
r

from
ed

his
t a
is
ser of
ange

with
e server
nsider
ser of
elody
es the

 with
nse.
 the

rked
Network Synthesizer
CS32 Assignment 4

Due Dates:

Assignment Out: Mar. 12, 1998
Algorithm handin: Mar. 19, 1998 (11:59pm)
NetSynth Due: Apr. 2, 1998 (11:59pm)

Introduction

In this assignment, you will NOT have to work with DCOM, swilly-network layer
extraordinare, but instead use sockets. Rejoice!

For your fourth and final required assignment in CS32, you will continue to perfect you
mastery of Motif/Baum GUI design. You’ll also get to work with networking, as previously
stated. Perhaps most excitingly, you’ll work with audio - yes, you too can produce sounds
the Suns! - and so you’ll get to learn a thing or two about how music and sound are produc
electronically.

This is a networking assignment. Like Logo, you will do the assignment with a partner. T
means one person will write a client, and the other will write a server. The idea is simple: a
basic level, the client takes a special datafile in the .Music format (specified elsewhere in th
handout) and sends it over to the server application, which then parses the music file. The u
the client can change the volume of each of the different “channels” of sound as well as ch
the sounds the synthesizer will use to produce music. When the user of the client is satisfied
the levels and sounds chosen, a button is pressed and the server produces an audio file. Th
lets the client know what the file is and the client plays the file. This means that you can co
the client program to be the selector/player, and the server program to the the mixer. As the u
the client, you get to choose how loud you hear the drums or whether you want that saucy m
to be played with a piano or a harmonica. The server then produces audio to match the choic
user made with the client application. We understand that this assignment may seem a bit
contrived. But the point is to teach sound, networking, and GUIs, not to create a “useful”
application.

Please take the time to read this assignment handout in detail. We’re glad to help you
things that don’t make sense, but if you don’t read it, very little about this project will make se
For this assignment, you will need headphones to test your code, so bring them with you to
Sunlab.

This is a two person assignment. You should try to work with the same person you wo
with when you wrote Logo, but this is not required.. If you wrote the Logo Parser, you’ll be
writing the NetSynth client for this project; if you wrote the Logo GUI, prepare to code the
Network Synthesizer Page 1 of 11

l

 the
udio

ink
 have

s: the
a
s a

cles
nds to
key,
by

his

gure
ating.
arsh

orms

 the
elve-
E, F,
note
NetSynth server. The client will involve GUI and network programming, while the server wil
involve some network programming and audio processing.

All About Audio

You’re going to have to write a synthesizer, which means you’re going to have to know
basics of how audio is produced in the digital world. In this section, we’ll teach you about a
from the ground up. While only the coder of the NetSynth server will have to deal with the
information in this section directly, it would be wise if all parties involved read this section. Th
of it as an opportunity to learn something interesting and new - with apologies to those who
encountered this information before.

At the basic level, what we percieve as sound is nothing more than compression wave
air around us is literally becoming a bit more “compressed” and a bit less “compressed” at
particular rate, or frequency. We can describe this action of compression/decompression a
simple wave with respect to time.

There are three basic qualities of a sound wave that humans are able to percieve.
The “frequency” of the wave is the rate at which it repeats itself, and is measured in cy

per second, also known as Hertz. (Hz.) In the real world, the frequency of a wave correspo
its pitch - that is, what note you hear. For example, if you went to a piano and played the “C”
the wave produced by the piano would have a different frequency than the wave produced
pressing the “E” key. This would also have a different frequency than the wave produced by
pressing the “E” key an octave higher or lower.

The “amplitude” of the wave is how high or low the signal gets at any one point in time. T
directly corresponds to the human perception of loudness.

The “tambre” of the wave is its actual shape with respect to time. For example, in the fi
above, we’ve drawn a sine wave. When you hear a sine wave, it sounds smooth - it isn’t gr
However, we could easily force you to listen to a pulse wave (shown below) - which sounds h
and edgy. Acoustic instruments such as pianos and guitars have extremely complex wavef
which change over time, and thus they have interesting tambres.

It is important to understand that there is a direct relationship between frequency and
pitches of the standard twelve-tone scale, unless you’re Dan Gould playing the cello. (The tw
tone scale is the scale you find when you play a piano. You know - A, A#, B, C, C#, D, D#,
F#, G, and G#.) Each step up in the scale is called a half-step. As it turns out, A4 - that is the
Network Synthesizer Page 2 of 11

r is

e half-
f

 of

rld -

takes
e are

ch
igital

ples
l piece
 sound

a new

This

.
er cool
th the

ty of

the
etween
A in the fourth octave - is exactly 440 Hz. The frequency for the same note an octave highe
exactly double the frequency of the original note. Thus, A5 corresponds to 880 Hz, and A3
corresponds to 220 Hz. It just so happens that you can get the frequency of a note that is on
step up from any other note by multiplying the original note’s frequency by the twelfth root o

two. (21/12 = 1.0594630943593) From this information, it is easy to determine the frequency
any note in any octave.

This is all fine and good, but the information above corresponds to (gasp!) the real wo
and not the digital world of computers. How do computers digitally represent these analog
waveforms? The key technique is that computers “sample” sound. Basically, the computer
the height of a sound’s waveform at any given point in time and stores it as a number. Since w
dealing with digital information, we can only sample the waveform at discrete intervals, whi
means that if you don’t sample a waveform often enough and with enough accuracy, your d
representation of the sound will be very poor. (See the figure below.)

Your CDs are digitally sampled sounds. This means that Audio CDs contain digital sam
of actual analog waveforms. When the CD player goes to produce sounds, it uses a specia
of hardware called a digital-to-analog converter to take the samples and produce an actual
wave. Take EN/163 if you want to build such a device. They’re soooooo special.

As it turns out, CDs are sampled at 44.1 kHz. This means that 44,100 times a second,
sample was taken by whatever digital device was creating the CD. Note that this doesnot affect
the frequency of the sound that is being sampled. CDs are sampled at 16-bits per sample.

means that, while sampling, we can only store 216 disctinct values for the amplitude of the wave
(For those who are EE types, the CD player uses capacitors to smooth the output, and oth
stuff.) In addition, CDs store stereo data, which means they have separate waveforms for bo
left and right speaker channels stored on them.

Your choice of the sampling rate and sampling bit-depth greatly affect the sound quali
your sample. If you choose a smaller bit depth, you introduce “quantization noise” into your
sound. For example, if CDs were recorded with two-bit sound, they wouldn’t have a wide
dynamic range. (In fact, they’d sound like crap.) Your choice of sampling rate actually affects
sound quality in a more complicated manner. Humans can hear sounds with frequencies b
Network Synthesizer Page 3 of 11

e

 why

most

lay
t and
ial
of the
nt. It
s:

to the

duce

e tons
s with
heir
than
see
in, I

now,
ly. (By
e as the

 file
ode

hat

t. We
l, at any
20 Hz and 22kHz, approximately. There is an important result in signal processing called th
Nyquist Limit, which states that if you wish to accurately represent sounds with maximum
frequencyf, you must sample your sound at a frequency of at least 2f. If you don’t, you will get
strange sounding artifacts known as aliases. (This concept shows up everywhere - from
neurosciene to computer graphics. Take CS/123 if you want to learn more about it.) This is
CDs are sampled at 44.1kHz.

On the computer, there are many different datafile formats for audio data. Some of the
common are .AIFF (Audio Interchange File Format) and .au (mew-law). On the Sun
Workstations, the .au file is most prevelant. You can play a .au file by simply typing “audiop
mySound.au” at the command prompt. AU files contain a header which specifies the forma
audio data which may be compressed. Of course, files don’t have to be stored with a spec
scheme - you can actually just store what is known as linear audio data, in which each byte
file corresponds to a new amplitude. Eight-bit Linear audio data is stored in two’s compleme
can be easily converted into the .au format by using the “audioconvert” command, as follow

audioconvert -i format=raw,rate=8k,encoding=linear8,mono
-f ulaw,rate=8k,mono [linear filename] > [file.au]

For this project, your synthesizer will create linear datafiles and then return the name
client, which will open and play them with the audio class provided.

Now that you know a bit about audio and digital representaitons thereof, let’s talk
synthesizers. By synthesizers, we mean those big things with piano-like keyboards that pro
lots of techno music (when used by people like Dave Peck).

Most synthesizers nowadays are digitally based. This means that, internally, they hav
of small sampled sounds which they use as the basis for their audio production. Synthesizer
good piano sounds generally have good piano samples built into them, and then they use t
filtering and effects hardware to embellish the sample. (Actually, good synthesizers do more
just embellish. They truly distort the sound in a multitude of interesting ways. Buy a K2500 to
what I mean. It comes highly recommended to anyone with tons of cash to spare.) But aga
digress. Naturally, the waveform samples inside synthesizers have a particular pitch (note)
associated with them. On the K2500, all samples are sampled at A4. This is important to k
because when you want to reproduce the waveform at A5, you have to scale it appropriate
scaling, we mean that you have to create a new waveform which has the same basic shap
original, but which has twice the frequency.)

The Music File Format

For this project, we’ll give you some sample music files to use. They have a very basic
format which should make writing parsing code a breeze. This means that if your parsing c
takes up more than three or four screens, you’re making things hard on yourself.

The music files specify everything required to produce an entire song. They specify w
notes to play, when to play them, how loud to play them, and what waveforms to use when
playing the notes. Notes get played on “channels,” of which there can be no more than eigh
use channels so that we can produce more than one note at the same time. On each channe
point in time, only one note from any waveform may play. However, over time, notes from
Network Synthesizer Page 4 of 11

nnels,

which
less

load
s in the
is file

a

-

enting

le file>
d
er

 of
nnel
p the
.

different waveforms may play on the same channel. Since there are a maximum of eight cha
at any point in time there may be no more than eight notes playing from any selection of
waveforms. In addition to a volume for each note, each channel has its own master volume,
is called the mix level for that channel. If a channel’s mix level is zero, this means that regard
of how loud the notes on that channel are, the channel produces no overall audio.

In addition to synthesizing the music into a final audio file, it is the job of the server to
and parse the music datafile. To make things easy, you can assume that there are no error
datafile. Of course, you will have to handle excess blank space and comments, which in th
start with //. Comments will only appear on lines by themselves.

Let’s take a look at the various keywords you will find in a music datafile.

The WAVE and NWAVE keywords specify that the music to be produced will be using
particular waveform. We’ve sampled about sixty different sounds to use in the final audio
production; they’re located in/course/cs032/lib/samples . (They are all stored as eight
bit linear data, so to listen to them you’ll have to use audioconvert.) The waveform <name>
parameter is used later on in the music file, and simply serves as a convenient way of repres
a particular waveform. The next parameter, <waveform sample frequency>, is a double and
represents the note at which we sampled the given waveform. The final parameter, <samp
specifies the name of the sample waveform data file. The difference between the WAVE an
NWAVE is that NWAVEs get played once per note event, and don’t loop. WAVEs, on the oth
hand, loop if necessary. (This is explained in detail below.)

The CHANS keyword specifies the number of audio channels that this particular piece
music will require. Each channel can have its own set of notes played onto it, and each cha
has its own master volume. This means that when you’re producing audio, you have to kee
audio for each channel separate until you’re ready to mix them all together into the final file

Keyword Paramaters

WAVE <name> <waveform’s note frequency> <sample file>

NWAVE <name> <waveform’s note frequency> <sample file>

CHANS <number of channels in file>

BPM <beats per minute>

VOL <channel number> <mix level>

N <channel number> <note> <octave> <amplitude> <duration> <wave name>

S <channel number> <duration>

LOOP <number of times> <loop name>

ENDLOOP <loop name>

ENDALL

CATCH <catch up channel> <catch up to channel>
Network Synthesizer Page 5 of 11

e
tion

<mix
and

r two
 note
the
te at.
g the
ame of
E or

ticular

used
note
e the

cond,
an

of an
te that

r the

peat
cifies -
sted

) to

will
d

to
rs. If
r

o
as the
The BPM keyword specifies the beats per minute for the music. This is an integer valu
which specifies how fast the music should play. It only makes sense when used in conjunc
with the <duration> parameter of the N and S keywords, described below.

The VOL keyword sets the mix level for a particular channel. Note that if there are six
channels in a file, they are referenced with <channel number> values from zero to five. The
level> is an integer value from zero (no volume) to 255 (maximum volume). The VOL comm
will appear exactly once for any given channel.

The N keyword specifices that a note should be played. The <note> parameter is one o
characters specifying the actual note in the twelve-tone scale. (i.e. A, D#, or B- for B flat. A
that is flat is one which is one half-step down from the note above it. This means that B- is
same as A#.) The <octave> parameter is an integer specifying which octave to play the no
Remember, A4 corresponds to 440 Hz. The <amplitude> parameter is an integer specifyin
loudness of the note, and it ranges from zero to 255. The <wave name> parameter is the n
the waveform to use; this corresponds to the name which was specified with a previous WAV
NWAVE command.

The S keyword specifies that there should be silence on a particular channel for a par
<duration>.

The <duration> parameter to both the N and S keywords is a double value which, when
in conjunction with the BPM value for the music file, leads to the number of seconds which a
should play for. The actual way to convert a <duration> value into a length in seconds is to us
following simple equation:

lengthInSeconds = ((4 / duration) * 60) / beatsPerMinute;
For those who are familiar with the music parlance, this allows us to easily specify a

duration of 4 as a quarter note (i.e. if BPM=60, a duration of 4 corresponds to exactly one se
which is what you’d expect.) It follows that a duration of 2 is a half note, and a duration of 8 is
eighth note. For those not familiar with the music parlance, just use the equation above and
everything will turn out spiffy-keen.

When you see a N or S keyword, this is your cue to generate an appropriate waveform
appropriate length and append the waveform data onto the given channel’s audio data. No
the N and S keywords don’t specifywhen a particular note gets played - they just specifyhow
long it will be played for. This means that each N and S is assumed to take place directly afte
previous one on that channel.

The LOOP keyword assists music programmers in creating portions of music which re
themselves, such as drum loops or simple melodies. The <number of times> parameter spe
you guessed it! - how many times a particular loop should be performed. LOOPs can be ne
inside of each other, and so the <loop name> parameter is a single string (without spaces!
specify the name of the LOOP.

The ENDLOOP keyword specificies that a particular loop has ended. The <loop name>
correspond to a previous LOOP command’s loop name. Everything between the LOOP an
corresponding ENDLOOP should be repeated the appropriate number of times.

The CATCH keyword is used to help out musicians as well. (I didn’t want to throw this in
the spec, but I really needed it badly. Sorry, all.) It takes two channel numbers as paramete
the number of bytes of audio currently generated in the first channel is less than the numbe
currently generated in the second channel, you fill the first channel with silence until the tw
channels are the same length. (Silence corresponds to a linear audio value of zero.) This h
effect of synchronizing the two channels with each other.
Network Synthesizer Page 6 of 11

s that

usic

.

nd

tire

rm

so

r
ing.
, and

ith
also
Finally, the ENDMUS keyword appears at the end of a sample data file, and this mean
you can stop parsing the file. How cool is that?

Client Requirements And Hints

Okay, so now that you know about how sound works, and how we’re going to specify m
data, let’s talk about what you’re actually going to do.

The client must perform the following functions:
1. Present a useable GUI interface (Motif / Baum) which allows the user to

a. Change the mix levels for any channel of audio
b. Mute and unmute each channel of audio
c. Play the audio for one particular channel.
d. Select the waveforms in the music file, listen to them, and change them

2. Communicate with the server (i.e. use the network class)
a. Tell it to parse a file
b. Tell it to mix sounds (either the entire music, or a channel)
c. Get information about the number of channels, number of waveforms, a
 their names.

3. Play the audio
a. Use the Audio class - to be described in Appendix A.
b. You should be able to coordinate with the server to play a channel, the en

sound, or a sample (which doesn’t require server communication).
c. Display the waveform of the music, and the current position in the wavefo

(see the demo, or/usr/openwin/bin/audiotool , for inspiration)

The clientmust notparse the file. It should leave this task up to the server. The client al
should not mix the audio. Again, this task is up to the server. The clientshould play the audio
data that the server generated, however.

A suggested interface for the client is found on the last page, but of course, this is you
project! Keep in mind that GUI coding lends itself towards huge functions which do everyth
Try to keep OO-design in mind, because huge functions are a pain to modify, comprehend
debug.

Server Requirements And Hints

The server must perform the following functions:
1. Parse the music datafile.

a. Keep track of waveforms, channels, and channel levels
2. Generate music

a. The entire music file, or a channel.
3. Communicate with the client

Here are some things to keep in mind while writing the server. There is nothing wrong w
maintaining temporary data files - just be sure to clean up after yourself. Of course, you could
Network Synthesizer Page 7 of 11

ar
sing

 one-
from

 of
oop.
kip

t to
ble,

 at
a

o it is
ut,

iring
our
d then
d the

it
tner
use pipes, or anything else your perky little heart desires. Second, remember that your line
datafiles will have to be in two’s compliment - i.e. use a signed int to store a sample value. (U
signed ints also makes it really easy to change the amplitude of your sound - just multiply!)
Fourth, keep in mind that your output is at 8kHz. This means that if you want to generate a
second long tone, you’ll have to output exactly 8,000 bytes. The general calculation follows
this.

Scaling waveforms to the correct frequency isn’t that hard. First, calculate the number
samples you want to output. Next, allocate enough memory for the new data. Enter into a l
Grab data from the original sample waveform and put it into your new buffer. You’ll want to s
entries in the waveform sample in order to get the correct frequency in your new buffer. For
example, if I give you a waveform at 440 Hz and tell you to reproduce it at 880 Hz, you’ll wan
look at every other entry in the original waveform’s wavetable. If you hit the end of the waveta
loop back to the beginning, unless the waveform was specified NWAVE, in which case just
produce silence for the remainder of the time.

Things get a bit trickier if I give you a waveform at 440 Hz and ask you to reproduce it
520 Hz. While you arenot required to perform linear interpolation, you have to come up with
clever way of finding the sample nearest the one you want. Think floor, or (even easier!)
typecasting from double to int.

This kind of code appears frequently, and is seen in many different realms of science, s
to your benefit and credit to puzzle through it by yourself. Naturally, TAs will be glad to help o
too.

Turning In The Assignment

We are not going to require a design handin for this assignment. Instead, we are requ
that you turn in an algorithm handin. The handin should describe the complex sections of y
code. It should detail how you plan to modify the samples to produce the desired sounds, an
mix the music together. It should also describe how the client will display the waveform, an
current position in it. There should be one handin per group.

When you and your partner are done, handin the assignment with:

cs032_handin audio

There are no design due dates or handins, but if you don’t do a design, you may find
difficult to complete this assignment on time. So for your own benefit, sit down with your par
and figure out how it is all going to fit together before you start coding.
Network Synthesizer Page 8 of 11

Appendix A: Support Code
Appendix A: Suppor t Code
The Audio class. You can find the class header in/course/cs032/include/audio.H

typedef class AudioInfo * Audio;

class AudioInfo {
public:
 AudioInfo();
 virtual ~AudioInfo();

 /* Begin playing sample - you must have set a sample, or this will have
 no effect */
 void play();

 /* Stops playing the sample. Obviously, this only works if the sample
 is playing */
 void stop();

 /* Pause playback. This will only work if the audio is playing at
 the time */
 void pause();

 /* Unpauses playback. This only works if the output is currently paused */
 void unPause();

 /* Returns the current position in the sample */
 int getPosition() const;

 /* Sets the start position in the sample */
 void setStartPosition(int start);

 /* Sets the end position in the sample */
 void setStopPosition(int stop);

 /* Sets the current sample. The audio class will make a copy of the
 buffer passed, and free it when the audio class is deleted. */
 void setSample(const char * sample_data, int sample_length);

};
Page 9 of 11

Appendix A: Support Code
The Connect class. You can find the class header in /course/cs032/include/connect.H

typedef class ConnectInfo * Connect;

class ConnectInfo {

private:
 ConnectSocket conn_socket;

public:
 ConnectInfo();
 virtual ~ConnectInfo();

 static XtAppContext setX11Context(XtAppContext ctx = NULL);

 int openServer(const char * file); // open a server socket
 int openClient(const char * file); // open a client socket
 int openAccept(Connect); // open a server, via accept
 void close(); // close a socket

 void sendMessage(int len,const void * msg);
 void sendMessage(const char * msg)
 { sendMessage(strlen(msg)+1,(void *) msg); }

// These callback methods should be redefined by a subclass.
public:
 virtual void acceptCallback();
 virtual void closeCallback();
 virtual void messageCallback(int len,void * msg);
};
Page 10 of 11

Appendix A: Support Code
The SimpleSocket class. You can find the class header in
/course/cs032/include/simple_socket.H

typedef class SimpleSocketInfo * SimpleSocket;

class SimpleSocketInfo {

public:
 typedef int Error;

private:
 int socket_id;

 static Error last_error;

public:
 SimpleSocketInfo();
 virtual ~SimpleSocketInfo();

 bool create(); // create a socket
 void close(); // close the socket

 int send(const void * buf,int bln); // send a message
 int receive(void * buf,int bln); // receive a message

 bool bind(int port = 0); // bind socket to local port
 bool getSockName(char * host,int& port);
 bool enableNonblocking(bool); // enable/disable nonblocking socket
 bool listen(int n = 5); // allow socket to listen
 bool accept(SimpleSocket);
 bool connect(char * host,int port); // client connect to server

 Error getLastError() { return last_error; }

public:
 virtual void onAccept(); // accept available on the socket
 virtual void onClose(); // other end closed the socket
 virtual void onConnect(); // connection ready on this socket
 virtual void onReceive(); // socket has data to read
 virtual void onSend(); // socket ready to send

public:
 void waitForEvent();

 static XtAppContext useX11(XtAppContext = NULL);
};
Page 11 of 11

	Network Synthesizer
	CS32 Assignment 4
	Due Dates:
	Assignment Out: Mar. 12, 1998
	Algorithm handin: Mar. 19, 1998 (11:59pm)
	NetSynth Due: Apr. 2, 1998 (11:59pm)
	Introduction

	Appendix A: Support Code

