
Designing Collaborative Development Tools
Steven P. Reiss, Alexander Tarvo

Department of Computer Science
Brown University

Providence, RI. 02912 USA
{spr,alexta}@cs.brown.edu

Abstract—Collaboration between programmers can take
various forms. A wide variety of tools have been developed to
support these forms. As part of our development of the Code
Bubbles integrated development environment, we have been
attempting to design and develop tools that support collabo-
ration within the working set context the environment pro-
vides.

In this paper we briefly describe Code Bubbles, the vari-
ous tools that we have developed to assist collaboration, and
the types of collaboration each of these tools is designed to
support. We conclude by describing the current state of the
tools and our future plans.

Keywords—Programming environments, programmer
communications, programmer logs, collaborative tools.

I. INTRODUCTION

Software development today is largely a collaborative
effort. Much software development is done by multiple pro-
grammers working in teams, often in conjunction with
project managers, designers, users, and other stakeholders.
However, there are many different styles and approaches to
collaboration, each of which requires appropriate support-
ing tools.

At one extreme, very loose collaboration is required
where a programmer is working on legacy code written by
other developers. Programmers create copies of the code
(by cloning a repository, downloading a tar ball, etc.) and
make their own modifications or additions to it. Program-
mers have complete control over the code and do not neces-
sarily plan to incorporate any changes into the original
version. They might, however, want to communicate with
the original developers to ask questions, report bugs, or
provide suggestions.

A slightly more collaborative work style involves com-
ponent-based collaboration. Here each programer works on
a separate program components that interact with other
components using “standard” interfaces. The interfaces are
typically well-defined, but can (and often do) change over
time. Communication among programmers is generally
asynchronous via e-mail, shared web pages, or messaging.

A more collaborative work style occurs with reposi-
tory-based collaboration. Here programmers share source
through a clone-based source control system such as git or
svn, possibly with file locking. This style requires addi-
tional communications via messaging, video conferencing
or phone. Such collaboration is common in open source
projects and in large companies where developers are sepa-
rated geographically. Here each programmer maintains

their own copy of the complete system source. Programmer
communication generally uses a mixture of synchronous
and asynchronous methods.

The tightest collaboration is required when multiple
programmers work simultaneously on common source files.
This occurs when developers are engaged in pair program-
ming or if they use older source control systems such as cvs
or sccs that work by locking individual files in a common
working directory. Communications here is again a mixture
of synchronous and asynchronous methods, but with the
balance shifted more towards synchronous.

Each of these collaboration styles requires different
development tools for communication, logging, and actual
collaboration.

Communication tools let programmers exchange
information while developing software. Tools for asynchro-
nous communication include wikis, bulletin boards, FAQ
lists, E-mail and text messages. Synchronous communica-
tion tools include instant messaging, phone calls, and video
conferences.

Logging tools store knowledge about the software
system, helping programmers become aware of what their
colleagues are doing or have done. Source control systems
provide basic logging functionality in form of check-in
descriptions — notes made by programmers when they
commit code. Check-in descriptors inform other program-
mers what has changed and who is responsible for change.
Bug tracking databases provide more elaborate descriptions
of work items in the software project including the rationale
for changes. More sophisticated tools such as Mylyn [7]
allow attaching external notes directly to the code including
references to bugs or work items, and links to wikis or
blogs that describe changes.

Collaborative tools facilitate programmers working
simultaneously on the same code base. These tools usually
work with source control systems, for example, by high-
lighting changes implemented by other developers [3] or
providing assistance in merging changes [8]. They can also
address problems involving concurrent work on common
source, for example, providing a shared editor view such as
that offered by Google documents.

Our interest is in extending today’s development envi-
ronments with appropriate tools to support this wide variety
of different collaboration styles. In particular, we are inter-
ested in developing extensions to the Code Bubbles envi-
ronment that adequately support collaboration.

II. CODE BUBBLES

Code Bubbles [1,2] is an attempt to redesign the user
interface to programming to match the developer’s working
model. Code Bubbles represents a software project as a
working set, a collection of task-relevant fragments includ-
ing code, documentation, test cases, notes, bug reports, and
other aspects of programming [9,10].

The fragments in a working set may be contained in
multiple files, classes, or other modules, so quick and easy
viewing of a working set is complicated in traditional envi-
ronments. Code Bubbles presents fragments in fully manip-
ulatable interface elements in order to provide an intuitive
arrangement of the working set. Code bubbles is designed
so that a working set should fit completely on a display. The
working set is actually a viewport onto a much larger avail-
able work space. Multiple working sets can be scattered
over the work space. A sample Code Bubbles display can
be seen in Figure 1.

Code Bubbles provides a number of tools designed to
help the programmer. It offers several techniques for code
navigation including search facilities, fragment linking, and
code overviews. It integrates tools for testing, code search,
documentation, dynamic debugging, and education. We
have also been working on developing a broad suite of tools
to support the different collaborative styles.

III. COLLABORATION TOOLS IN CODE BUBBLES

Collaboration support has been a concern throughout
the development of Code Bubbles. Not only have we been
developing tools for collaboration, but the underlying archi-
tecture of the system was designed with collaboration in
mind.

Code Bubbles is built using a message-based client-
server architecture. The back end (for Java, Eclipse with an

additional plug-in to support the environment) maintains
the working set. The actual Code Bubbles code acts as a
front end that implements the user interface and the tools.
The back end supports editing and updating of files simulta-
neously from the different front ends. It supports automatic
notification of code changes, errors, and runs for all front
ends. This enables multiple programmers to work on the
same code simultaneously.

In addition, Code Bubbles offers a variety of collabora-
tion tools. For communication it provides:
• A chat tool within the environment that can connect to

any of the common chat services (Google, AOL,
XMPP). The tool saves chat histories as part of the
project for future reference. It also lets programmers
send either images or loadable descriptions of their
working sets as part of the chat.

• The ability to send e-mail messages from within the
environment that include a description of the working
set that can be reloaded in the recipients environment.
These descriptions can also be saved into files that can
be sent separately, included as part of a wiki or blog, or
saved for later use.

Code Bubbles provides its own set of logging tools.
These include:
• A note tool that allows programmers to create bubbles

containing HTML-based notes. These notes are saved as
part of the working set and are automatically reloaded
when the working set is reloaded. Each note can be
attached to a line of code without actually modifying the
source file. In this case the note becomes a permanent
part of the programmer’s project and is accessible by
other programmers viewing the code.

• A flag tool that allows the insertion of flag icons into
working sets to alert other programmers of particular
conditions.

• A programmer’s log facility that automatically records
programmer actions such as looking or editing a particu-
lar method. This is similar to facilities provided by
Mylyn [6], Synde [5], or SpyWare [11]. Our tool has the
potential to provide more useful information since the
environment works at the method level rather than the
file level and working sets typically correspond to indi-
vidual tasks. Our tools automatically prompts the pro-
grammer to identify what task they are working on and
lets the programmer easily add notes, images, and work-
ing set dumps to the log. Logs can be shared among all
the programmers in a project. Logs can also be queried
selectively by task, file, date, or programmer. A view of
the programmer’s log can be seen in Figure 2.

Code Bubbles offers several tools for supporting col-
laborative development. These include:

Fig. 1. Code Bubbles display showing a variety of different bubbles
include source bubbles, notes, a bubbles stack showing search

results, documentation, error messages, and context views.

• A source-control package that integrates with common
source control systems including svn, git, and cvs. This
package automatically detects the source control system
used for the current project and lets the rest of the Code
Bubbles query and access source control information.

• A conflict detection tool that informs the programmer if
the code he is currently viewing has been modified by
other developers since he checked it out. This alerts pro-
grammers to potential conflicts during a future check-in.

Whenever source files are changed by the developer,
the conflict detection tool computes the differences
between the current files and the last checked out ver-
sion. It creates a file describing these differences and
sends that file to a central server. When a developer
opens a new file, the tool retrieves all relevant difference
files from the server and computes the set of source lines
changed by other users relative to the version the devel-
oper is working on. Changed lines are marked in the edi-
tor by a colored band in the annotation bar and by
associated tool tips. This provides immediate feedback
to the developer that the method they are looking at has
been or is in the process of being changed by other
developers.

Similar facilities are offered by Crystal [3] or the
IBM’s Rational Team Server (Jazz). Unlike these tools,
conflict detection in Code Bubbles ensures secure com-
munication and does not require complicated setup. The
programmer only needs to add a private UID file to the
top level of the source project. This UID is used to
encode all the files being sent through the central server.
Encryption ensures the server will not have access to the
original code or other sensitive information. Code Bub-
bles also support private servers where needed.

• A tool that provides shared display regions correspond-
ing to working sets. A user can mark a working set as
shared. Any other Code Bubbles interface working with
the same back end can then display the shared working
set. Any new bubbles, bubble movements, etc. done in
any instance of the shared working set are sent to and

duplicated in all the other instances. This provides pro-
grammers with the ability to do remote pair program-
ming or to support interactive code reviews.

IV. CURRENT WORK

While we have developed a number of collaboration
tools in Code Bubbles, we have not yet determined if these
tools are appropriate, adequate, or sufficient. We are cur-
rently working on evaluating the effectiveness of the exist-
ing collaboration tools. We hope that such evaluations will
help us to improve existing tools and develop new ones.

In particular, we are looking at extending the note tool
to allow embedded audio and video notes in the working
set. Similarly, we are considering adding a video chat to the
set of the communication tools.

We are working on mining project information from
software repositories and presenting it to the programmer in
a compact and effective manner. Although such information
is widely used for educating new developers [4] and for
early failure detection [12], there was little effort on
incorporating it into the IDE.

One possible use of such mined information would be
helping the programmer to understand the prior evolution
of the code he is working on. For example, when the
programmer opens a method in Code Bubbles, he should
have the option of seeing the history of prior commits for
the method. This would show what parts of the code are
volatile or new, would identify the developers with expert
knowledge of a particular part of the system, and could
identify other portions of the project with similar change
histories. A preliminary version of such a tool showing file
history by line colored by developer is shown in Figure 3.

Fig. 2. A view of the programmer’s log showing both the prompt
window and a log display.

Fig. 3. Preliminary version of the Code Bubbles file history tool. The
top of the tool shows which checked-in versions of the system

modified the file and the branching structure of these versions. The
bottom display shows where each line was created and changed over

time. Colors correspond to different authors.

Additionally, the mined information would allow
computing important code metrics and incorporating them
into the Code Bubble interface. For example, frequently
changed methods could be considered to be more fault-
prone and highlighted with different color. Another
potential use of mined information would be discovering
relations between different fragments in the working set. In
particular, developers might want to know which functions
were affected by the particular bug, or what parts of the
system could be affected by the change. Code Bubbles
could represent such information in form of interconnected
bubbles.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foun-
dation grant CCF1130822. Additional support has come
from Microsoft and Google.

REFERENCES

1. Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola, Jr., “Code bubbles: rethinking the user interface
paradigm of integrated development environments,” ICSE 2010, pp. 455-
464 (2010).

2. Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola, Jr., “Code bubbles: a working set-based interface
for code understanding and maintenance,” CHI 2010, pp. 2503-2512
(2010).

3. Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin,
“Crystal: precise and unobtrusive conflict warnings,” Proc. 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of Software Engineering, pp. 444-447 (2011).

4. D. Cubranic and G. C. Murphy, “Hipikat: recommending pertinant
software development artifacts,” Proc. ICSE 2003, pp. 408-418 (May
2003).

5. L. Hattori and M. Lanza, “An environment for synchronous software
development,” ICSE Companion, pp. 223-226 (2009).

6. Mik Kersten and Gail C. Murphy, “Using task context to improve
programmer productivity,” Proc. SIGSOFT 06/FSE 14, pp. 1-11
(November 2006).

7. M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
IDEs,” Proc. Aspect Oriented Software Development ’05, pp. 159-168
(2005).

8. Sanjeev Khanna, Keshav Kunal, and Benjamin C. Pierce, “A formal
investigation of Diff3,” Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), (December 2007).

9. Andrew J. Ko, Htet Aung, and Brad A. Myers, “Eliciting design
requirements for maintenance-oriented IDEs: a detailed study of corrective
and perfective maintenance tasks,” Proceedings of the 27th ICSE, pp. 126-
135 (2005).

10. B. A. Meyers, A. J. Ko, M. J. Coblenz, and H. H. Aung, “An
exploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks,” IEEE Trans. on Software
Engineering Vol. 32(12) pp. 971-987 (2006).

11. R. Robbes and M. Lanza, “Spyware: a change-aware development
toolset,” Proc. ICSE 2008, pp. 847-850 (2008).

12. A. Tarvo, “Mining software history to improve software maintenance
quality: a case study,” IEEE Software Vol. 26(1) pp. 34-40 (2009).

	Designing Collaborative Development Tools
	Steven P. Reiss, Alexander Tarvo
	Department of Computer Science Brown University Providence, RI. 02912 USA {spr,alexta}@cs.brown.edu
	Abstract
	Keywords
	I. Introduction
	II. Code Bubbles
	Fig. 1. Code Bubbles display showing a variety of different bubbles include source bubbles, notes, a bubbles stack showing search results, documentation, error messages, and context views.

	III. Collaboration Tools In Code Bubbles
	Fig. 2. A view of the programmer’s log showing both the prompt window and a log display.

	IV. Current Work
	In particular, we are looking at extending the note tool to allow embedded audio and video notes in the working set. Similarly, we are considering adding a video chat to the set of the communication tools.
	We are working on mining project information from software repositories and presenting it to the programmer in a compact and effective manner. Although such information is widely used for educating new developers [4] and for early failure det...
	One possible use of such mined information would be helping the programmer to understand the prior evolution of the code he is working on. For example, when the programmer opens a method in Code Bubbles, he should have the option of seeing th...
	Fig. 3. Preliminary version of the Code Bubbles file history tool. The top of the tool shows which checked-in versions of the system modified the file and the branching structure of these versions. The bottom display shows where each line was...

	Additionally, the mined information would allow computing important code metrics and incorporating them into the Code Bubble interface. For example, frequently changed methods could be considered to be more fault- prone and highlighted with d...
	Acknowledgements
	References

