, it too fails spectacularly. Although the user may
be able to type into the text field, as soon as an on-tick triggers, the

Figure 5 Revised version of the problematic program from Figure 4

;; The world is a number (elapsed time)
;; and text (content of the text field).
(define-struct world (number text))

;; text-change: world event→ world
(define (text-change w event)

(make-world (world-number world)
(event-value event)))

;; draw: world→ dom
(define (draw w)

‘(div (number->string (world-number w))
,(dom-bind ‘(input (@ (type "text")

(value ,(world-text w))))
"change"
text-change)))

(big-bang (make-world 0 "")
(on-tick add1 1)
(to-draw draw))

text field’s cursor jumps back to the beginning of the text field! The
cursor’s position is also a part of the text field’s state, but it has not
yet been captured in the world.

This demonstrates the weakness with this approach: even
though a program may not do anything sophisticated with the
DOM, it needs to manage the state of the form elements in the
DOM, whether the program cares about the contents or not. In
summary, the approach of treating DOM output as a pure function
based only on the world value fails to address several problems:

• The rich statefulness of form elements forces programs to fully
express the state of each form element in a to-draw. This ap-
proach requires the entire state of each widget to reside in the
world. This state can be unwieldy to express, and needs to keep
track of constantly upgrading features in Web technology.
Furthermore, to force World programmers to manage the state
of the DOM is to give them a redundant and tedious task. DOM
elements already know how to manage their own state in the
browser. The idea that a user’s program would repeat the same
work as the browser is a cause for concern.
• Normal Web interactions depend on the continuity of elements

from one World state to the next.
To maintain the continuity of user elements, the runtime library
needs the ability to correlate existing DOM trees on screen
with the new DOM values. We have experimented with a tree-
differencing algorithm, but it is difficult to implement effi-
ciently and without creating surprises for users. Figure 6 shows
a simple example, where there are two possible edits that can
patch the source tree to the desired result.
• Since programmers must explicit construct a DOM tree from

scratch, arbitrary Web programs don’t nicely compose. This is
an especially acute issue in the context of the Web because of
the presence of external libraries such as Google Maps, which
can dynamically inject their own DOM nodes into a page. The
implementation of such libraries depend on the identity and
persistence of these injected DOM nodes.

Incorporating Views The core insight is to recognize that the
state of UI elements in the View should be treated as a peer of the
state of the world in the Model. Therefore, our revised library:

1. Changes big-bang so that it consumes not only the initial world
value, but also an initial view value. A view provides a func-
tional interface to the DOM, described below.

2. Relinquishes the majority of the view’s state to the browser.
World-updating callbacks are adapted to consume not only the
world, but also the current state of the view.

3. Changes the type of to-draw to take in both the world and the
view so that output can be expressed differentially in terms of
the existing browser’s DOM tree.

4. Provides a high-level abstraction within the view that presents
the DOM as a functional tree structure with localized, context-
aware functional update.

The state encapsulated by the DOM is treated independently of
the state in the world: each callback that consumes a world now
also consumes the view value, which allows the callback to inspect
the current state of the DOM tree. For example, the types of on-tick
and on-key are changed to the following:

on-tick : world→ world =⇒ on-tick : world view → world

on-key : world key→ world =⇒ on-key : world view key→ world

In general, all world updaters now take the additional view input:

updater : world view event-information . . .→ world

A view represents an internal reference into a tree that remem-
bers its outer context. The API encourages navigation on identifier
rather than by the raw tree structure. Some of these functions allow
world callbacks to read input from user interactions on the DOM
in a purely functional manner, since views are now an argument to
the callback.

This allows world callbacks to functionally query the state of
DOM elements. The separation of the view allows our library
to delegate the maintenance of the view to the web browser and
still enable functional access to the view’s state when events are
processed.

In terms of output, the function provided to to-draw takes the
existing view as an argument:

to-draw : world→ DOM =⇒ to-draw : world view → view

This leverages one of the conceptual strengths of the original World
programming model, which allows the programmer to express
changes in the world state in terms of the previous world. The
adapted to-draw applies the same reasoning to views, in expressing
the new view as a function in terms of the previous view.

View Operations Generating a view should be as easy as gen-
erating an image. Looking back at the World model, a program
generates images through additive operations (place-image, over-
lay, beside, etc.) that compose their arguments into larger images.
Pedagogically, the design of these operations resembles the struc-
ture of traditional numeric operations, so that programmers may be
equipped to understand the operations by applying analogies. One
might expect operations on DOM trees to be similar in spirit. Since
a view represents the DOM tree, the use of a simple tree represen-
tation, such as a s-expression, seems a reasonable choice for views.
With the rich support for list construction operations like cons and
list, it seems straightforward to take a similar approach with the
DOM.

However, the operations on DOM trees are more surgical than
additive: typical DOM tree operations dig into a tree’s existing
structure and make internal updates. With the adaptation of to-draw
to consume a view that is mostly managed by the browser, it be-
comes more likely that the programmer will not have prior knowl-
edge about the entire structure of the tree. Therefore, Whalesong

Figure 6 A example of an ambiguous patch due to tree-diffing: which effect was intended?

’(p (i "ah,")
(i "ah,")

(b "chooo!"))
(delete 2nd child)

))
(delete 1st child)

uu
’(p (i "ah,") (b "chooo!")) ’(p (i "ah,") (b "chooo!"))

provides several view-manipulation operations that enable the user
to construct and maintain cursors into the DOM tree, such as:

→view : dom-tree→ view

view-focus : view string→ view

view-up : view→ view

view-left : view→ view

view-text : view→ string

view-form-value : view→ string

The user can also apply a localized, functional update on that ele-
ment, while the rest of the tree remains unchanged. These opera-
tions include view-update-text, which can change the text at the fo-
cus, and view-prepend-child, which can introduce additional struc-
ture into the tree.

view-update-text : view string→ view

view-prepend-child : view dom-tree→ view

Since the view can also be a source of events that change the world,
Whalesong provides a view-bind operation to dynamically bind
events in the DOM to world updaters.

view-bind : view event-type updater→ view

The design still permits event handlers to be bound dynamically
if necessary. However, since big-bang consumes an initial-view,
the updated API allows the programmer to bind event handlers at
the very beginning of the big-bang in the common case, restoring
the simple structure for event binding present in the original World
programming model.

Examples Programs written with the view-based library are not
much more verbose than their traditional World counterparts. Fig-
ure 7 shows the counting example (Figure 2). As in the original
program, timer events invoke calls to the tick world-updating call-
back, which computes a new world by adding 1 to the previous
world. Since the tick callback doesn’t need to inspect the DOM,
it ignores its view argument. Its draw function, on the other hand,
uses the view to compute a new view; the runtime preserves the
structure and state not mentioned in the update.

Encouragingly, the problem associated with the program from
Figure 4, where the text field’s state disappeared between callbacks,
dissolves because the view-updating operations preserve the values
in the DOM that have not been explicitly updated. The updated
program is in Figure 8. Because the draw function allows the
program to express a differential update, the runtime can easily
apply a mutation on the existing browser DOM tree, allowing the
state of the text field to be preserved.

Finally, because the browser is given most of the responsibility
for managing the view’s state independently of the user’s program,
it becomes trivial to query the state of elements in the view without
having to pollute the world with extraneous detail. For instance, we
can create a simple list-manager program that reads in an item from

Figure 7 Final version the clock-ticking program from Figure 2

;; The world is a number (elapsed time).

;; draw: world view→ view
(define (draw w v)

(view-update-text (view-focus v "id") (number->string w)))

;; tick: world view→ world
(define (tick w v)

(add1 w))

(big-bang 0
(initial-view (->view ’(div (@ id "n"))))
(on-tick tick 1)
(to-draw draw))

Figure 8 Final version of the problematic program from Figure 4

;; The world is a number (elapsed time).

;; draw: world view→ view
(define (draw w v)

(view-update-text (view-focus v "id") (number->string w)))

;; tick: world view→ world
(define (tick w v)

(add1 w))

(big-bang 0
(initial-view (->view ’(div (div (@ id "n"))

(input (@ (type "text"))))))
(on-tick tick 1)
(to-draw draw))

a text field whenever a button is pressed. This program is shown
in Figure 9. In this framework, the programmer does not need to
manage the state of the text field; web-world delegates that effort
to the web browser.4

Implementing views The components of a view allow the runtime
to provide a functional API to the DOM tree that can directly ex-
press the functional updates as imperative changes on the browser.
The full structure of a view consists of three components:

view : tree-zipper(DOM)× ((listof DOM)→ void)× nonce

4 How to Design Programs, second ed. [10], includes an exercise to design
a world program that presents a text field (Exercise 2.5.6). It is instructive
to see how much work is necessary to manage the text field’s state.

Figure 9 A simple list-maker

;; The world is a list of strings (shopping list).

;; add-item: world view→ world
;; Add the text in the textField to our list of strings.
(define (add-item w v)

(cons (view-text (view-focus v "textField"))
w))

;; draw: world view→ view
;; Render a string representation of the strings into the paragraph.
(define (draw w v)

(view-update-text (view-focus v "para")
(format "˜a" w)))

;; view-template: view
(define view-template

(->view ’(div (input (@ (type "text") (id "textField")))
(input (@ (type "button") (id "addButton")

(value "Add!")))
(p (@ (id "para"))))))

(big-bang (list "milk" "eggs")
(initial-view
(view-bind (view-focus view-template "addButton")

add-item))
(to-draw draw))

The first component is a tree zipper [13]. Zippers take a tree
with internal nodes and provide convenient in-place navigation and
functional operations of that tree. As the name suggests, a zipper
can open up a node: this creates a new zipper that contains the im-
mediate child of the node, along with the parent zipper. While a
node is open, its attributes can be adjusted in constant time, with-
out having to reconstruct the whole tree. Navigating to a node’s im-
mediate next or previous sibling can also be done in constant time.
One of the side benefits of a zipper is that in-place update doesn’t
require the entire spine of the tree to be immediately reconstructed,
unlike a traditional functional tree update. Zippers defer this recon-
struction until the tree is explicitly navigated upward. Navigating
the zipper upward causes the zipper to close the node, rebuilding
the spine from the local information stored in the zipper.

The second component of a view, the list of functions, repre-
sents the mutations that, when replayed on the live browser DOM,
result in a tree with the same structure as that in the zipper. The
third component, the nonce, is a freshly-generated opaque value
that allows the runtime to detect a dependency between an input
view and the output of operations on that view.

As an example, changing the text content of an element needs:

• focusing the view on the affected element,
• adjusting the text content, using the properties of zippers to do

the localized edit,
• recording the text-changing operation as a mutation that will

perform the change to the DOM imperatively, and
• preserving the nonce.

When to-draw is called by the runtime, a fresh view is con-
structed holding a representation of the current DOM tree in the
browser, an empty sequence of mutations, and a unique nonce.
When the result of to-draw is returned to the runtime, then the run-
time checks to see whether or not the view shares the same nonce

Figure 10 Foreign-function interface creator

js-function→proc : js-function→ procedure

js-async-function→proc : js-function→ procedure

make-world-event-handler : up-proc down-proc→ (updater→ handler)

up-proc : js-function→ X

down-proc : js-functionX → void

as that of the input. If so, then it knows that there is a direct depen-
dency between the on-screen browser and the view value, and that
it can replay the mutative operations on the real browser DOM to
replicate the view’s structure. This allows only the differences be-
tween the old view to be applied mutatively to the browser DOM.
Otherwise there is a deliberate discontinuity, and the DOM on the
browser is discarded and replaced by the content in the zipper.

5. A Functional Foreign Function Interface
The view-bind function provides a simple mechanism to connect
World programs with DOM node events. However, this mechanism
alone does not capture arbitrary JavaScript events. For example,
on browsers that support the W3C GeoLocation, the browser can
notify programs when the physical location of the environment
shifts to a different latitude and longitude. The API provides a type
and functions to register and clear callbacks with the browser:

geo cbk : { latitude : double, longitude : double, . . . } → void

navigator.geolocation.watchPosition : geo cbk→ watchId

navigator.geolocation.clearWatch : watchId→ void
Similarly, external JavaScript sources such as Google Maps provide
APIs for embedding external views of the embedded application, as
well as access to application-specific events.

In the general case, JavaScript APIs provide asynchronous in-
terfaces that signal an event’s activation by callback. In these sit-
uations, the events are not DOM events, but still should be able
to drive World programs. The open nature of the browser environ-
ment motivates a foreign function interface (FFI) to bridge World
programs to these APIs.

The FFI provides basic services to bind callbacks from JavaScript
into Whalesong’s Racket. It enables

1. explicit coercion of JavaScript functions to Racket functions,

2. World extensions to cooperate with arbitrary asynchronous
JavaScript APIs, and

3. explicit coercion of values between the hosted (Racket) and
hosting (JavaScript) languages.

Figure 10 shows a selection of the FFI. The library is intended to
be thin, so it does no automatic coercion of values between the
hosted (Racket) and hosting (JavaScript) environments. The basic
motivation is to provide a low-level layer that library writers use
to build higher-level services. The low-level control necessary to
effectively bind to JavaScript provides opportunity to break the
abstractions of the evaluator’s runtime, so these functions are only
intended for library writers.

js-function→proc can lift arbitrary functions5 from the hosting
JavaScript language so they can be called from Racket. In order to
provide an extensible hook to add new event types into the World,
the API provides a make-world-event-handler function. This re-
turns a procedure that can be used as a standard World event handler

5 The string representation of functions may also be used.

Figure 11 Binding the GeoLocation API to World programs

;; start-up-geo: js-function→ number
;; Initialize the JavaScript GeoLocation API.
(define start-up-geo

(js-function->proc "
function(locationCallback) {
var watchId = navigator.geolocation.watchPosition(

function(evt) {
locationCallback(evt.latitude, evt.longitude);

});
return watchId;
}"))

;; shut-down-geo: js-function number→ undefined
;; Disable the JavaScript GeoLocation API.
(define shut-down-geo

(js-function->proc
"function(locationCallback, watchId) {

navigator.geolocation.clearWatch(watchId); }"))

;; on-geo-change: world-handler
;; Creates a new event handler.
(define on-geo-change

(make-world-event-handler start-up-geo
shut-down-geo))

;; The World is a position pair lat/lng.
(define-struct pos (lat lng))

;; move: world view number number→ world
;; Update the known current physical position of the environment.
(define (move w v lat lng)

(make-pos lat lng))

(big-bang (make-pos 0 0)
(on-geo-change move))

(just like on-tick or on-key). make-world-event-handler takes as in-
puts two procedures to manage the lifetime of the handler. The first
function up-proc initializes a callback with the host JavaScript en-
vironment, and the second function down-proc releases resources
when the big-bang shuts down. These two procedures both take a
special js-function which is a JavaScript callback constructed inter-
nally by the FFI. The application of this callback schedules a new
event to be processed by a running big-bang.

The code in Figure 11 demonstrates how the FFI can bind the
GeoLocation APIs for use in World programs. The functions start-
up-geo and shut-down-geo register a callback with the JavaScript
environment, and the code uses these two functions to create a
new World event handler called on-geo-change. When a big-bang
initializes with an on-geo-change, the World library synthesizes
an appropriate JavaScript callback, initializes the on-geo-change
handler by calling start-up-geo, and then starts the World event
loop dispatch. Uses of the callback function by the JavaScript
environment introduce new events into the World event loop.

We have used this same API to bind to other services as well.
For instance, in a similar amount of code to Figure 11, we have
defined an interface to Google Maps. Once this is done, a client of
this library can write World programs that interact with maps just
as easily as they do built-in primitive types, using a on-map-click
handler in big-bang.

6. Implementation
In section 3 we described problems with executing programs atop
JavaScript, and the use of delimited continuations to circumvent
them. Of course, JavaScript does not itself provide these primi-
tives. We obtain them by implementing the full Racket language
in JavaScript.

Figure 12 Summary of evaluator designs

BSL
compile // JavaScript

eval() // value

Racket
Racket compilation// bytecode

interp // value

Racket
Racket compilation// bytecode

compile // JavaScript run // value

Over the past five years, we have explored three different de-
signs for the evaluator (Figure 12). The first design, which is
self-evident, supports programs poorly because of JavaScript asyn-
chrony issues and stack ceiling collisions, and is limited to a small
language subset (BSL is the Beginning Student Language of Dr-
Racket) due to the complexity of compiling all of Racket.

The second version extends the language by employing Racket
itself to perform the compilation.6 Racket generates programs in a
well-defined bytecode language. These bytecodes are executed by
an interpreter written in JavaScript.

The inner loop of the interpreter dispatches on the type of the
bytecode operations, with a subroutine threading approach [5] to
reduce the cost of the dispatch. The interpreter manages the control
context as a JavaScript array, which allows the language to eval-
uate recursive definitions without exhausting the JavaScript stack.
This enables the implementation of control operators, continuation
marks [8], and more, but suffers from very poor performance—
especially on smart-phones and tablets—for anything beyond ba-
sic animations and programs. Programs run under this system take
1,000-10,000 times what they do in Racket!

Current Design The basic problem with the second design is that
we have introduced an interpreter loop. This not only reintroduces
the overhead of instruction dispatch that the compilation step tried
to eliminate, it also creates programs that especially obscure their
control flow from a JIT. If the JIT provides hooks for the language
implementor to provide runtime hints to expose logical loop struc-
ture, to virtualize the program counter, then the JIT can perform
much better [6, 18, 19]. However, these hinting mechanisms have
not yet been incorporated into mainstream JavaScript evaluators.

Therefore, our current design melds the previous two designs.
Like the second design, it reuses the Racket compiler to handle
details of macro expansion and linguistic support. Furthermore, it
explicitly manages the control context through a trampoline (run)
that also implements control operators. Like the first design, it

6 Because the Racket compiler is not entirely self-hosting, for now we run
this compiler on a cloud server (though in principle it could be run by
a native browser extension, a local server app, etc.)—though this means
that programs that perversely use reflection to cross compilation phases
can detect a difference between the platforms. On the positive side, many
languages—including Algol 60, Python, etc.—have been implemented in
Racket, so this approach makes it possible to host many more languages
than Racket itself. In particular, we are using Whalesong to host a new,
non-parenthetical language called Pyret.

eliminates the cost of interpretation by using a compile process—
in the register-machine style of SICP [1]—to generate JavaScript
extended with explicit GOTO statements and labels, which are then
desugared into regular JavaScript.

There are two basic ways of simulating GOTO statements:

• By using functions. Each basic block becomes a function
named by its label, and each GOTO statement transforms to
a function call. Programs that need to reference a label’s ad-
dress use the function value as the reference. The entry point
of each transformed block manages the maximum height of the
stack. A trampoline ensures that the stack never grows too high
as control jumps from one function block to the next.
• By a global case/switch. The content of all the basic blocks are

written into a switch, each label is enumerated as a separate
case statement, and each GOTO is transformed into a label
assignment and a “continue” to jump to the next basic block.

Figure 13 compares the performance of these techniques; Google
Chrome 8.0.552.237 on an Intel i7 1.6ghz system produces the
timing data. The case/switch approach has about 50% overhead
above a native for loop that performs the same work, and func-
tions+trampoline introduces 250% overhead.

However, the case-switch is applicable only if all the basic
blocks are present at compilation time. In contrast, the trampolin-
ing approach can be applied in dynamic linking situations, such as
that of interactive evaluation and dynamic module loading. Because
the case/switch technique requires a whole-program transformation
that is not easily applicable for domains such as an interactive eval-
uator on the Web, the second phase in compile generates function
blocks, and run provides the necessary support for calling them.7

6.1 The Trampoline
All evaluation happens in the context of a top-level trampoline.
The trampoline starts by calling a JavaScript function within a
try/catch; each function constructed by the Racket-to-JavaScript
compiler consumes the virtual machine as its sole argument, and
checks the trampoline register. If this value reaches zero, the func-
tion throws itself as an exception back to the trampoline. The tram-
poline may then either restart the computation, or use setTimeout
to schedule the current computation for later, and switch to another
one or yield control to the browser. In either case, the throw allows
the runtime to discard stack frames on the native JavaScript stack.
The top-level exception handler monitors other exception types to
implement operations like continuation capture or to translate low-
level JavaScript errors into Racket errors.

6.2 Locking
It may seem absurd to talk about mutual exclusion in the con-
text of JavaScript, which is a single-threaded language. However,
although JavaScript is single-threaded, it provides several mech-
anisms to perform cooperative multitasking, opening the door to
threading issues that one might not immediately anticipate. Long-
running programs in JavaScript (such as the trampoline) will use
setTimeout every so often to provide a nice user experience: the
timeout gives the browser time to perform tasks such as page up-
dates. To view it more defensively, periodically relinquishing con-
trol to the browser allows a program to dodge a browser’s watch-
dog, which pre-emptively terminates JavaScript computations that
appear to use too much computation.

7 The translator does perform some limited, ad-hoc optimizations on a small
class of direct jumps whose targets are known statically, and more work
can be performed to turn direct jumps into native JavaScript structured
control flow operators [4, 16], as done in Emscripten (code.google.com/
p/emscripten/).

Figure 16 demonstrates a toy program whose behavior depends
on the scheduler of setTimeout. The program directs functions to
subtract from some shared value and later restore the value back.
Each helper function waits its turn by using setTimeout for some
random interval. At the end of this program’s execution, the shared
value is intended to sum to its original value 50, but running the
program several times can produce radically different results, such
as 31, 36, and other nonsensical values. The use of setTimeout
allows multiple “threads” to contend for some shared state, and
each “thread” of execution can inadvertently interfere with another
because of the unpredictability of the setTimeout scheduler.

The setTimeout function is one way to create contention, but
JavaScript is also rife with asynchrony. Although the example in
Figure 16 is artificial, the fundamental problem exists, and users of
Whalesong have observed mutual-exclusion issues in earlier ver-
sions of the evaluator. The use of the trampoline to cooperate with
the browser, as well as the adaptation of event-driven program-
ming for World programming, both give opportunities for multiple
“threads” of execution to make changes to the VM and clash with
inopportune interleavings.

In order to resolve these issues, we have had to simulate locks
in JavaScript. Figure 17 shows run’s implementation of mutual ex-
clusive locks; note that this.locked can be read and written in
two separate statements (rather than needing an atomic compare-
and-swap) because JavaScript is single-threaded. When applied to
the program in Figure 18, the program produces consistent results.
Within run, the trampoline uses the ExclusiveLock class to en-
sure multiple computations do not trample over each other, even
through they run on the same virtual machine.

6.3 Handling Multiple Values
Racket supports multiple return values from functions, and these
are used extensively in some libraries. We therefore explored three
implementation strategies and constrasted their performance:

Structured A common method to support multiple-value return
is to use a distinguished structure to represent the act of sending
multiple values back to a context. Each context checks whether or
not it is appropriate that it receives multiple values.

One disadvantage of the structural approach is that each context
needs to make an explicit check to ensure contents receive the
proper number of values. Since adding explicit checks for multiple
values to every context imposes a slight overhead, it would be
preferable to find alternatives that don’t penalize the common case
of single value return.

Two Continuations Ashley and Dybvig [3] implement multiple
values without explicit checks. Their idea hinges on pointer arith-
metic: a compiler can inject auxiliary instructions to deal with mul-
tiple values at a fixed offset behind single-value-handling code. A
function that returns a single value takes the address stored in the
top element of the control stack and jumps. Functions that return
multiple values, on the other hand, jump to the fixed offset before
the address in the frame. For contexts that expect multiple values,
a compiler can inject a block of code at the fixed offset to handle
those values, and for contexts that don’t expect multiple values, a
compiler can inject error-generating code.

Although JavaScript does not have native support for address
arithmetic, it’s possible to encode the idea in spirit. A direct way to
support this technique is to push a function that corresponds with
the multiple-value context alongside the normal return address.
Together, this pair allows single and multiple-value return points,
but at the cost of doubling the number of stack pushes and pops
needed for function application.

Pseudo-Addressing Because JavaScript functions are objects, a
limited kind of address arithmetic can be simulated to capture the

Figure 13 Measuring GOTO simulation on micro-benchmarks

Method N = 1000 N = 10000 N = 100000 N = 1000000 N = 10000000
native 0.03 (0.17) 0.09 (0.29) 1.00 (0.00) 9.90 (0.30) 99.04 (1.37)
case/switch 0.01 (0.10) 0.14 (0.34) 1.41 (0.49) 14.40 (0.89) 142.94 (3.50)
function/100 0.05 (0.22) 0.51 (0.50) 4.99 (1.19) 49.47 (3.12) 474.63 (9.32)
function/10000 0.04 (0.20) 0.36 (0.48) 3.53 (0.52) 34.75 (0.96) 345.10 (1.39)

N represents the number of calls. Time is in milliseconds (with standard deviation).
function/100 and function/1000 use trampoline ceilings of 100 and 10000 activation records respectively.

Figure 14 Comparing multiple-value return techniques

essense of Ashley and Dybvig’s approach without pairs of continu-
ations on the control stack. Because JavaScript objects are mutable
and can hold object attributes, a function that corresponds to a re-
turn point can be annotated with an attribute to another function.
This pseudo-addressing technique captures the essential features of
Ashley and Dybvig’s pointer arithmetic technique without increas-
ing the traffic on the stack.

Figure 14 compares the relative performance of each tech-
nique on a pseudo-benchmark under Google Chrome 12 on an
3200Mhz AMD Phenom II X4 995. The pseudo-addressing tech-
nique demonstrates a lower constant overhead compared to the
other two, and other browsers present similar results.

6.4 Wrapping Up
All program errors are managed by the language, so that no low-
level JavaScript errors are directly exposed to the user. The support
provided by run’s maintenance of continuation marks allows pro-
gram errors to be presented with source locations and stack traces
relative to the user’s original program.

Initial results show that the performance is within a factor of
50-100X of Racket. Given the great improvements in JavaScript
evaluators, the fact that Whalesong programs are so much slower
than ones in Racket might seem surprising. However, a Whalesong
program’s execution looks radically different from that of most
JavaScript programs, due to the support for preemption and ad-
vanced control. These operations add significant execution over-

Figure 15 Whalesong vs. Racket’s native JIT

head, and cause programs to look different from what JavaScript
compilers are accustomed to optimizing.

There is also tremendous scope for improvement. A major fac-
tor is the overhead of the managed function call. The calling con-
vention allows run to capture the currently-running computation
(as well as continuation marks), but not every computation requires
that flexibility. In particular, if the compiler can statically deduce
that the body of a function avoids continuation capture and its eval-
uation uses a bounded stack, then its translation may use a direct
JavaScript call (as in the first prototype). It is future work to add
this analysis to compile, so that it can eliminate, for simple func-
tions, the overhead of run’s function-call calling convention.

The immaturity of some of the primitive function definitions
in the implementation can account for some of the variation in
the benchmarks, because our focus has been on covering as much
functionality as possible, and we have not yet had time to opti-
mize it. (Also, the Whalesong numeric tower repeats the work of
checking for overflow that JavaScript evaluators already perform
to promote numbers from exact integers to floating-points.) In con-
trast, the Racket primitives have steadily improved over just shy of
two decades, and many are implemented in C. Because Racket’s
primitives behave quite differently from those of JavaScript, we

do not benefit as much we would like from improvements in per-
formance of JavaScript’s primitives. Furthermore, our compiler
currently does very little inlining, and because Racket programs
make heavy use of primitives, most operations pay the full price of
Whalesong’s function applications.

7. Related Work
Many compilers now treat JavaScript as a target language. Em-
scripten (code.google.com/p/emscripten/) adapts assembly
code to run in JavaScript. It uses a large case/switch form to simu-
late GOTO jumps, and performs optimizations to replace most GO-
TOs with the appropriate high-level looping constructs. These opti-
mizations have immediate performance benefits because they avoid
the cost of GOTO simulation. However, these optimizations may
interfere with separate module compilation, interactive evaluation
with REPLs, and cooperative multitasking with the web browser,
because the optimizations require a whole-program transformation
that is not available in a dynamic code-loading context.

Canou, et al. [7] discuss compiling OCaml to JavaScript. They
cover a similar design space, and arrive at similar conclusions.
However, whereas our focus is on supporting the functional ex-
ecution model, theirs is on supporting concurrency. Loitsch [14]
provides a solution to the problem of suspending execution in
JavaScript by using A-normal form and exception-handling to cap-
ture the control context. Not only does this allow the control context
to be frozen, but it also provides a solution for tail calls: restoring
the control context can omit frames associated to tail calls.

Loitsch’s approach takes advantage of the native JavaScript
stack by reusing the existing JavaScript function calling convention
in the simple case. However, because the activation records use
the JavaScript stack, stack overflow continues to be a possibility.
Programs that are intrinsically not tail-recursive, such as functions
that act on trees, can run into the stack ceiling when deep recursion
occurs. This makes the approach unusable in a functional context.

Of contemporary systems, our I/O model is perhaps most
closely related to that of Clean [2]. In the Clean I/O model, event
handlers consume both the world and an iostate argument, and
return a tuple of the resulting world and iostate GUI state.

event-handler : event-information . . . world iostate→ (world×iostate)

Our World model presents a similar scheme, with the pair of han-
dlers:

event-handler : world view event-information . . .→ world

to-draw : world view→ view

The APIs for manipulating the graphical states are similar as well:
both act on GUI elements that are uniquely identified, and both
provide operations to change attributes of elements, such as adjust-
ing the text or changing the visibility of windows. Our API’s views
have more of a tree-oriented flavor since the view is an abstraction
over the browser DOM.

There are, however, a few technical differences. In the Clean I/O
library, the use of its type system enforces a uniqueness constraint
that ensures the output of the functions is dependent on the input. In
our model, the nonce value included in the view enables the runtime
library to detect a similar kind of dependency. However, our model
also permits the output view to have no dependency on the input
view, since a program may want to switch from one view to another
to indicate a modal change. Another difference is that our model
uses a concrete type for the view rather than an abstract one; this
can make it easier to test functions on views without having to start
up an event loop.

From a user perspective, dividing responsibility for generating
the new world and GUI state into two functions can make our model

Figure 16 Program demonstrating a race-condition in JavaScript

// generate a random integer between [0, n)
var randInt = function(n) {

return Math.floor(Math.random () * n);
};

// schedule a thunk f to be called at some
point.

var schedule = function(f) {
setTimeout(f, randInt (100));

};

var sharedValue = { n : 50 } ;

// decrement a value in sharedValue , and
increment it again.

// intended to have no effect on the final
value of sharedValue.n,

// but the use of schedule () allows certain
unexpected control flow

// interleavings to occur:
var doWork = function () {

var amount = Math.floor(randInt(sharedValue
.n));

sharedValue.n = sharedValue.n - amount;
schedule(function () {

var newValue = sharedValue.n +
amount;

schedule(function () {
sharedValue.n = newValue;
});

});
};

var afterLoad = function () {
var i = 0;
for (i = 0; i < 10; i++) {

schedule(doWork);
}

// after waiting for the computation to
complete ...

setTimeout(function () { alert(sharedValue.n
); },

2000);
};

easier for beginners to use, since it does not requires knowledge of
tuples or structured data, and both functions can be tested inde-
pendently. On the other hand, in Clean’s system, when an event
is being handled, the computation for the new iostate can use the
event information. However, in our model, that event information
isn’t present in a to-draw, and if the view computation does need to
know about the reason why the world has changed, then the world
updater needs to store it within the new world.

The make-world-event-handler function plays a similar role to
the receiverE mechanism used in Flapjax [15] to bridge imper-
ative, void-returning callbacks to functional event-driven frame-
works. Both the FFI of this section and Flapjax integrate with ex-
ternal JavaScript services by exposing a value in to the hosting lan-
guage that sends event values back to a functional event-driven run-
time. One difference from Flapjax is that the World library takes ex-
plicit responsibility for the lifetime management of the event han-
dler because World computations can pause or terminate, whereas
Flapjax programs do not necessarily.

Figure 17 Implementing mutual exclusion in JavaScript

var ExclusiveLock = function () {
this.locked = false; // boolean
this.waiters = [];

};

ExclusiveLock.prototype.acquire = function(
onAcquire) {

var that = this;
var alreadyReleased = false;
if (this.locked === false) {

this.locked = true;
onAcquire.call(

that ,
function () { // releaseLock

var waiter;
if (alreadyReleased) {

throw new Error("Internal
error: already released")
;

}
if (that.locked === false) {

throw new Error("Internal
error: already unlocked"
);

}
that.locked = false;
alreadyReleased = true;
if (that.waiters.length > 0) {

waiter = that.waiters.shift
();

setTimeout(function () { that
.acquire(waiter.
onAcquire); },

0);
}

});
} else { this.waiters.push({ onAcquire:

onAcquire }); }
};

Figure 18 Revised version of doWork (figure 16) using mutexes

var doWork = function () {
sharedValue.l = sharedValue.l || new

ExclusiveLock ();
sharedValue.l.acquire(

function(release) {
var amount = Math.floor(randInt(

sharedValue.n));
sharedValue.n = sharedValue.n -

amount;
schedule(function () {

var newValue =
sharedValue.n +
amount;

schedule(function () {
sharedValue

.n =
newValue
;

release ();
}); }); }); };

Acknowledgments This work was partially supported by the US
NSF. We are grateful to Ethan Cecchetti, Matthew Flatt, Robby
Findler, Kathi Fisler, Jay McCarthy, Emmanuel Schanzer, Jens
Axel Søgaard, and Zhe Zhang. We thank the reviewers and Ben-
jamin Lerner for constructive editing suggestions.

References
[1] H. Abelson and G. J. Sussman. Structure and Interpretation of Com-

puter Programs. MIT Press, second edition, 1996.
[2] P. Achten and R. Plasmeijer. The Ins and Outs of Clean I/O. Journal

of Functional Programming, 5, 1995.
[3] J. M. Ashley and R. K. Dybvig. An Efficient Implementation of Mul-

tiple Return Values in Scheme. In Lisp and Functional Programming,
1994.

[4] B. S. Baker. An Algorithm for Structuring Flowgraphs. Journal of the
ACM, 1977.

[5] J. R. Bell. Threaded code. Communications of the ACM, 1973.
[6] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the Meta-

Level: PyPy’s Tracing JIT Compiler. Implementation, Compilation,
Optimization of Object Oriented Languages and Programming Sys-
tems, 2009.

[7] B. Canou, E. Chailloux, and J. Vouillon. How to run your favorite
language in web browsers. In World Wide Web, 2012.

[8] J. Clements and M. Felleisen. A tail-recursive machine with stack
inspection. In ACM Translations on Programming Languages and
Systems, 2004.

[9] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi. A Func-
tional I/O System or, Fun for Freshman Kids. International Confer-
ence on Functional Programming, 2009.

[10] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi. How to
Design Programs. MIT Press, second edition, 2010. www.ccs.neu.
edu/home/matthias/HtDP2e/.

[11] M. Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-
1, PLT Inc., 2010. racket-lang.org/tr1/.

[12] M. Flatt, G. Yu, R. B. Findler, and M. Felleisen. Adding delimited
and composable control to a production programming environment.
International Conference on Functional Programming, 2007.

[13] G. Huet. Functional Pearl: The Zipper. Journal of Functional Pro-
gramming, 1997.

[14] F. Loitsch. Exceptional Continuations in JavaScript. In Scheme and
Functional Programming, 2007.

[15] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi. Flapjax: A Programming Lan-
guage for Ajax Applications. Object-Oriented Programming Systems,
Languages, and Applications, 2009.

[16] L. Ramshaw. Eliminating go to’s while Preserving Program Structure.
Journal of the ACM, 1988.

[17] E. Schanzer, K. Fisler, and S. Krishnamurthi. Bootstrap: Going beyond
programming in after-school computer science. In SPLASH Education
Symposium, 2013. www.bootstrapworld.org.

[18] G. T. Sullivan, D. L. Bruening, I. Baron, T. Garnett, and S. Amaras-
inghe. Dynamic Native Optimization of Interpreters. Workshop on
Interpreters, Virtual Machines, and Emulators, 2003.

[19] A. Yermolovich, C. Wimmer, and M. Franz. Optimization of Dynamic
Languages using Hierarchical Layering of Virtual Machines. Dynamic
Languages Symposium, 2009.

[20] D. Yoo, E. Schanzer, S. Krishnamurthi, and K. Fisler. WeScheme:
The browser is your programming environment. In Conference on
Innovation and Technology in Computer Science Education, 2011.

