
Code Bubbles: A Working Set-based Interface for Code Understanding and
Maintenance

Andrew Bragdon1, Robert Zeleznik1, Steven P. Reiss1, Suman Karumuri1, William Cheung1,
Joshua Kaplan1, Christopher Coleman1, Ferdi Adeputra1, Joseph J. LaViola Jr.2

1Brown University
Department of Computer Science

{acb, bcz, spr, suman, wcheung, jak2, cjc3,
fadeputr}@cs.brown.edu

2University of Central Florida
School of EECS
jjl@eecs.ucf.edu

ABSTRACT
Developers spend significant time reading and navigating
code fragments spread across multiple locations. The file-
based nature of contemporary IDEs makes it prohibitively
difficult to create and maintain a simultaneous view of such
fragments. We propose a novel user interface metaphor for
code understanding based on collections of lightweight,
editable fragments called bubbles, which form concurrently
visible working sets. We present the results of a qualitative
usability evaluation, and the results of a quantitative study
which indicates Code Bubbles significantly improved code
understanding time, while reducing navigation interactions
over a widely-used IDE, for two controlled tasks.
Author Keywords
Multi-view, simultaneous views, source code, bubbles, Java
ACM Classification Keywords
H5.2 Information Interfaces and Presentation: Windowing
Systems, Evaluation/Methodology

INTRODUCTION
Studies indicate that programmers spend a significant
amount of time reading and navigating code; one study puts
the total at 60-90% [1]. Programmers form working sets of
one or more code fragments corresponding to places of in-
terest [2]; with larger code bases, these fragments are scat-
tered across multiple methods in multiple classes.

Allowing developers to see, interact with and edit multiple
fragments concurrently has the potential to make code un-
derstanding and maintenance easier by offloading limited
working memory resources and enabling new behaviors.
Indeed, [3] has shown that concurrent views should be used
for tasks in which visual comparisons must be made be-
tween parts that have greater complexity than can be held in
limited working memory. Developers could form working
sets to inspect and compare functions to identify commo-
nalities, parallels, and differences; form and inspect work-
ing sets to answer specific questions; and navigate unfami-
liar code with less fear of “getting lost,” since they could
glance to be reminded of where they had navigated from.

Because modern integrated development environments
(IDEs) are file-based, creating and maintaining views of
multiple simultaneously visible fragments is difficult. Pro-
grammers must manually and repeatedly perform numerous
interactions to place, resize, scroll, and reflow a different
file pane/window for each fragment. IDEs are instead opti-
mized for switching among views using tabs, forward/back
buttons, etc. Perhaps as a result, programmers may spend an
average 35% of their time just navigating among code
fragments [2], since they can only see one or two at a time.

We therefore argue for a novel user interface metaphor for
reading and editing code, one which is based around creat-
ing task-relevant collections of code fragments, allowing
the user to see and work with complete working sets.

Our approach is founded on the metaphor of a bubble – a
fully editable and interactive view of a fragment such as a
method or collection of member variables. Bubbles, in con-
trast to windows, have minimal border decoration, avoid
clipping their contents by using automatic code reflow and
elision, and do not overlap but instead push each other out
of the way. Bubbles exist in a large, pannable 2-D virtual
space where a cluster of bubbles comprises a concurrently
visible working set. See Fig. 1 for a usage scenario.

The contributions of this paper are three-fold: a novel de-
sign for a function-based editing interface, Code Bubbles;
the results of a qualitative evaluation and accompanying
usability discussion of the system; and the results of a quan-
titative experiment which indicates Code Bubbles signifi-
cantly reduces the time required to understand code and the
number of navigation interactions for two controlled tasks.

BACKGROUND AND RELATED WORK
User interfaces for programming have a long history. The
notion of working with program fragments – individual
functions, or similar units – was explored by Desert [4] and
can be found in IBM’s Visual Age [5] and CMU’s Sheets
[6]. These systems were loosely based on non-file based
languages (e.g., Xerox’s Smalltalk, Lisp), but none pro-
vided either a tiling assistant to avoid fragment overlap or a
continuous desktop. These omissions, coupled with a range
of UI choices such as not providing automatic code reflow,
we believe limited their usability and effectiveness.

Several studies show a range of difficulties with common
programming tasks which can be traced to UI designs that
complicate access to working sets [7] [2] [8] [9]. Such stu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

Code Bubbles: A Working Set-based Interface for Code
Understanding and Maintenance

dies indicate that programmers spend significant time (re-
)navigating through source code and recovering from fre-
quent interruptions. Code Thumbnails [10] and JASPER
[11] both attempt to reduce the overhead of navigating
through source code by providing visual tools that allow
users to exploit spatial memory. CodeThumbnails uses
thumbnail displays which have a perceptible structure but
which cannot be read, to afford compact intra-file views (by
extending scroll bars) and inter-file views (by providing an
overview window). Alternatively, JASPER provides views
of collections of read-only code fragments, explicitly har-
vested by the programmer while viewing, that can be spa-
tially arrange in 2D and which are hyperlinked to their orig-
inal source files. Neither system uses a continuous display
or code reflow, although JASPER attempts to address sca-
lability issues by dynamically shrinking font size to fit more
fragments to the display window and by providing a button
for non-incrementally re-tiling fragments without overlap.

Other research has focused on reducing the cost of navigat-
ing to specific code fragment by making working set frag-
ments directly accessible via a list. Many of the techniques
pioneered by these tools, e.g., determining working sets
based on navigation recording and analysis [12] [13] [14],
project histories [15], user input [16] [17], or a degree-of-
interest model [18], are complementary to our approach and
could be integrated with Code Bubbles.

Outside of IDEs, there have been a number of systems
which attempt to provide UIs for gathering working set
fragments. The Sandbox [19] supported analytical sense-
making by providing a UI for harvesting information frag-
ments from documents and then arranging and annotating
that information in a 2-D space. WinCuts [20] augmented
the Windows metaphor to allow users to create live applica-
tion clippings. Neither, however, provided a continuous
display or supported incremental clipping tiling.

More generally, research in windowing UIs dates back dec-
ades to when the two dominant classes of window meta-
phors, tiled and overlapping, were created. The prevailing

philosophy is that overlapping windows provide flexibility
by conforming to their contents, whereas tiled window dis-
plays reduce interaction burden by algorithmically tiling
free space [21]. Code Bubbles is thus a hybrid of these two
approaches because it combines the free-form layouts of
overlapping window managers with automated layout tech-
niques that reduce interactions. Research has also explored
virtual extensions to the display surface such as discrete
Rooms [22] which are scalable, but require explicit
Room/task transitions. Alternatively, Scalable Fabric [23]
employs a focus+context technique in which groups of
windows representing a task are simultaneously visible and
reduced in size as they approach the screen periphery, but
this approach is limited by the display screen size.

DESIGN OVERVIEW
Although it is possible to create side-by-side displays of
multiple code fragments with conventional UIs, pilot testing
with 5 professional developers indicates this is difficult to
do in practice for more than several functions even though
professional programmers in the study indicated that such
displays would be quite valuable [24]. We attribute this
apparent contradiction to the fact that conventional UIs, by
their nature, make it prohibitively difficult to create side-
by-side views of code, for several reasons, including:

 File-based views are generally large by default, re-
quiring multiple interaction steps to concisely display
an individual method

 Code in its natively written form leaves significant
white space when fit to a rectangular window, and
does not readily fit into a compact space

 Modifying a layout of panes or windows takes mul-
tiple interactions steps, whereas scrolling or switching
panes may take a single step.

 Window layouts are generally limited by the physical
size of the display screen.

Code Bubbles represents our attempt to adapt the window
UI metaphor for code viewing, such that there is neither a
penalty for creating side-by-side views nor a loss in effi-
ciency when initially accessing methods.

Figure 1 (a) user opens a bubble via the pop-up search box, (b) resulting bubble, (c) user opens definition of two more bubbles side-by-side (automatically
grouped); (d) a large working set of bubbles, including a (f) bubble stack of references; (e) an overview is shown in the panning bar; (g) hover preview

SPATIALLY-EFFICIENT METHOD BUBBLES
The fundamental design choice of Code Bubbles is to dis-
play code, by default, at the granularity of individual me-
thods instead of files. Files, we believe, are a necessary way
to communicate with current compilers, but are not the sole
or best way to view and edit code. Unlike file displays,
bubbles can be automatically sized to tightly fit the method
they contain, thus avoiding the many scroll and resize steps
required to achieve this effect in IDEs. Many bubbles (11-
17 in typical case analysis of large open source applica-
tions, JEdit, JForum and ArgoUML) can be shown concur-
rently since code often consists of short functions [29].

Reflow and vertical elision
To be generally applicable, however, bubble-based displays
must also be able to display spatially succinct represent-
ations of longer methods in terms of line length (80 char-
acters) and lines of code (100 or more). We thus restrict the
a bubble’s initial dimension to 55 characters by 40 lines and
apply automatic reflow to shorten lines without text clip-
ping, and automatic elision to abbreviate longer functions.

Figure 2 Reflow can reduce function footprint (left); vertical elision (right)
Since naïve text wrapping approaches produce source code
that programmers may find “unreadable”, we use a syntax-
aware algorithm that, mimicking the manual reflow strate-
gies used by programmers, aligns wrapped text to commas,
parentheses, and other operators (Fig. 2). Reflow operates
at the view level, and so does not modify the underlying
source code. Code can be viewed in its natively written
state if its containing bubble is resized wide enough. This
technique is similar to Eclipse’s Formatting command, but
runs in real-time, reflowing a bubble’s text as it is resized,
since it operates on individual methods and not entire files.
It is important to note that wrapping just one or two lines of
code can significantly reduce the overall bounding box area
of most methods since each wrapped line adds only one
character height to the box’s vertical dimension but typical-
ly reduces the box’s width by numerous character widths.

To handle longer functions, we provide several mechan-
isms, including the common techniques of vertical scrolling
with a scroll wheel and bubble resizing. In addition, for
functions of more than 40 lines we automatically elide basic
code blocks until the function fits within 40 lines (Fig. 2). If
the function is still too long, or if users have selectively
expanded some of these blocks, we display a scrollbar.

Minimal bubble decorations
A natural consequence of representing methods as bubbles
is that each bubble needs to be a standalone element, capa-
ble of supporting interactive manipulation and disclosing its

semantic context. We also wanted to avoid window decora-
tion not only because of its spatial bloat but also because it
would introduce significant “visual clutter” that would dis-
tract programmers “just trying to read” code (Fig. 3). Thus,
we minimized explicit bubble decoration to a thin border,
which acts as a resize handle like the border of a traditional
window. Instead of a title bar, we blend a breadcrumb bar
into the top of a bubble to provide the semantic context of
the package and class names that contain the method. Click-
ing the breadcrumb bar provides an alternative to scrolling
through a class file to see other methods; when clicked, a
list of methods and other items from the class appears; ho-
vering over an item shows a modeless preview bubble, and
clicking opens that item in a bubble. Finally, since bubbles
lack a title bar with a close button, we provide alternative
methods for moving and closing: right-click dragging
moves a bubble; middle-clicking a bubble closes it. Stan-
dard operations are preserved; left clicking manipulates the
text caret, and right-click without dragging opens a context
menu. Although these interactions are unfamiliar, they do
not override any expected functionality, and could poten-
tially be made self-disclosing [25]. Moreover, we expect
programmers will find this UI more efficient than the title
bar UI since the target area is the entire bubble, not a small
UI element. Indeed, given the ease with which bubbles can
be closed, we also display a semi-transparent undo button in
place that gradually fades away whenever a bubble is
closed; clicking it re-opens the bubble in the same position.

Figure 3 Left, MDI child window from Visual Studio, right a Code Bubble

CREATING AND MANAGING 2D BUBBLE LAYOUTS
To make simultaneous views of methods an integral part of
programmer workflow we made several design choices that
attempt to make simultaneous displays of multiple bubbles
a default effect instead of something that the user has to
work to achieve. To accomplish this, we adapted existing
behaviors, such as “go to definition” and “find all refer-
ences”, implemented a pop-up search box, and imple-
mented a novel Spacer algorithm that incrementally adjusts
the placement of bubbles to avoid overlap between bubbles.

Automatically spacing bubbles to avoid overlap
Bubbles are inherently non-overlapping; whenever a bubble
is placed such that it overlaps another bubble, a Spacer al-
gorithm is automatically invoked. The Spacer pushes other
bubbles out of the way via a smooth animation, while trying
to minimize overall bubble movement and preserve spatial
adjacency (cues likely to be important for spatial memory).
Thus, programmers can move one bubble next to another in
a single dragging step that incrementally modifies but does
not completely disrupt their bubble layout (Fig. 4).

While optimally bin packing items is NP-hard, we imple-
mented a heuristic recursive algorithm that attempts to find
a global minimum in at most 400ms (typically < 100ms); if

a solution is not found the “best so far” is used (pseudo-
code is available [24]). The algorithm works by heuristical-
ly generating a set of valid placements (sequences of bubble
movements) that contain no overlapping bubbles, and then
computing a score, the total Euclidian distance moved of all
bubbles in each placement relative to their original position,
and finally choosing the placement with the lowest score.

Figure 4 Left, initial configuration, center, user drags bubble into position,
right, intersecting bubbles pushed out of the way

A recursive helper function generates a set of possible
placements: it begins by marking (to track what has been
moved) the user-moved bubble(s); all other bubbles are
unmarked. It assigns the “just-moved” set, J, equal to this
bubble, and assigns Ij to the set of unmarked bubbles which
intersect any bubble(s) in J. If Ij is empty, then the cumula-
tive movement sequence is added to the output set of possi-
ble placements (base case). Otherwise, the recursive case of
the algorithm generates a set of 4 axis-aligned movements
(up, down, left, right) which move i the minimum distance
such that i no longer intersects any marked bubbles. Move-
ments that are in the opposite direction to that moved by
any bubbles in J that intersect i are pruned (except on the
initial call). The 2 movements with the largest Euclidian
distances are kept, the rest are pruned. Then all movements
for each i are appended to the set of movements for every
other i. For each possible combination of movements (1
movement for each i) – pruned to those that when applied
do not cause bubbles in Ij to overlap with each other or
marked bubbles – it marks and moves (according to the
movement combination) all bubbles in Ij, sets J equal to Ij

and recursively calls the helper function on the new J and Ij.

The Spacer does not guarantee an optimal space-filling re-
sult, nor does it guarantee that all spatial adjacency relation-
ships are maintained; however, its animated, incremental
nature produces results that are reasonably predictable and
we believe are not likely to seriously disrupt programmers’
spatial memory of their code layouts. The Spacer is invoked
for user-directed layout changes beyond move, including
opening bubbles, resizing bubbles, etc. (see below).

Writing new code
Bubbles are fully editable and automatically resize vertical-
ly to accommodate new lines of text typed into a bubble,
causing the bubble spacer to push any bubbles below the
current bubble out of the way. This process is quite similar
to what happens in a conventional text editor; functions
below an edited function shift down as new lines of code
are entered above them. Once a bubble reaches its default
maximum height, it will start to scroll instead of continuing

to grow. A unique “budding” event happens when text is
entered at the very bottom of the bubble outside the lexical
scope of the bubble’s contained method – this new text au-
tomatically spawns a new bubble that is logically in the
same class as its source bubble. Thus, there is no additional
overhead for creating a new method – the user just types the
new class method at the bottom of any bubble from that
class (which can be thought of as a proxy for the class’
file). Bubbles for the same method can be opened multiple
times; editing one updates the others in real time.

Opening new bubbles
When the context menu option of Open Declaration is cho-
sen for a function call in a method bubble, a new bubble is
created for its declaration. We consider potential place-
ments for the new bubble that are adjacent to the source
bubble and choose the placement that will cause the spacer
algorithm to shift other bubbles the least; the spacer algo-
rithm is automatically invoked for all new bubbles. Newly-
created bubbles are highlighted in orange, to draw the us-
ers’ attention away from any shifting bubbles. A fade-out
animation gradually returns the background color to nor-
mal. Since bubble layouts can quickly become visually
complex after just a few Open Declaration actions, we at-
tempt to improve self-disclosure by drawing arrows, or
bubble connections, between function call lines and their
corresponding method bubble definitions. Bubble connec-
tions have a similar visual appearance to electrical circuit
diagrams, and reserve space as needed to reduce overlap.
Hovering over a bubble recursively highlights the connec-
tions and code lines that lead to it (Fig. 5).

Figure 5 Rectilinear bubble connections illustrate calling sequences. Con-
nections are drawn to avoid overlap (inset).

Users can also search for bubbles by name using a pop-up
search box (Fig. 1A) by right-clicking on the background.
Initially, a list of all packages and classes is displayed. Us-
ers can browse via mouse or keyboard, or use Boolean sub-
string matching similar to that provided by Visual Studio 10
(not publicly available at the time of writing); our imple-
mentation separates Boolean search terms by spaces instead
of by CamelCase. Hovering over items in the list previews
the method as a tooltip (Fig. 1G); pressing Enter or clicking
will dismiss the search box and open the method as a bub-
ble, in place. Dragging items from the list does not dismiss
the search box, allowing multiple methods to be opened
from a single search list. The spacer is invoked incremental-
ly to eliminate overlap as needed. Thus searching for and
opening a new method bubble involves equivalent work to
searching for and viewing a method in a conventional IDE.

Find All References and Bubble Stacks
Similar to Eclipse and Visual Studio, a Find All References
function displays a list of the source lines containing an
indicated text string. However our UI is logically a bubble

Figure 6 Zooming out to switch or re-arrange bubbles

stack (Fig. 1F) comprised of two columns: the source code
line with the matched text highlighted, and the name of the
containing function. Results are grouped by package, class
and then method. Hovering over an item previews a bubble
display of the method as a tooltip; clicking expands the item
in place as a bubble; clicking the page up/down keys flips
through bubbles for each search result. Bubble stacks are
hosted inside bubbles, meaning that multiple can be open
side-by-side and each participates in bubble spacer layout.

VIRTUALLY EXTENDING SCREEN SPACE
Despite efforts to make bubbles spatially efficient and to
provide automatic layout support, some working sets will
likely exceed available screen space and some users will
want to multi-task between distinct working sets. Thus we
considered several virtual screen space extensions. We re-
jected allowing bubbles to overlap which we felt would
burden the programmer with frequent Z-order management
decisions in addition to complicating when and how the
Spacer should be invoked. Similarly we rejected doing
nothing since that would burden the user with explicitly
having to decide when to delete bubbles even if they knew
they would need them later. We also rejected geometrically
scaling bubbles both because that would provide only li-
mited additional space and because in formative evalua-
tions, several programmers commented that they found it
hard to read code of different, particularly small, font sizes.
The option that remained was to provide virtual screens,
however, we also noted that many programmers strongly
disliked the discrete Rooms [22] metaphor because it forced
them to explicitly and completely change working sets and
still did not support a working set larger than the display
screen. Thus the design implemented is a large, but not in-
finite, continuous virtual screen that expands if needed.

2-D, Continuous Workspace
Initially, Code Bubbles displays the center region of a vir-
tual workspace that is 20 times the width of the display and
1.5 times the height. Bubbles can be placed within this
view, but when extra space is needed, the view can be
panned in 2-D by right-clicking and dragging on the back-
ground to reveal additional space (accelerated by a gain
factor of 1.5). Thus, rather than deciding to close bubbles to
make room, we expect users may choose to work left to
right as they add new bubbles and pan or push older bub-
bles off screen to the left. New working sets can then be
created by just placing bubbles in an unused portion of the
screen. If bubbles are pushed below the bottom of the
screen or above the top, then the virtual workspace is auto-
matically grown in size to accommodate them, although we
expect the virtual screen is easiest to use when it is roughly
the height of the display since it is harder to lose things
when only 1-D left-to-right panning is needed.

To simplify interaction with working sets larger than the
physical display, we support a transient zoom feature (Fig.
6). Pressing F9 toggles between a default and a 50% re-
duced view. A smooth animation, centered on the current
viewport is used. While zoomed out, users can move distant
bubbles to the current view, or re-arrange groups of bub-

bles; users can also click on a bubble to zoom back in. To
facilitate keyboard-based interaction, each bubble is as-
signed a non-mnemonic, single-digit alphanumeric overlay;
typing the corresponding key zooms back in on that bubble.

To further support scalability of the virtual display, we pro-
vide a panning bar (Fig. 1E) which shows an overview map
of the entire workspace, and a location indicator which
shows the size and location of the current viewport.

BUBBLE GROUPS
File-based views provide a convenient, albeit rigid, way for
programmers to open, identify, and close groups of me-
thods. We offer an additional mechanism, Bubble Groups
(Fig. 7), for operating on groups of methods.

Figure 7 The user forms two groups by placing bubbles to be adjacent
Each bubble is surrounded by a semi-transparent halo.
When two bubbles are brought within a threshold distance,
they join together into a new group. The group is visualized
with a colored halo surrounding the bubbles; an unused
color from a stored set of colors is used. We used the tech-
nical implementation for groups from [26] to display group
boundaries. Since collections of related bubbles are typical-
ly placed spatially near each other, this automatic visualiza-
tion alone can provide a useful perceptible structure to
working sets. The group halo can be dragged to move the
group as a single unit, or double-middle-clicked to close the
grouped bubbles in one step (middle-clicking once opens a
modeless tooltip and middle clicking again confirms).

Groups can also be named by typing in a title box displayed
at the top center of the group, providing a way for users to
impose an organizational structure over their working sets.
Users can add or remove a bubble from a group simply by
bringing it within/outside the threshold distance of the
group; groups are recomputed as bubbles are moved. Our
prototype naively merges groups when one is moved within
threshold of another (sufficient to elicit feedback).

QUALITATIVE EVALUATION
To gain feedback about the utility of Code Bubbles for code
understanding and to assess usability considerations, we
recruited 14 professional developers (13 male, 1 female,
mean age 31.85, SD: 7.13) from the greater Providence, RI
area. We advertised broadly with Facebook ads targeting
professional developers, recruiting participants from a va-

riety of company sizes and industries. We held two rounds
of iterative usability testing with 9 participants in the first
round, and 5 in the second (for equipment used, see Quan-
titative Evaluation). After a pre-questionnaire, participants
were introduced to the system, and asked to think aloud.
They were given three tasks, similar to those in the quantit-
ative evaluation (below), with the key difference being that
the tasks involved writing several new methods.

Usability Results and Discussion
On the whole, developers, with comments like “I could see
a ton of people using this,” felt Code Bubbles would be
very useful to them, and all but one asked when it would be
available for them to use at home/work. Developers felt
they could see a sizeable number of functions concurrently,
in the lab codebase, and that the same would be true of their
own code bases. They unanimously asserted that concurrent
code views were useful, and that it was “very difficult” to
“impossible” to achieve such views with current IDEs.

Developers appeared to perceive value in side-by-side
working sets above and beyond reducing navigations; in-
deed they identified several expected benefits, including:
offloading memory; helping them compare and understand
functions together; seeing calling relationships, and para-
meter/return value correspondences; opening a series of
functions side-by-side to implement a complex change; and
“querying” code to answer specific questions.

They felt the large 2-D virtual workspace was integral for
letting them freely “explore” without “getting lost.” They
felt it made it easier for them to “remember less” since they
could easily rescan their working set to refresh their memo-
ry, a practice they previously had to support through notes
written on paper (one developer commented that he often
wrote notes on his hands and arms). Opening new bubbles
to the right of existing bubbles kept them from losing their
navigational context; even when they had filled the display
screen they chose to scroll the virtual display surface in-
stead of closing bubbles. Being able to zoom out with a
single key press gave them a “bird’s eye view” which they
used to “corral” bubbles on a larger scale.

Developers also found value in creating free-form 2-D
layouts. They believed that simply juxtaposing related code
and arranging bubbles provided them with needed context
when analyzing code. In fact, they felt their quick layouts
saliently captured enough of their thought processes to im-
prove their ability to multi-task and to recover from inter-
ruptions. A shared reaction was that if sections of the pan-
ning bar could be named then they could better leverage the
virtual space over longer periods of time since previous
trains of thought would be better-preserved.

Responses to vertical elision and reflow were more
nuanced. One developer found code elision harder to read,
while others commented that it made long functions easier
to “scan” and read, since they could collapse everything but
the particular section of interest. Some developers noted
that elided code increased the likelihood that they might
overlook important code, but did not anticipate this to be a
serious problem. A minority of three developers felt that too

much reflow could be distracting and wanted to be able to
set a default minimum width for bubbles, however, the ma-
jority liked or did not mind reflow, with two even com-
menting that it made the code easier to read.

Regarding the general UI, developers appreciated the “mi-
nimalist” design, allowing them to “focus” on their code,
and the use of mouse-buttons to move or close bubbles in-
stead of targeting small widgets; however, several noted
that self-disclosure would be helpful. In addition, develop-
ers found the spacer algorithm to be relatively intuitive and
predictable for avoiding overlap, with comments like “It
seems to give precedence to the one you are moving. That
makes sense. I like that.” They felt that its incremental ef-
fect on layout freed them from the “pain” of managing win-
dows and did not move everything “like auto-arrange.” One
developer felt he might at times want to override the spacer,
and suggested a key binding to temporarily disable it.

We were surprised that no developer expressed concern
over the absence of files, with some noting that in most
cases file contexts were not useful because they tended to
be too large necessitating navigation primarily via the pack-
age explorer, open declaration, etc. They did, however, note
that files would still be useful when an entire class needed
to be skimmed or written from scratch, but that we could
add a class bubble for such cases, or an easy transition from
a bubble to its containing file. In general, however, they felt
that bubbles offered better editing opportunities than files
because they could view other methods for reference while
making edits, or plan for a complex change by opening a set
of bubbles to modify.

Developers considered groups to be a multi-purpose orga-
nizational tool that they would use because they could
create them so easily. They felt groups, in addition to bub-
ble connections, provided needed visual structure to collec-
tions of bubbles. Groups and connections made it easy to
very quickly locate and keep track of methods, for example,
to “follow relationships” or recover spatial orientation and
to “find my way back”. Several developers favorably com-
pared bubbles and connections to UML diagrams and
thought UML integration would be natural and useful. Ad-
ditionally, groups were perceived as a convenient interface
for performing larger-scale rearrangements quickly without
disturbing intra-group layouts. Several participants, howev-
er, requested an undo feature for changes to groups, and
bubble manipulations in general, beyond the undo we pro-
vide for close. All but one suggested persisting groups for
use later, searching for groups by name or content, and dis-
covering related functions based on group membership.

QUANTITATIVE EVALUATION
In this study, we focus on the twin activities of reading code
and navigating code, which when taken together, we term
code understanding. Developers may choose to make use of
additional tools – such as reading check-in statements, us-
ing the debugger, using a profiler, etc. to augment their
code understanding. However, we argue that these activities
build on the core code understanding process, rather than
replacing it, in virtually all cases; thus we focus on the more

fundamental activity of code understanding. This evaluation
investigates the following hypotheses: Code Bubbles users
will be able to understand the code more quickly, take ad-
vantage of multiple simultaneous bubbles, and should use
significantly fewer navigations/minute on average, and
fewer repeated navigations/minute on average.
Methodology
We sought to develop a methodology which tested code
understanding efficiency with a clearly defined goal. For
the purposes of a quantitative study, implementing a new
feature is too open-ended and likely to incur significant
confounds. On the other hand, a task in which programmers
are asked to read code lacks a clearly defined goal; in early
pilot tests in which participants were asked to read code to
answer specific questions, or identify the cause of specific
bugs, they were often unsure of how thorough to be, despite
extensive instructions and training tasks.

We therefore chose a task which had a very clearly defined
goal that participants could understand and identify with:
fixing a bug. Note that the goal of these tasks was not to
measure bug fixing efficiency, but rather served as a con-
text in which to stimulate code understanding with a clear-
ly-defined goal; to identify and correct the bug necessitated
forming an understanding of the features in question. Each
bug was designed to require a change to a single, existing
line of code, so as to minimize editing/code design as a
variable.

Adding additional tool use into the experiment adds addi-
tional variables that could confound the results; e.g. we
might then be measuring debugger proficiency. Therefore,
we restricted developers from using debuggers, trace state-
ments, and other tools and instead asked them to focus on
reading the code only. Although this limits the ecological
validity of the study, we believe that the benefits in terms of
being able to experimentally isolate code understanding
behavior from other tools outweighs this limitation.
Participants and Equipment
We recruited 20 graduate and 3rd and 4th-year undergraduate
students (19 male, 1 female, mean age 21.95, SD: 2.70)
from the Computer Science program of Brown University.
We could rely on students having years of Eclipse expe-
rience because most computer science courses at Brown use
Eclipse. We found in our pilot studies with professional
developers that their backgrounds were more varied and
that they often use a combination of tools with varying le-
vels of experience with each. Thus, to control for past expe-
rience, we used students for the study (consistent with [2]).

Participants reported a mean of 3.85 (SD: 1.72) years of
experience with Eclipse, and rated themselves average or
higher on a 7-point Likert scale from “beginner” to “ex-
pert”; no significant differences existed between conditions.
This, combined with the common background in Eclipse
experience at Brown, help to address differences in pro-
gramming ability across conditions as a threat to validity.

All trials used a 24” monitor running at 1920x1200x32-bit,
dual-core CPU with 2 GB of RAM, and a GeForce 7300GT

graphics card; total cost < $1000 (US). We used an Epiphan
VGA2Ethernet hardware video capture system with a VGA
splitter to capture the screen without impacting frame rate.
Conditions, Task Context and Tasks
We examined performance in the context of two conditions,
a control, Eclipse version 3.4.2 in its default install configu-
ration, and the Code Bubbles prototype with the following
features disabled: substring search in the popup search box,
groups, and zooming. We disabled these features to reduce
the number of independent variables; Eclipse does not have
direct parity with these features, and Code Bubbles is usa-
ble without them. Both applications were run maximized.

We evaluated the performance of Code Bubbles using a
vector-based drawing application we created, similar at a
high level to that used in [2] in Java, called ShapeDraw.
ShapeDraw has 32 commands, comprised of 44 classes, 280
methods, and 2,658 code lines (mean of 6.4 lines/function,
std. dev. of 13.2); by comparison, ArgoUML, a 150,000-
line open source application has a mean function length of
8.7 (SD: 15.5). To control for a priori knowledge of API
libraries such as Java Swing, we wrapped all non-trivial
APIs (but did not wrap common data structures, such as
LinkedList); we also structured the code to not involve al-
gorithms, protocols, databases, or file formats. Such know-
ledge is inherently involved in working with open source
applications which use a variety of libraries, technologies,
algorithms, etc. which some participants might be less ex-
perienced with than others. Consistent with [2], code was
uncommented because it was unclear how up-to-date/useful
the comments should be to be representative.

Users were asked to do one 15-minute training task (Task
0), and two 45-minute tasks (Task 1 and 2). All tasks were
designed to not require/benefit significantly from the de-
bugger, to need minimal edits, and to be doable in 30 mi-
nutes. Features involved were non-trivial and were designed
to represent the scale and complexity of real applications.

For Task 0, participants needed to fix a diagram feature that
displayed ellipses of various widths and involved 2 classes,
329 code lines, and 22 potentially relevant methods. For
Task 1, participants were tasked with fixing a bug in the
program’s Undo/Redo mechanism. The fix involved under-
standing how undo/redo actions were stored and applied –
participants needed to identify a logic error in the method
that stored redo operations. The feature involved 4 classes,
1,017 code lines, and 43 potentially relevant methods. For
Task 2, participants were tasked with fixing a bug in a bar
graph tool which failed to display the correct number of
bars on the screen. The fix involved understanding how bar
graph data was stored and how the layout system inter-
preted this data to arrange the bars on the screen. Finding
the bug, a logic error in the layout code, involved 4 classes,
897 code lines, and 33 potentially relevant methods.
Experimental Design and Procedure
We used a between-participants design, where participants
were randomly given one condition to perform both tasks.
After a pre-questionnaire, they were read an introductory
statement and given a guided tutorial of six core features of

Figure 8 Tasks successfully completed, and completion time for Tasks 1
and 2 (95% CI)

Figure 9 Reduction in total completion time Δt, reduction in navigation time
Δtnav, reduction in completion time not accounted for by navigations Δtcog

Figure 10 Navigations/minute (left), repeat navigation rate (right) (95% CI)

their condition: Package Explorer, Find, Open Declaration,
Find All References, Navigate Back/Forward (Eclipse-
only), Moving/Closing Bubbles and Panning (Code Bub-
bles-only), Compile Errors List / Inline Error Squiggle,
Save and Run. Mouse and keyboard-based methods for
each command were taught (Code Bubbles shortcuts mir-
rored those taught for Eclipse). For parity, Code Bubbles
provided a per-bubble text search UI, and a compile error
list to open the appropriate bubbles. These features were
more than sufficient to read and understand the code in-
volved in the tasks. Participants were not permitted to use
tools to probe the running instance, including debuggers,
trace statements, etc.; however they were allowed to use
other untaught features that did not probe the running in-
stance, but they were not instructed on their function.

For each task, the program was run and the bug was illu-
strated and described to each participant. Participants were
then told to begin the task by looking at the central han-
dleClick() method which is triggered by all of the event
callbacks. This allowed us to simulate an environment in
which a programmer was familiar with the high-level archi-
tecture of an application, enough to know where toolbar
event callbacks occur, but unfamiliar with specific feature

implementations – a routine scenario. It is important to note
that developers do not always know where to start, thus
placing obvious limitations on the generality of the results.

Participants were given a printed page detailing the task for
reference and told the experiment moderator could not as-
sist in completing the tasks but could answer questions
about material from the tutorial. Participants were told that
they should read and understand the code to identify the
bug, and were told that to complete the task they would
only need to make and test a change to a single existing line
of code (they were permitted to make failed attempts). We
asked participants to only modify code when they thought
they were entering a solution, so as to control for compile
time, auto complete familiarity, etc. In addition, we permit-
ted them to type comments to themselves, make use of a
text editor, Notepad, and write notes on paper. Since we
wrapped all APIs specific to the task, there was no need to
use the Internet and so we did not provide a web browser.

Participants had up to 15 minutes to complete the training
task, and up to 45 minutes to complete Tasks 1 and 2. If the
participant was not yet complete, they were instructed to
stop in order to continue on to the next task. The training
task always came first; the order of Tasks 1 and 2 was
counter-balanced. Participants were given a break after the
first full task; the study took an average of approx. 2 hours.
We observed that participants spent their time focused on
reading and trying to understand the code, and did not ap-
pear to search aimlessly for the bug, or attempt to iterative-
ly probe the code via modifications; therefore we believe
the study accurately reflects code understanding behavior.
Results and Analysis
The task completion time and task success results for both
tasks are shown in Fig. 8. Code Bubbles (CB) users per-
formed task 1 significantly faster than Eclipse (EC) users
ଵ଼ݐ) ൌ 2.98, ൏ 0.05ሻ. However, there was no signific-
ance in task completion times for the second task (ݐଵ଼ ൌ
1.45, ൌ 0.164ሻ. Analogous to task completion time, CB
users were able to complete task 1 within the allotted time
significantly more times than EC users ሺ߯ଵ

ଶ ൌ 5.2, ൏
0.05ሻ, but there were no significant differences for the
second task ሺ߯ଵ

ଶ ൌ 1.0, ൌ 0.31ሻ. We hypothesize that the
reason for the lack of significance for task 2 is that the ap-
parent higher difficulty, when combined with the 45-minute
cutoff effectively lowered EC completion times; although
the time limit was a tradeoff we made to keep overall expe-
riment time manageable, we hypothesize that a larger time
limit could have lead to significance for task 2. Although
CB users did not perform significantly faster in completing
task 2, they did perform significantly faster than EC in
terms of total for both tasks ሺݐଵ଼ ൌ 3.83, ൏ 0.001ሻ. CB
users completed both tasks 33.2% faster than EC users (Fig.
9, left). In addition, CB users were able to significantly
finish more tasks overall than EC users ሺ߯ଵ

ଶ ൌ 4.9, ൏
0.05ሻ. (The 45-min. time limit places a lower-bound on
task completion time for uncompleted tasks).

When users performed both tasks in Code Bubbles and Ec-
lipse, we logged the number of navigations they performed

1
Navigations logged included Open Declaration, Find All References, Back, Forward, Package Explorer, Find, manipulation of the scrollbar from oe location to another, stop-

ping at and inspecting a function (scrolling through a function did not count), tab switch, pop-up search box, and panning.

and how much time they spent on navigation interactions1
(based on screen recording analysis; interaction time for
each event was logged to the nearest whole second from the
time an interaction began [e.g., moved mouse toward tool-
bar] to when it completed [e.g., clicked back button]; key-
board actions were logged as 1 sec.). Across both tasks, CB
users (Mean: 3.5 min, SD: 1.6) spent significantly less time
than EC users (Mean: 11.6 min, SD: 3.08) navigating
ሺݐଵ଼ ൌ 7.4, ൏ 0.0001ሻ. This navigation time represents
16% of the total task time spent on both tasks for EC users
and 7% of the time for CB users ሺݐଵ଼ ൌ 5.47, ൏ 0.0001ሻ
(we attribute the lower EC navigation time percentage than
reported in [2] to the fact that we administered one task at a
time, and did not simulate frequent interruptions). In addi-
tion, Code Bubbles helped users reduce average navigation
time by 68.6%. Examining navigation rate (Fig. 10, left),
we see that CB users (Mean: 2.5 nav/min, SD: 0.69) per-
formed significantly fewer navigations per minute than EC
users (Mean: 4.6 nav/min, SD: 1.5) across both tasks
ሺݐଵ଼ ൌ 4.1, ൏ 0.001ሻ. Of the total number of navigations
user performed, we extracted the number of repeat naviga-
tions users performed, an indicator of working memory
effectiveness. Users of CB performed significantly less
repeat navigations per minute (Mean: 0.95 rnav/min, SD:
0.41) than of EC (Mean: 3.51 rnav/min, SD: 1.22) across
both tasks ሺݐଵ଼ ൌ 6.27, ൏ 0.0001ሻ. In addition to repeat
navigations, EC users exhibited a common behavior in
which they “flipped” back and forth between two functions,
rapidly (four alternating navigations between two func-
tions), perhaps since they could not see them simultaneous-
ly; developers did this an average of 9.2 times (SD: 10.8).

If we consider the total reduction in task completion time
for Code Bubbles, Δt = 24.0 min., and compare this with
the reduction in time spent on navigation interactions,
Δtnav = 8.1 min., we can see that Δtnav only accounts for
33.9% of the time reduction (Fig. 9, right). This surprising
result suggests that there was an additional cognitive bene-
fit, Δtcog = 15.9 min., above and beyond the reduction in
navigation interaction time, that accounted for the bulk of
the performance improvement seen by CB users.

Code Bubbles users all took advantage of having multiple
methods open at once; at points sampled 5 minutes before
task completion, users had on average 11.0 (SD: 2.87) me-
thods concurrently visible onscreen (does not include par-
tially visible methods), out of a mean total of 17.3 (SD:
5.93) methods open (including partially visible, and
offscreen methods). Finally, we logged the number of UI
manipulations users did when using Code Bubbles and Ec-
lipse. Specifically, we were interested in the amount of
panning CB users did and the amount of scrolling EC users
did. These operations are essentially equivalent, given the
user interface layout of each tool. We found that there was
no significant difference in the number of scrolling/panning
operations between CB and EC users ሺݐଵ଼ ൌ 0.54, ൌ 0.6ሻ.

DISCUSSION AND FUTURE WORK
The quantitative evaluation shows that Code Bubbles sig-
nificantly reduced the amount of time needed to complete

the tasks (33.2%), and also the number of successfully
completed tasks. In addition, Code Bubbles significantly
reduced navigations per minute (46.6%), the amount of
time spent actively navigating (68.6%), and the percentage
of repeated navigations (50.5%) (arguably wasted interac-
tions). Combined with the qualitative study feedback, we
believe that these results confirm our core hypothesis that
programmers will be able to understand code faster and
with less effort when using concurrently visible working
sets of code bubbles, than when using file-based editors,
and furthermore, that programmers will qualitatively prefer
bubbles for code understanding tasks.

A surprising and unexpected result, however, was that the
reduction in navigation time only accounts for 33.9% of the
performance improvements seen in Code Bubbles. We hy-
pothesize that the remaining speedup comes from a collec-
tion of factors rooted in the limited nature of human work-
ing memory. We suspect that limited working memory af-
fects developers in a variety of ways, making it difficult for
them to perform several important activities, including:
remembering context, comparing and referring back to me-
thods, and re-finding methods when needed. In essence, we
believe that developers used Code Bubbles not just to avoid
navigation but also to offload their working memory onto
concurrent views and spatial arrangements.

We believe that developers used Code Bubbles to rapidly
shift their focus across a range of contextually related code
fragments, as evidenced by their maintaining an average of
11 complete methods displayed simultaneously on screen.
This statistic is notable because we also observed that all
participants closed bubbles once they had determined they
were not relevant. In addition, we observed that users rarely
focused on a single bubble in isolation, but instead appeared
to read fragments together as part of a working set, refer-
ring back and forth between bubbles as needed. Users also
made high-level arrangements of bubbles; for instance, in
Task 1, they often opened methods related to Undo and
Redo in parallel arrangements to make comparisons. Fur-
ther, we only noted a single instance in which a Code Bub-
bles user made a note, whereas Eclipse users made an aver-
age of three notes containing important function names,
their thoughts about the purpose of a function, etc.

Further evidence that Code Bubbles supported the offload-
ing of working memory comes from the disparity of repeat
navigations between Code Bubbles and Eclipse users. On
average, 75.9% of all navigations using Eclipse referred
back to specific methods they had already seen. In contrast,
Code Bubbles users were able to refer to methods that were
already on screen. Thus, we noted that only 37.6% of navi-
gations with Code Bubbles were to display previously seen
code, and more than half of these were panning operations
to see off-screen methods. The remaining were generally
attributable to users closing bubbles that they thought
would not be relevant later. In addition, Code Bubbles users
all frequently juxtaposed bubbles to facilitate direct com-
parisons. Eclipse users, we believe, attempted to approx-
imate visual juxtapositions by rapidly navigating back and

forth between methods of interest; a behavior used on aver-
age 9.2 times. Four Eclipse users adopted the ingenious and
perhaps drastic coping strategy of altering their source file
by copying and pasting methods as comments to be adja-
cent; another pasted methods into Notepad for comparison.

In Code Bubbles, developers also seemed to leverage their
spatial memory to glance back to view methods they had
just seen, apparently intuiting and adopting the general left-
to-right pattern that emerges as new bubbles are displayed.
We observed that developers did not always remember the
exact location of a bubble, however, in such cases it was
interesting to note that they typically remembered the gen-
eral location, and did not appear to search the entire work-
space but intuited the general location. In cases when they
needed to pan the screen, participants generally appeared to
pan in the right direction to find what they needed. In con-
trast, Eclipse users relied on their notes which were ineffec-
tive in many cases when they had not realized that a method
they had encountered would later be important, and thus
had not taken any notes. As a result, when they needed to
find a method, they often had to re-find it, taking multiple
steps. Creating and using working sets appeared to be natu-
ral for both the participants in our quantitative and qualita-
tive studies. Since the UI of Code Bubbles is fundamentally
a working set, developers did not need to explicitly create
one to support a given task since they “got it for free” as
part of their normal workflow.

We believe Code Bubbles applies to ecologically valid code
bases; professional developers felt a sizeable number of
functions would be concurrently viewable in their code, in
keeping with the analysis of [29]. Moreover, based on the
results, we believe that there is clear value for simultaneous
views of code, distinct from the value of tools which facili-
tate rapid navigation but do not afford concurrent visual
comparison via spatial arrangements.

The controlled nature of the tasks places obvious limitations
on the generality of the results. Moreover, we do not expect
a performance difference would be seen in cases in which
developers need to read/edit single methods in isolation, or
when the user reads/edits methods in a sequential manner,
with minimal referring back to previous methods.

We believe that follow-up studies to further investigate the
utility of Code Bubbles in an ecologically valid context are
warranted. In addition, bubbles could be applied more
broadly to other areas of IDE UI: debugging displays; hete-
rogeneous working sets including documentation, UML
nodes, notes, web pages, etc.; interruption recovery and
multi-tasking; sharing information; and version manage-
ment. The bubbles UI might also be applied to other sense-
making problems involving information fragments.

CONCLUSION
We have presented Code Bubbles, a novel user interface for
seeing and interacting with concurrently visible working
sets of code fragments. Qualitative studies indicate that a
feature complete IDE based on Code Bubbles would be
valuable to professional developers. A quantitative experi-
ment showed significantly improved performance on two

code understanding tasks compared to Eclipse, and signifi-
cantly less time spent navigating. Moreover, we discovered
the surprising result that the reduction in performance time
could not be attributed to navigation alone, meriting further
research into potential cognitive benefits of this approach.

ACKNOWLEDGEMENTS
The authors wish to thank Andries van Dam and Ken
Hinckley for their advice and insight, and Donnie Kendall,
David Eichler, Salman Cheema, Jared Bott, Jeff Coady and
Max Salvas for their assistance. This material is based upon
work supported under a National Science Foundation Grad-
uate Research Fellowship and in part by NSF grants CCR-
0613162, and IIS-0812382.

REFERENCES
1. Erlikh, L. Leveraging Legacy System Dollars for E-Business. IT
Pro, May/June (2000), 17-23.
2. Ko, A. J. , Myers B, Coblenz, Aung H. An Exploratory Study of
How Developers Seek, Relate, and Collect Relevant Information dur-
ing Software Maintenance Tasks. IEEE TSE’06, 971-987.
3. Plumlee, M. D., Ware C. Zooming versus multiple window inter-
faces: Cognitive costs of visual comparisons. ToCHI’06. p179-209.
4. Reiss, Steven. P. The Desert environment. TSM’99. p297-342.
5. Nackman, L. R. An overview of Montana. IBM Research ‘96.
6. Stockton R. Kramer, Nick. The Sheets hypercode editor. 1993.
7. Murphy, G. Kersten M, et al. How are Java software developers
using the Eclipse IDE? IEEE Software 23, 2006, p76-83.
8. Robillard M. Coelho W et al. How effective developers investiage
source code: An exploratory study. TSE’04, p 889-903.
9. Sherwood, Kaitlin Duck. Path exploration during code navigation.
The University of British Columbia, 2008.
10. DeLine, R, Czerwinski M et al . Code Thumbnails: Using Spatial
Memory to Navigate Source Code. VL/HCC'06, p11-18.
11. Coblenz M et al. JASPER: an Eclipse plug-in to facilitate software
maintenance tasks. OOPSLA WETeX ’06..
12. Singer, J Elves, R, and Storey. Navtracks: supporting navigation in
software. ICPC’05, p173-175.
13. Kersten M and Murphy Gail C. Using task context to improve
programmer productivity. SIGSOFT’06/FSE’14, 1-11.
14. DeLine, R, Czerwinski M et al. Easing program comprehension by
sharing navigation data. VLHCC’05, p241-248.
15. Cubranic, D, Murphy, G C. Hipikat: recommending pertinant
software development artifacts. ICSE’03.
16. Robillard, M.and Murphy Gail C. FEAT: a tool for locating, de-
scribing, and analyzing concerns in source code. ICSE’03. p822-823.
17. Robillard, M et al. ConcernMapper: simple view-based separation
of scattered concerns. In OOPSLAWETex’05, p65-69.
18. Kersten, M and Murphy Gail C. Mylar: a degree-of-interest model
for IDEs. AOSD '05, 159-168.
19. Wright, W, Schroh D, Proulx P, Skaburskis A, Cort B . The Sand-
box for analysis: concepts and methods. CHI'06, p801-810.
20. Tan, D et al. WinCuts: manipulating arbitrary window regions for
more effective use of screen space. CHI'04, p1525-1528.
21. Bly, S , Rosenber J K. A comparison of tiled and overlapping
windows. CHI'86, p101-106.
22. Henderson, D. et al. Rooms: the use of multiple virtual workspaces
to reduce space contention in a window-based graphical UI. TOG’86.
23. Robertson, G. Horowitz E, Czerwinski M et al. Scalable Fabric:
flexible task management. AVI'04, p 85-89.
24. Bragdon, A. Creating Simultaneous Views of Source Code in
Contemporary IDEs using Tab Panes and MDI Child Windows: A
Pilot Study. TR CS-09-09, Brown Univ. ’09.
25. Bragdon, A. et al. GestureBar: improving the approachability of
gesture-based interfaces. CHI'09, p2269-2278.
26. Watanabe, N. et al. Bubble clusters: an interface for manipulating
spatial aggregation of graphical objects. UIST'07. p173-182.

