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Abstract—We provide a high-level, on-line visualization
of the behavior of a complex, reactive Java program in terms
that are familiar to the programmer. The visualization is part
of the Code Bubbles integrated development environment. It
is generated automatically by the environment without any
effort by the developer. Code Bubbles performs static and
dynamic analysis of the program. The dynamic analysis is
done invisibly during debugging runs and is kept up to date as
the program evolves. The analysis is used to determine the
transactions and tasks describing the major phases of event
processing by the program. Finally, Code Bubbles visualizes
executions of transactions and tasks by the program’s threads
in real time as the program executes. 

Keywords—Software visualization, dynamic visualization,
debugging, program understanding, integrated development
environments.

I.  INTRODUCTION

Modern software systems are large and complex. They
are often reactive, responding to the external or internal
events in an asynchronous manner. Responding to an event
may involve multiple threads performing various computa-
tions, I/O activities, and synchronizations.

Such complex interactions make understanding the
behavior of such programs very difficult. To better under-
stand a program’s dynamics, its internal activities must be
evidenced. Existing approaches attempt to visualize the
behavior of low-level events and primitives such as interac-
tions between the program's threads. Such low-level visual-
izations can be difficult to interpret and the programmer is
burdened with the task of mapping this visualization into the
higher-level terms in which they conceive the system. To
make the visualization understandable and meaningful to
the programmer, the program behavior should be visualized
using the high-level metaphors the system was designed
with and the programmer thinks in terms of.

We visualize a program in terms of transactions and
tasks. Transactions are major stages of processing a request
by the program. They correspond to handling user interface
events, network events, etc. Tasks are smaller processing
steps that occur in a context of a transaction. They are initi-
ated by the transactions and are processed later by the same
or other threads. Where programs are purely interactive,
tasks and transactions can be one and the same. However, in

complex systems, a transaction can result in multiple tasks
then being performed asynchronously by separate threads to
service the transaction.

We visualize the execution of the transactions and tasks
using a two-dimensional graph divided into horizontal rows.
Each row represents a single thread of the program and
colors within the row correspond to execution of particular
transactions and tasks. The horizontal axis represents the
flow of time. This is a relatively common notation, some-
times used to explain threading behavior, and akin to UML
sequence diagrams and similar notations, that can be readily
understood by programmers. 

II.  RELATED WORK

There has been a lot of work on dynamic program
understanding [8,30]. While a large number of tools have
been built, few are actually used or incorporated into current
integrated development environments. We see several
reasons for this: most of the efforts to date involve off-line
tools; the tools often provide low-level information rather
than the application level information the programmer
requires; the tools can require substantial work on the part
of the programmer; and the tools have significant overhead
that precludes their everyday use.

Off-line tools execute a program in a controlled environ-
ment while collecting trace data, analyze the collected data,
and then create a visualization from the analysis. This
approach has several advantages. First the tool can have
access to a large amount of potential information by collect-
ing a broad range of detailed trace data. Second, the displays
and the underlying analysis can be more sophisticated since
they don’t have to be done in real time as the program exe-
cutes. Third, once the run is complete, programmers can use
the resultant visualization at their leisure, spending time
appropriate to understanding their problem. An early indus-
trial example of such a system is Jinsight [20,21]. Other
examples include [9,11,14,15,17,37,38], our own work with Cacti
[23] and BLOOM [24-26], and more recent systems such as
SynchroViz [36], Verso [3], and SyncTrace [16], 

Having worked on and with such tools, we have come to
the conclusion that they are not going to work for many of
the problems and programs that need to be addressed. There
are several reasons for this. First, these tools tend to gener-



ate a significant amount of trace data. The cost of generating
and storing this data slows the execution of the program
considerably, making it difficult to analyze programs that
are interactive, long running, or that need to be run in a pro-
duction environment. Second, because the trace files are
large, the analyses that need to be done can also take a sig-
nificant amount of time; the cost of just getting to the point
of being able to see the analysis is high and is discouraging
to potential users. Third, the tools typically model the whole
run and show the result after execution is over. This makes
it difficult for the user to correlate a particular external event
or abnormal behavior with the analysis or even to remember
what was going on at a point where the analysis might look
interesting. Fourth, the collection of large amounts of trace
data tends to perturb the behavior of the program, making
problems involving timing, threads, or process interaction
difficult to reproduce.

What is required is an on-line dynamic analysis where
the analysis runs along with the program and the program
runs at close to its normal speed with minimal perturbation.
Such tools require compromises since they are limited in
terms of the data that can be displayed, the data that can be
collected while still running the program at speed, and the
types of analysis that can be performed on that data. How-
ever, the benefits of being able to correlate the output with
what is currently going on, of being able to use the visual-
ization on arbitrary programs, or being able to interact with
the program based on the analysis, and of having relatively
low analysis overhead, far outweigh the drawbacks. This is
especially true if the visualization offers a history mecha-
nism so that the user can go back to look at a particular
event or visualized anomaly in more detail. 

While such tools are less common, they do exist. We
have been developing We developed early on-line tools to
provide visualizations of execution in terms of classes,
thread behavior, an estimation of the program phase, and
line counts [27,28]. Performance visualization tools, such as
our that integrated with Eclipse, offer another approach.
More recently, tools such as ExplorViz [1], use tracing
frameworks that can be made to work in an on-line mode
[13].

Most dynamic understanding and visualization tools
concentrate on providing the low-level information that
characterizes the execution. Such information can include
individual thread locks, function calls, allocations and deal-
locations, etc. Even tools that aim at higher level events, do
not really address problems at the programmer’s level. For
example, recent server-related work such as the web ser-
vices navigator [19] or streamsight [22] provide visualiza-
tion of interactions but can’t integrate these with other
program information or specialize them based on program
knowledge. Such tools is that they make it difficult for the
programmer to get a high-level understanding of what the
program is doing or to answer specific questions about the
program [7]. 

Real program understanding comes from looking at the
program at the same high level that the programmer thinks
about the program. This lets programmers understand pro-
grams in their terms. It also lets them address specific, high-
level questions they might have about program behavior. 

There have been previous attempts to provide program-
centric visualizations. Our original attempt, VELD, was off-
line, using static analysis, full program tracing, and a variety
of dynamic analyses [26]. A later attempt let the program-
mer specify behaviors in terms of program events and finite
automata over these events [29], Follow-up work along
these lines is described in the next section. Other systems
that offer high-level views include EVolve [37,38] which
provided an alternative framework where the programmer
defined a specific visualization from different analyses, and
the Tracer system provides visualizations of UML-based
program models [18]. 

A problem with these tools is that they can require sub-
stantial work on the part of the programmer. Having the pro-
grammer define the model to visualize as is done in EVolve
and VELD is more than one can expect. Alternatively,
forcing the programmer to define the significant events as is
the basis for tracing systems like Kieker [13] or X-Trace
[10] is similarly a lot to ask. This is especially true in that
the visualization may or may not solve the particular
problem the programmer is interested in and the model will
have to evolve as the code changes, so it might only be
useful once. 

Finally, a problem with most of these dynamic visualiza-
tions tools is that they impose significant overhead when
running the code. Using the Eclipse profiler, for example,
often slows the program down so much that interactive
applications become unusable. We have addressed this
problem for performance analysis in [31] by using very low
overhead techniques combined with dynamic monitoring
capabilities. Others have addressed this by using program
analysis to minimize monitoring [2] or by turning instru-
mentation on and off appropriately [12]. 

III.  PRIOR WORK

Our goal was to incorporate a useful dynamic visualiza-
tion that provided high-level information about program
execution into a development environment. The tool would
need minimum input from the programmer and would have
low enough overhead so that it could be running continu-
ously. 

We concentrated on understanding complex, reactive
systems. In such systems, the user is mainly interested in
what are the primary operations or transactions, how are
they broken down into logical tasks, and how are those tasks
being handled by the program using threads. 

We designed and implemented the system based on our
recent work in both dynamic visualizations and on develop-
ment environments.



A.  DYVIEW

Our prior work on visualizing threads, tasks and transac-
tions, DYVIEW, required significant effort on the part of the
developer [34]. The developer had to specify the project to
be analyzed; then he had to initiate or update a static analy-
sis of the project; then he had to run the program in a repre-
sentative way while the system did a dynamic analysis. The
system would then use the results of the static and dynamic
analysis to determine candidate classes representing trans-
actions, tasks, and threads. The programmer, however,
would have to choose among these candidates. Next he had
to associate program values (e.g. the task class, the thread
class) with the graphical properties of the visualization
(although the system choose appropriate defaults). Finally
he had to run the program again and attach the visualization
to it dynamically. While visualizations done this way were
accurate and highly customizable, the considerable effort
was a strong deterrent to the use of the system.

The visualization this system provided was similar to the
one used here and was used as a starting point for our new
visualizations.

B.  Code Bubbles

Code Bubbles is a novel integrated development envi-
ronment for Java. In contrast to the existing IDEs that repre-
sent the project as a collection of source files, Code Bubbles
organizes the project as a working set [4,5]. A working set is
a collection of task-relevant fragments, such as methods,
small classes, test cases, notes, documentation pieces, etc.
Each fragment is displayed in a separate lightweight
window — a bubble. The bubbles can be related to each
other. For example, a note can be attached to a particular
method, or a test case can be associated with the bug report.
The user can rearrange the bubbles as needed to provide a
logical context for the particular maintenance or develop-

ment task they are currently working on. A view of Code
Bubbles can be seen in Figure 1.

Code Bubbles offers a wide range of features to support
different styles of development. To help the programmer to
simultaneously work on multiple tasks, Code Bubbles pro-
vides a large overview space in which the user can embed
multiple working sets. To support creation of the working
set, the environment provides a number of navigation aids.

Code Bubbles provides a range of debugging features.
In addition to the normal notions of breakpoints and step-
ping, Code Bubbles lets the user see multiple debugging
sessions in parallel (including a history of previous ones),
and displays bubbles for each level of the execution stack.
The environment provides a history view of the debugging
session, a low-overhead performance analysis of the
program being debugged, and the ability to delve into
Swing/AWT hierarchies by pointing to a pixel in the pro-
gram’s output. A debugging view of Code Bubbles can be
seen in Figure 2. 

Support for debugging is provided both through Eclipse
and by a separate debugging agent, BandAid, that is auto-
matically included by Code Bubbles. This agent communi-
cates with Code Bubbles through a intermediate server,
sending XML data back to Code Bubbles periodically, and
accepting a small set of commands. It is organized into indi-
vidual agents, each of which is responsible for a particular
feature. One agent, for example, does periodic stack sam-
pling get statistical performance information, accumulates
this, and sends back performance reports every few seconds.
Another agent tracks the origin of Swing and AWT widgets
and accepts commands to determine how a particular pixel
is drawn and what widgets it occurs in. A third agent tracks
the state of each thread, using stack samples to determine if
the thread is running, sleeping, waiting, blocked, or doing I/
O. A fourth agent checks for and reports thread deadlocks.

Figure 1. The Code Bubbles Integrated Development Environment. 



Our new visualization was designed to be part of this
Code Bubbles debugging facilities, making use of its own
agents. It was designed to provide the types of visualiza-
tions offered by DYVISE, but without any of the costs. It
was also designed to have low enough overhead so it can be
used at any time. 

The ability to visualize program transactions and tasks is
an important addition to this range of intelligent debugging
facilities. The visualization tool is designed to provide the
user with an understanding of what is happening in the
system being debugged in high-level terms, i.e. in terms of
the program itself, rather than in terms of low-level events.

IV.  VISUALIZING PROGRAM TASKS

A sample visualization is shown in Figure 3. The visual-
ization uses a swim-lane metaphor to show the different
threads. Each thread is shown in a separate row (lane) of the
visualization. Within the row, the visualization draws a pipe.
The outside of the pipe is colored to represent the transac-
tion and the inside of the pipe is colored to represent the
task that is part of the transaction. 

Time is represented along the X-axis. Since each pixel
can represent multiple events, the transaction (outside) col-
oring represents the transaction that occupies the majority of
the corresponding interval, while the task (inside) coloring
is a stack of pixels where the height of each color represents
the proportion of the time spent by that task. White is used
here to indicate the thread was not processing any known
task. 

The visualization is on-line and is updated as the
program runs. This lets the programmer understand what is
happening in the program as it happens, easily correlating
outside events with program activity.

Figure 3 represents the execution of a single test request
by our semantic search tool [33]. The processing can be
broken up into eight distinct phases, most of which can be
seen in the visualization. The first phase involves setting up
the request. This is done by the main thread at the bottom,
and is the slight yellow area at the left. The second phase
involves retrieving the first page of search results from the
search engine. This is done by one of the threads in the
thread pool. Once the first search result page is returned, the
system uses the thread pool to retrieve the next nine pages
of search results and all the files referenced in all ten pages.
This is done in parallel using 32 threads as seen in the visu-
alization. The yellowing areas here represent retrieving
results pages, while the green areas represent retrieving and
converting the retrieved files into candidate solutions.

After all the pages are retrieved, the system takes each
candidate solution and attempts to transform it into a new
solution that is more likely to be acceptable. The resultant
solutions are also transformed. This phase is done using 4
threads in the thread pool and is the blue area with internal
purple and red tasks (representing different parts of the
transformation process). After no more solutions can be
found, the system does a dependency analysis on the
remaining solutions to add outside methods and fields and
eliminate any that won’t compile. This is again done with 4

Figure 2. A debugging view of Code Bubbles. The window in the upper left is the debugger control panel. Below that is the console 
window, a window showing the status of each thread, and a performance table. To the right of the console is the task visualization 

window. The Windows on the right half of the display are text editors and stack viewers showing the current execution.



threads and can be seen in the small yellow/red area. After
this is done, the system does a few additional transforma-
tions to get the remaining solutions ready to test.

The system next uses 10 threads to run the resultant
solutions using junit and ant. This is the part of the process
that takes up the most time and is seen in the visualization
as the long green rows on the upper right. The last part of
the process involves outputting the solutions that passed.
This is relatively quick and is done by the main thread so it
is difficult to see in the visualization.

This interpretation of the visualization is not directly
obvious from the diagram. Indeed, attempting to place all
this information on the figure would over complicate the
diagram and make it incomprehensible. Instead, we rely on
two things. The first is that, since the visualization is part of
a development environment, the programmer is probably
familiar with the system and its expected behavior, can

make a good guess at what the system is doing, and hence
has a good chance of interpreting the visualization directly. 

Second. we provide tool tips so that the programmer can
mouse over the visualization and see exactly what is hap-
pening at any time. Such tool tips can be see in Figure 4.
The tool tips show the time, the task and the set of transac-
tions that were active during the interval represented by the
corresponding pixel. Transactions and tasks are identified
by their routine name.

The user can manipulate and interact with the visualiza-
tion in various ways. First, they can change the tool tip
labels, replacing a routine name with their own label for a
particular transaction or task. This name is remembered and
used in subsequent visualizations. 

Second, they can set the color of a particular task or
transaction explicitly. Normally the system will assign
colors to the transactions or tasks sequentially, picking
colors that are as distinct from previous colors as possible.

Figure 3. The Transaction-Task Visualization. Each row of the visualization corresponds to a user thread. Colors indicate the 
transaction and task the thread is working on. Time is represented along the X-axis.

Figure 4. Two additional views of the visualization shown in Figure 3. The left view shows both time marks as vertical dashed lines 
and an example tool tip. The right hand view shows the result of focusing one part of the visualization using fish-eying. 



(It uses hues in the sequence 0, 0.5, 0.25, 0.75, 0.125, 0.375,
0.625, 0.875, …). The user can select a task or transaction
and assign it a color. Then when assigning colors to a new
task or transaction, the system will skip any hue that is too
close to a user selected color.

Third, the user can insert time markers. These are repre-
sented in the visualization as vertical dashed lines and can
be seen in Figure 4. These can be inserted at a specific point
or can be inserted at the current time during a run. This lets
the user flag a particular point in the program where the
something interesting is happening. 

Finally, the user can focus on a particular point in the
visualization. This can be done in two ways. First, the two-
sided scroll bar at the bottom of the visualization lets the
user specify a particular part of the visualization to look at.
Second, the system supports fish-eying. By dragging with
the left mouse button down, the system will ensure that the
point under the mouse represents at most 10 milliseconds of
execution and will smoothly compress the rest of the visual-
ization. This can be seen in the right hand visualization of
Figure 4 where the user has zoomed in on a point in the
short dependency analysis phase of the program.

V.  BEHIND THE SCENES

While the visualization is interesting and informative,
the important point is that it is generated automatically, with
no input from the programmer, and with low-enough over-
head so that it can be used all the time. Code Bubbles will
automatically collect the data needed for the visualization
during every debugging run of the program. The user can
ask for the visualization at any point during (or after) the
run and see what happened or what is going to happen. If
the visualization bubble is already open, a new run will
clear it and reuse it.

The visualization is generated by identifying and tracing
the entry and exit of a select set of routines in the applica-
tion. Most of these routines are the program’s event han-
dlers. An event handler is a routine that is called when an
event occurs. What is an event can vary widely depending
on the program. It can be a message or request from external
source such as a web browser; it can be a task given to a
thread queue; it can be a user interface event; it can be a
timer event. 

The basic visualization is generated from a trace of all
the (non-nested) event handlers in a system. Transactions
are defined as event handlers that are invoked by the system
without a correspondence to a prior transaction. Tasks are
defined as event handlers that are invoked in the context of a
previously invoked transaction and share some data with
that transaction. Whenever an event handler is entered,
Code Bubbles records the entering thread, the identity of the
event handler, the entry timestamp, and the associated set of
objects. When an event handler is exited, the tool records
the thread, the handler identity, and the exit timestamp. 

In order to associate tasks with prior transactions, the
system assumes that the transaction (or a prior task) will
create an object representing the work to be done by the new
task. This might be a Runnable placed on thread queue or a
handler associated with an event. The system identifies the
types of such objects and records all allocations of them. If
the allocation occurs within a transaction context, any task
that later uses that object will be associated with that trans-
action. 

More details are added to the visualization by identify-
ing key routines. These are routines in the program in which
the system spends a significant amount of time (currently
defined as above 5% of the total and above a threshold of
about 1 second). Tasks that take a long time can then be
broken down by what they are doing. Key routines are
viewed as tasks in themselves for visualization purposes
even though they are actually nested in tasks or other key
routines.

A.  Computing What to Trace

Generating a visualization this way requires knowledge
of a) the set of event handlers; b) the set of relevant object
types referenced by these handlers; c) the set of key rou-
tines; and d) locations in the program's code that should be
instrumented to gather the necessary information with
minimal overhead. All this information is determined
without programmer intervention. The visualization also
requires that the necessary information be acquired effi-
ciently and that it be kept at the proper level of detail so it
can be stored and displayed in real time. 

This information is gathered automatically using a com-
bination of static and dynamic analysis. First, the system
uses the smart debugging facilities of Code Bubbles, by
adding a BandAid agent to look at stack samples. This agent
builds a call trie that represents a summary of the execution.
Each call stack is added to the trie by starting with its start
node and working down to the current active routine. Where
the stack entry corresponds to an existing trie node, that
node is reused. The agent keeps counts for each node of the
trie of the number of times that node was actively executing.
Leaf nodes of the call stack that represent waits or I/O oper-
ations are ignored and separate counts are kept for each trie
node of the number of times it was executing, waiting, and
doing I/O. Because the system is designed to be used during
debugging, stack samples that correspond to routines that
are stopped by the debugger are ignored completely. The
tries are periodically sent back to Code Bubbles incremen-
tally and the final trie is analyzed when the debugging run is
ended. This dynamic analysis has low enough overhead so
that it is essentially invisible to the user while debugging
and can be used all the time.

The system defines an event handler as a user routine
that is called from system code, as in our prior work [32].
These are found by finding trie nodes where the caller is a



system routine and the callee is a user routine. The actual
computation is a bit more sophisticated. 

First, the systems we are looking for are often complex,
using both internal an external libraries as well as their own
registration and callback methods. We use the static analysis
facilities of Code Bubbles to build a hierarchy of packages,
where system routines are at the lowest level of the hierar-
chy, and routines at a higher level only directly use methods
from packages at their level or below. Such hierarchies
often exist even within the application’s code (which we
consider user code), since a) the application is often built on
top of user-defined libraries; b) hierarchicalizing the code
can yield a cleaner implementation; and c) packages are
often set up so they can be separately compiled, which
requires that their be a compilation order and hence hierar-
chy. The static analysis looks at each file to find references
to other packages and builds the corresponding hierarchy.

Then we extend to the definition of an event handler to
be any invocation of a method in the call trie where the
caller is at a lower level of the hierarchy than the callee. One
complication is that there are routines that introduce false
event handlers, for example toString. These are special
cased. A second complication is that we only want to con-
sider user routines as event handlers. Here we ensure that
the routine is not a special Java-defined routine (such as an
accessor), that the routine has associated source within the
user’s project as known to Code Bubbles, and that the
routine has either public or protected access (only public for
constructors). Next, the main entry point is automatically
considered as a callback if it is part of the user’s source. A
further complication in defining event handlers, especially
with this broader definition, is that on any path from the root
to a leaf in the call trie there might involve multiple event
handlers. The system currently only considers the first such
handler on each path. 

Key routines are also identified automatically from the
returned call trie when the count totals are significant. We
first compute, for each trie node, the total of its local counts
and the total counts of each of its children. Then we con-
sider any trie node that is below an event handler node, that
has a total count of greater than 5% of the total and where
either it has no children satisfying this condition.

The set of relevant object types is found directly from
the set of event handlers. In validating an event handler, we
find its source code. This allows us to identify its argument
types. (Stack sampling within the Java management frame-
work returns routine names and line numbers, not the fully
qualified routine with arguments.) We consider all the argu-
ments (the this parameter included) and find up to two that
are object types defined in user code. The types of these
parameters added to the set of relevant object types and the
parameter ids are saved along with the event handler. For
each relevant object type, we identify the constructors that
need to be instrumented.

This approach differs from our original approach in
several ways. First we display all transactions and tasks
rather than having the programmer define what should be
displayed. Second, we use a simplified model of what can
be a transaction or task, omitting the levels of indirection
that we used originally. This also lets us use a simplified
static analysis. Finally, we substitute multiple debugging
runs for a single exemplar run.

B.  Computing the Trace

To gather the actual trace information, we use another
agent as part of the Code Bubbles debugging facility. This
agent takes a list of all the routines to be traced from Code
Bubbles along with the type of tracing required. This agent
registers with the Java Management facility to potentially
instrument classes as they are loaded. For event handlers
and key routines, it patches the corresponding classes to add
a trace entry point at both the start and each exit of that rou-
tine. For each constructor of a relevant class, it instruments
the constructor with a trace entry point called after any
super constructor is called. This is done using asm [6],
Trace events are handled separately for each thread to avoid
introducing false synchronizations. The trace collection
code itself is run in its own thread, using multiple buffers to
minimize interactions with the program’s threads. Each
trace entry includes an integer identifying the routine (nega-
tive for exits), the time (in nanoseconds) the entry occurred,
and any relevant object parameters. The later are either
identified when computing the set of relevant object types
or are the this parameter in a constructor.

Because the number of top-level event handler calls and
key routine calls is relatively small as is the relevant set of
object types, the overhead caused by the monitoring is gen-
erally not noticeable in running the program. The trace
information is periodically (every half-second or so) passed
back to Code Bubbles where it is analyzed and converted
into a form more suitable for visualization, essentially a
time-ordered set of events to visualize where each event
represents a task and has a pointer to the corresponding
transaction.

This set is constructed by processing the trace events in
temporal order and tracking the current tasks associated
with each thread. Tasks for a thread are kept on a stack for
that thread so that calls and returns can be tracked appropri-
ately. Nested event handlers generally do not generate new
tasks. However, a nested key routine will end the current
task (generally one associated with an event handler) and
start a new one when it is entered. When it is exited, this
task ends and another instance of the prior task is started. To
prevent the set of events from becoming overwhelming,
which would make it costly to store and to visualize, very
short tasks are either ignored (if they are short because of
nesting), or are merged (if they are short but consecutive).
Tasks that have started but not yet finished are considered to
continue up until the current execution time.



After the set of events has been updated based on infor-
mation obtained by the trace agent, the corresponding visu-
alization windows will be notified so they can update their
display as necessary. 

While the system works completely without program-
mer intervention, we do provide a small set of options to let
the programmer customize the display based on their
requirements. These options affect how the trace is gener-
ated and processed, so they generally only take effect on the
next run. The first option is whether to include key routines
as tasks or not. The default is to include them. The second
option is whether the main routine should be considered as a
task. This is optional since for some reactive systems, the
main program just handles initialization and can be ignored.
The default is to consider it. The final option currently is
whether the main program should be considered a transac-
tion. If it is, then almost all callbacks are going to be associ-
ated with it since initialization typically is used to define the
callbacks. The default is to not consider it a transaction. 

C.  Validating the Set of Events

Our system uses information gleamed from all prior
debugging runs to determine what to instrument in order to
generate the trace in the next debugging run. This is some-
what complicated in that the system being traced is being
worked on within a development environment, and hence
should be considered as under active development. This
means that the information needs to be maintained as the
system evolves. Such evolution can occur both within the
environment and outside of it (as programmers can and
sometimes do change code outside the development envi-
ronment). 

To accommodate this, Code Bubbles does several vali-
dations. First, whenever the set of callbacks (event handlers,
key routines, and constructors for relevant classes) changes,
the system will write these out in a file within the project.
When Code Bubbles starts up, it reads this file and then val-
idates each routine, ensuring that it still exists within the
system with the same parameters, access, etc. Any routine
that does not validate correctly is discarded. Second, it only
considers routines as callbacks if it can actually find that
routine in the current user source. Third, if does not assume
that each routine has to exist on every run. The instrumenta-
tion package is designed to be error tolerant. The system
also has the capability to validate all the routines each time
the system is updated (i.e. files are saved), but this has
proven to be too expensive with the current implementation
of Eclipse.

The system also gives the programmer the option of dis-
carding all the previously selected event handlers, key rou-
tines, etc. and starting the computation over based on future
debugging runs.

VI.  EXPERIENCE

The task visualization functionality is part of the running
and distributed Code Bubbles environment. As such, we
have used it to look at (and to some extent understand) the
behavior of several of the systems we have been working
on. Examples of three systems (beside S6 which was
covered previously) are shown in Figure 5. 

The first example involves Code Bubbles itself
(although run as a front end for code search rather than as a
Java environment [35]). Here one can clearly see the initial-

Figure 5. Three different task visualizations. The one on the left Code Bubbles running as a front end to code search. The top thread 
is the user interface thread. The bottom line is the main program setting up and initializing the system. The middle lines represent 
the various utility tasks done in background such as reformatting, rebuilding the search tree, and handling edits. The visualization 

at the upper right is a web-server/home automation engine. The top thread is the timer which periodically checks the state of various 
sensors. The bottom thread is the main program which is waiting to exit. The middle threads represent the thread pool. The yellow 
area on the left is updating a device. The orange areas on the left are handling web requests. Finally, the visualization at the bottom 

right is a multithreaded Java flow analyzer. The blue area on the left is a thread pool used for loading the various classes. The 
yellow/red area on the upper right is a separate thread pool doing the actual flow analysis.



ization phase, and the fact that the user interface thread
(purple on top), dominates. Moreover, one can estimate how
busy that thread is by the amount of white space (versus
colored space) within its display. The thread pool used by
Code Bubbles as seen here is used occasionally, mainly
when loading the files that come back from code search,
when putting up new code bubbles on the files (the yellow
tasks), and when formatting after editing (the purple tasks). 

The second example (upper right) is from a system that
manages an automatic sign outside Dr. Reiss’s office. This
system takes input from various sensors to determine if he is
in the office, if he has a visitor, or if he is on the phone, and
also consults his electronic calendar. There is a program that
determines, based on the time and these conditions, what
should be displayed on the sign.The system also supports a
web interface to define, view, and edit this program. The
visualization clearly shows the periodic, time-based updates
at the top, the of time required to update the sign (yellow on
the middle left), and the time needed to handle web requests
for programming (orange on the right).

The third example is from a computationally intense
application that computes control flow of Java systems. The
visualization clearly shows that two distinct thread pools are
used, one to start with which is charged with loading all the
necessary classes into an internal representation; and one
that is used to actually compute the control flow. From the
visualization, it appears that the actual computation could
be more efficient in that the threads are idle a considerable
part of the time. 

These examples show that the visualization is applicable
and practical for a wide variety of applications, ranging
from simple interactive ones to highly computational ones.
It can be used to provide an understanding of what is hap-
pening in the system and to point out potential problems
(such as the idle times in the control flow threads) or unex-
pected behavior (such as the fact that the testing phase of S6

is the longest while the transformation phase that we were
worried about, is generally short). It also shows that the
visualization finds the relevant event handlers and does a
reasonable job of identifying key routines and associating
tasks with transactions.

They also demonstrate that our solution is practical. We
have been using Code Bubbles extensively both for code
development, testing, and debugging. Yet, although the
system has been gathering the appropriate data on every
debugging run, we have not noticed any slowdown or inter-
ference with our development. 

While our experience with the system has been mainly
positive, we have noted a number of aspects that may
require additional work. These include 

• Validation of existing methods and classes is some-
what expensive. Right now we only do it when
Code Bubbles starts up. However it should be done
each time the user saves a file or before each debug-
ging run.

• The set of event handlers and hence task and trans-
action classes is only used to instrument the applica-
tion at the start of a run. It should be possible to
discover new event handlers and reinstrument the
code on the fly.

• The visualization often illustrates thread pools or
groups. This is accidental in that threads are sorted
by name and thread pools tend to have similar
names. There should be a way of making use of this
information or of displaying thread pools as one
swim lane for very complex applications.

• Similarly, the user might only be interested in a sub-
set of the threads. In this case it would be helpful if
the visualization let the user identify which threads
were relevant and which should be ignored. 

• For many systems, the callbacks are all defined ini-
tially as part of initialization and are handled in one
thread at one time. For such systems tasks and trans-
actions are the same thing. In this case there might
be a better way of displaying the tasks. Moreover, if
we know this, we can do less instrumentation and
thus incur less overhead.

• Right now we are displaying everything that the
system identifies as an event handler or key routine.
The programmer may find some of these irrelevant
or want to concentrate on a particular set of items.
Thus, it might be useful to let the user select rou-
tines and indicate that they should be ignored.

• The system currently generates colors dynamically
on each individual run, assigning colors to tasks
(and hence transactions) in the temporal order they
occur. Because the systems are nondeterministic,
this can yield different color sets on different runs,
which can be somewhat disconcerting. The system
could avoid this, for example, by remembering the
color of each item from its prior run.

• While we haven’t noticed the overhead when using
Code Bubbles, we know it is there and there might
be ways of reducing it. In particular, we know that
getting the time is a costly operation in current Java
implementations.

• Some applications can involve a large number of
short-lived calls to event handlers or key routines
(e.g. if the key routine is expensive because it is
called a lot rather than because it does extensive
computation). Right now, simplifying the trace by
eliminating or merging these is done while process-
ing the trace. It would be more efficient to do this
processing as the trace is generated.

VII.  CONCLUSION

In this paper we have described an extension to Code
Bubbles that provides a high-level visualization of program
behavior without any programmer input using low-overhead
techniques so that the visualization can be available at any
time. 

The Code Bubbles environment, including the task visu-
alization plug-in, is available in both source and binary form
from http://www.cs.brown.edu/people/spr/codebubbles. A



video of the system is available at http://www.cs.brown.edu/
video/37.
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