A Framework for a Programmer’s Minion

EXTENDED ABSTRACT

Steven P. Reiss, Qi Xin

Department of Computer Science, Brown University
Providence, RI. 02912 USA
{spr,qx5} @cs.brown.edu

Abstract—Programming environments should help the
programmer. Today’s environments do a lot along these lines,
yet more is possible. We are developing facilities within the
Code Bubbles environment to proactively assist the
programmer. These facilities attempt to take care of mundane
tasks that the programmer otherwise would need to do,
effectively acting as a programmer’s minion. This paper
describes the framework provided by the environment to
support these tasks and an evaluation of the effectiveness of the
initial minion implementation.

Keywords—automatic correction, programming environments,
programming tools.

I. MOTIVATION

Programming environments should assist the pro-
grammer as much as possible. Today’s environments,
e.g. Eclipse, Visual Studio, IntelliJ, and XCode, offer
many features designed to make programming easier.
Yet more assistance is possible. Our goal is to have the
environment effectively act as a programmer’s minion,
taking care of relatively mundane tasks and fixing obvi-
ous things as the programmer works. Such tasks might
include fixing typos, adding import statements, fixing
simple semantic errors, etc.

To this end, we are building a framework within the
Code Bubbles programming environment [1,8] to support a
wide variety of automatic fixes. The goal of this framework
and its included fixes is to lessen the load on the program-
mer. As such any changes made by the environment acting
as a minion must meet three requirements:

» First, the changes should be unobtrusive. The environ-
ment should not correct things while the user is likely to
make changes that would affect them. It should not
require the user to change focus from their current posi-
tion to a previous error.

» Second, any changes made must be correct. The envi-
ronment should ensure that changes are the right
changes. The changes should actually fix a problem, not
introduce new problems, and be unambiguous.

» Third, any changes should be made the way that the pro-
grammer would do it. The programmer should not have
to go back and correct or reedit an automatic change
because it wasn’t done their preferred way.

II. OVERVIEW AND CONTRIBUTIONS

Supporting general automatic correction requires a
support framework. There are several problems that such
a framework needs to address:

+ First, the framework must provide a consistent way of
detecting when to make a correction. Our framework
maintains a current edit region, the portion of text where
the user is editing. It tracks the cursor in that region as
well as all error messages. Changes are only made to an
active edit region and are made based on the current
error and warning messages associated with that region.

* Second, the framework must be able to generate fixes
for the correction. We introduce the notion of adapters,
each of which is responsible for a certain type of fix. The
adapters are passed an error message and generate prior-
itized possible fixes for that error. For example, a spell-
ing adapter would generate possible corrections for an
undefined identifier. Priorities are used to distinguish
more likely fixes from less likely ones and to identify
when fixes might be ambiguous.

* Third, the framework must validate the fixes. We pro-
vide facilities for creating a private copy of the source,
making the fix in that copy, and then checking the errors
that result. This is done in a background thread. A fix is
only made if it removes the original error, does not intro-
duce any new errors at the point of the fix, reduces the
number of errors, and is unambiguous at its priority
level. Additional checks ensure that the original error is
still present in the source and that the current cursor is
not located within the fix.

* Finally, the framework must make the fix. This involves
rechecking that the fix is still appropriate.

III. ADAPTERS

The initial implementation of our minion framework
includes a suite of adapters aimed at fixing common
mistakes. These include:

Spelling Correction. The spelling adapter is triggered by
an error that covers a single identifier or a single identifier
followed by a single character operator followed by another
identifier. It uses auto-completion [5] results along with the
set of keywords and available types as initial candidates,
finds candidates whose edit distances are small, and then
prioritizes candidates by edit distance. The adapter includes
a user-editable list of exceptions where no correction should
be made to handle the cases where it may make mistakes.

Syntax Corrector. The syntax adapter looks for syntax
errors that tell what token needs to be inserted, deleted, or
replaced. It sets up a candidate based on the error message
and checks if the proposed fix is valid before making the
change. It generally only works once the user has moved on
to the subsequent line.

Uses / Editing Manual Fix Time Saved / Editing Mean

GLEIS hour Time (sec) Hour (sec) ZORRTL Alternatives RESLLAS
Spelling 14.55 5.30 77.115 2.14% 1.22 0.54
Syntax 3.21 5.30 17.013 0.47%

Imports 6.96 10 69.600 1.93% 2.09 3.16
Quotes 0.16 5.30 4.452 0.12%
TOTAL 168.180 4.67%

Figure 1. The results of the log studies. We measured how many times each type of adapter generated a fix per hour of editing. The

estimate of time to do a simple fix was obtained from the log studies, the time for fixing an import is a conservative estimate. The last

two columns show the mean and standard deviation of the number of alternatives that were considered. The other adapters were not
used a significant number of times.

Import Corrector. The import correct checks for errors
indicating an undefined type (or an undefined identifier that
starts with an upper case letter). It finds all the viable candi-
date types and then prioritizes them according to a model of
how relevant the type is likely to be to the application based
on whether the type is part of the user’s code and whether it
has been imported in another file either directly or indi-
rectly. It tries the to find a validated candidate at the highest
possible priority that is not ambiguous. Eclipse’s smart
import capability is then used to ensure the import is added
as the programmer would want it to be.

Quote Corrector. The quote correction adapter looks for
errors related to missing or extra quotation marks. If it finds
an unclosed quotation on a previous line, it finds locations
on that line that would be valid start or end points for a
string (e.g. operators, parenthesis). It generates a candidate
fix by inserting a quotation mark before that character and
checking if the results compiles correctly. All possible
insertions are assigned the same priority.

Return Correction. The return corrector adds a default
return statement to a new method that requires one. Even if
the result statement needs to be replaced later in the editing
process, this can be helpful as it removes error messages
while typing and cleans up the Code Bubbles display.

Try-Catch Corrector. The try-catch corrector looks for try
statements where the user has added code that throws an
uncaught exception. It then adds an empty catch clause to
the try statement for that exception.

IV. EXPERIENCE AND EVALUATION

To analyze the effectiveness of the various adapters
and the overall framework, we analyzed two months of
command logs from the Code Bubbles environment. The
Code Bubbles environment records anonymous informa-
tion on its usage based on a user opt-in strategy. We
considered the recorded data about the sequence of com-
mands issued by the user.

We first analyzed the data to determine when the pro-
grammer was actively editing (i.e. not debugging, thinking,
or simply looking at code). Then we looked at how often
each of the adapters was used per hour of editing time. We
also analyzed the logs to determine how much time was
spent to make a simple fix, using the median value (5.30
seconds) as the base line. From this we generated the results

shown in Figure 1. These results show the minion frame-
work saves about 4-5% of the programmer’s editing time.

These estimates are just that, estimates. The threats to
their validity include that the users over the 2 month period
might not be typical and that the estimation of time to fix
the problems could be wrong.

V. RELATED WORK

Our work was motivated by many existing spell-check-
ing tools such as Microsoft Word and auto-completion tech-
niques like tab-completion and Google Search Suggest.

Several projects have extended an integrated develop-
ment environment’s auto-completion functionality. Our sys-
tem is related to [3] where the auto-completion is designed
to be error-tolerable. Given a user-typed prefix as the query,
which might be erroneous, the auto-completion system
would suggest a list of extension candidates whose prefixes
are the closest to the query. Like us, they use edit distance
as the measure. [7] implemented auto-completion for partial
expressions. For an API method with missing parts, the
algorithm first generates candidates for completion based on
the type information. Active code completion [6] replaces
the simple auto-completion menu with user-interactive
interface for completion enhancement. [9] combines soft-
ware changes information to code completion for improve-
ment. [2] performs repository code search to find similar
method usage patterns for effective code completion. Key-
word programming implements auto-completion based on
keywords [4]. It generates code containing the keywords
while fitting the context according to the Java type system.
The newer versions of Eclipse do automatic import inser-
tion, but only if the type is unique. They do not use a prior-
ity model as we do and hence miss a lot of cases.

VI. CONCLUSIONS

Code Bubbles, including the correction facilities, is
available for download from http://www.cs.brown.edu/peo-
ple/spr/codebubbles. The current implementation of the
framework is included in the Code Bubbles source available
through SourceForge. The learning package, log analysis
tools, log data used, and open source projects that were ana-
lyzer are available upon request.

ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation grant CCF1130822.

REFERENCES

Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman
Karumuri, William Cheung, Joshua Kaplan, Christopher
Coleman, Ferdi Adeputra, and Joseph J. LaViola, Jr., “Code
bubbles: rethinking the user interface paradigm of integrated
development environments,” ACM/IEEE International Con-
ference on Software Engineering 2010, pp. 455-464 (2010).

Marcel Bruch, Martin Monperrus, and Mira Mezini, “Learn-
ing from examples to improve code completion systems,”
Proceedings of ESEC/FSE 2009, pp. 213-222 (2009).

Surajit Chaudhuri and Raghav Kaushik, “Extending autocom-
pletion to tolerate errors,” Proceedings of SIGMOD 2009, pp.
707-718 (2009).

Greg Little and Robert C. Miller, “Keyword programming in
Java,” Proceedings ASE 2007, pp. 84-93 (November 2007).

G. C. Murphy, M. Kersten, and L. Findlater, “How are Java
software developers using the Eclipse IDE?,” IEEE Sofiware
23(4) pp. 76-83 (2006).

Cyrus Omar, YoungSeok Yoon, Thomas D. LaToza, and
Brad A. Myers, “Active code completion,” Proceedings of the

International Conference on Software Engineering 2012, pp.
859-869 (2012).

Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan
Grossman, “Type-directed completion of partial expres-
sions,” Proceedings of PLDI 2012, pp. 275-286 (2015).

Steven P. Reiss, Jared N. Bott, and Joseph J. La Viola, Jr.,
“Plugging in and into Code Bubbles: the Code Bubbles archi-
tecture,” Software Practice and Experience, (2013).

Romain Robbes and Michele Lanza, “Improving code com-

pletion with program history,” Journal of Automated Sofi-
ware Engineering 17(2) pp. 181-212 (June 2010).

