
rs.
edu-
ntial
-coded
Good
od-
bout

ing
cre-
osted
soft-
Simple Logo (“Slogo”)
CS32 Assignment 3

Due Dates:

Assignment Out: February 26, 1998
Partner’s Chosen: Feburary 28, 1998 (11:59pm)
Individual Designs Due: March 2, 1998 (11:59pm)
Group Design & Interfaces Due: March 5, 1998 (11:59pm)
Logo Due: March 12, 1998 (9:00pm)

(The following is a paid advertisement for Slogo by the CS32 TA staff...)

“Say hi to our hosts Don ‘Cash’ and ‘Money’ Lapre!”
One special day in my third grade class, they put three Apple IIe’s in the back of M

Bailey’s classroom, and they were all running Logo. Logo, like BASIC, was intended as an
cational language, and, like BASIC, is probably responsible for ruining several million pote
programmers with its open encouragement of global variables and absurdly long spaghetti
subroutines. You’re older now, and have put aside childish programming techniques; the
Word of Design has filled you from head to toe. But part of you misses the child-like joy of c
ing in all capital letters and referring to a triangle as a "turtle." CS 15 made you feel guilty a
this side of your personality, but it never completely died.

In this assignment, your two conflicting halves will be brought into glorious union: us
the software engineering skills you have carefully cultivated since coming to Brown, you will
ate an interpreter for the language you once knew and loved so well. Logo truly is the Fr
Mini-Wheats of cs 32 projects: the adult in you must carefully engineer a significant piece of
Slogo 1

until

used
ed on
of

iting
sers.

ould

gs on
which

e Logo
the

the
engag-

will
tures
com-

hich
GUI
f the
re the

n up
em-

om-
s such
com-
eed

s along

g it
ing
le to
ware; then the kid in you gets to make saucy pictures in Logo. Unfortunately, you can’t play
you’re done, so get designing, get hacking, and get done.

“It’s based on a simple concept, yet the possibilities are limitless!”
Logo is a computer programming language designed for use by learners (in fact, it is

in CS4 for the first programming assignment). The user-friendly, interpreted language bas
LISP was designed with the “low floor, high ceiling” principle in mind; that is, the designers
Logo intended for the language to allow novice programmers to get started quickly with wr
programs but also wanted the language to be powerful and extensive for more advanced u

In the early days, Logo was used to control a simple robot, called a turtle. Users c
issue commands such asFORWARD 50to make the turtle advance 50 steps, orRIGHT 90 to
make it turn ninety degrees. The turtle robot carried a pen, so users could produce drawin
paper, such as the one on the previous page, by controlling the turtle and its pen. The turtle,
has since moved on screen, has become one of the most familiar and important parts of th
language. Children who were using the computer for the first time could relate to “talking to
turtle” and could imagine how the turtle moved by “playing turtle,” moving their bodies as
turtle would. The turtle also makes learning basic programming concepts easier and more
ing because it provides immediate feedback.

As a dialect of LISP, Logo is a complex and powerful language. For this project you
design and implement a much simplified version of Logo. Simple Logo should retain the fea
most commonly used by beginning users so that it can be used to provide an introduction to
puter programming.

“Terrific! What do I need to start?”
First of all, you need a partner. Then you need to decide who is going to work on w

component of this assignment. Only one member of the group will get credit for doing the
part. The person that did not get credit for GUI will need to do the graphics component o
next assignment. That way everyone will have an opportunity to hack some GUI code befo
final project.

You need to decide who you will be working with by Saturday, February 28th and sig
on the sheet outside the TA room. Once you do this, we will create a unix group that both m
bers of your group are in so that you can restrict access to your files.

“The Making Logo Quick Package”
Simple Logo will consist of a basic turtle graphics package and support for a set of c

mands allowing the user to control the turtle and the pen using basic programming construct
as loops and subroutines. When the Simple Logo user launches the interpreter from the
mand line, it should bring up a turtle shell and a turtle graphics window. The interpreter will n
to receive, parse, and execute commands from the user, reporting any errors it encounter
the way.

Simple Logo should provide functionality in the following areas:
• Basic turtle graphics: Slogo users should be able to control the turtle by movin

forwards, backwards, changing its heading, and showing/hiding the turtle. Draw
capabilities should be provided by pen manipulation. The user should also be ab
make turtle motion and pen queries.
Slogo 2

Users

hile
riate

able
ines,

om-

pon-

the

rrors.
likely

hics

ome
erent
iting
them
reter-
s fit
be cre-
ity is

ents
simple

o write
Logo

nc-
nents

able
king.
• Some basic logo instructions, as described in Appendix A
• Workspace management: Users should be able to define and use subroutines.

should also be able to define and use global variables.
• Control structures: loops and conditionals
• Error handling: Simple Logo should gracefully handle any errors that may occur w

parsing and interpreting user-given commands. This includes providing approp
error messages (we’ll leave it up to you to define appropriate).

• File I/O: The user should be able to load logo files into the interpreter and should be
to save the current working environment (composed of user-defined subrout
variables, as well as turtle and pen information) to a file.

Refer to the table of commands at the end of this handout for a full list of the built in c
mands which you will need to support.

“Don, This sounds great! Where do I start?”
The Simple Logo project can be broken down into two parts, all of which you are res

sible for writing:
• Command parsing, interpretation and maintenance of the global environment
• Turtle Graphics Library (TGL), consisting of a display window and methods to move

turtle and draw with the pen.

Parsing involves processing commands token by token and checking for syntactical e
Interpretation means executing the code as it is understood by the parser. The execution is
to require graphical manipulation, which is where the TGL comes in. It should utilize X grap
calls and should be simple and well-defined.

Remember that having a good design is key. You should work with your partner to c
up with a solid program design. Hammer out interface specifications and know how the diff
parts interact and what functionality they will need from one another. Before you start wr
code, it might be a good idea to write header files with empty code blocks and compile
together. To move the turtle and draw with the pen you will need to have the parser-interp
graphics library interaction in place, so you will need to know exactly how all three part
together. As has been said a bazillion times, there is no single perfect design. Feel free to
ative. Express yourself. However, keep in mind that functionality is essential, and simplic
beauty.

Plan this project in stages. It may be helpful to build complete individual compon
before attempting to integrate them. For the parser/interpreter, be sure that you can handle
logo commands, such as the math operations and turtle motion commands. You could als
a test driver for the turtle graphics interface. Then you should concentrate on getting Simple
to work with input from a terminal before you start to worry about getting file input/output fu
tional. This program is not an all or nothing project: you can and should get smaller compo
working before you put everything together.

“That’s fantastic! It sounds so easy! How does it work and is it legal?”
The Simple Logo language has been restrictively defined to make writing it a reason

project. In particular, the limited definition should make it easier to do parsing and error chec
Slogo 3

argu-
tes the

vide
ly be
at the
lue of

com-
rch not
control

which
ard:
ands

defi-

ands
out
ave to
simple

t of
alues.
en a

easy
mands
sure of
com-

d also

tual
hell.
uld be

leLogo
ese

n the
Writing the parser/interpreter

The logo interpreter could consists of a parser, which breaks up the command and
ments into tokens and decides what action to take, and a command interpreter, which execu
parsed command.

The parser will need to read in a line at a time, from either a terminal or a file, and di
the input string into tokens. Given the restricted definition of the language, there should on
one command per line and the command should be in prefix form, with the command name
beginning of the input string. There can also be lines which assign a variable to have the va
another variable, a number, or a command. For example,:x = SUM 40 50 would be valid
input. The job of the parser is to match the appropriate command handler with the specified
mand name. In matching a command name with a handler, remember that you have to sea
only the built in commands but also the user-defined subroutines. The parser can then pass
to the handler, also giving the handler the list of arguments.

One way to think about the command interpreter is as a set of command handlers
each know how to execute a specific command. Most of the handlers will be very straightforw
the numeric operation handlers will need to make calculations and the turtle graphic comm
will need to make calls to the turtle graphics library. The loops, conditionals, and subroutine
nitions will be slightly trickier. Remember that therepeat , if , andto commands are the only
commands which will have input on more than one line. Subroutines are user-defined comm
with their functionality composed of existing logo commands. You will also have to think ab
how to handle lists of instructions that correspond to each command. Note that you do not h
handle passing parameters to your subroutines, although your design should allow this
extension.

Variables will also need to be dealt with. You don’t need to implement any concep
scope, so you could just have a table of all of the variables that exist and their current v
Scope would be cool though and we’re sure you could handle it, but it’s not required. Wh
variable is passed to a command, its value will need to be looked up.

Error checking

As specified above, we will expect some amount of error checking. It should be fairly
to check for parsing errors, by checking each issued command against the set of legal com
and user-defined procedures which comprise the Simple Logo name space. Another mea
error checking to take is to count the number of argument tokens for each command and to
pare the expected number of arguments with the given number of arguments. You shoul
think about how to identify and handle bad user input values.

“I’m so excited! Where can I find out more?”
To get a feel for how logo works, we would suggest that you play around with the ac

program, which is in /cs/bin/logo.To leave logo, enter the command “bye” in the logo turtle s
There are some sample logo files in /course/cs032/asgn/logo/examples. Simple Logo sho
able to read in and execute the procedures contained in the example files. Note that Simp
isn’t compatible with Logo, so don’t expect the files for one to run in the other. Note that th
programs do not test the entire functionality your program should support.

Information about the Logo language and Logo commands can be found, in detail, i
user manual in /cs/lib/logo/usermanual.
Slogo 4

start
e to

s into

ther
urs-
rately.
t dia-
You
your
you
copy
file

whis-
ount

arate

s in a
ode,
“Wow! In just one week I’ve created Logo using the Making Logo Quick
Package! I have another week and I want more!”

There is a lot of room for creativity and extras in this project, but as always, do not
implementing any of these until Simple Logo, as specified, is functional. You are welcom
design your program to support any of these features. Some ideas:

•Variable scoping and passing parameters to subroutines (i.e. turning subroutine
procedures)

•An enlarged command set (see the Logo usermanual for ideas)
•Multimedia: audio, animation, more complicated GUI
•More complex control structures.
•List processing functions and lists, stacks, queues, and random access arrays
•A snazzier turtle graphics package

Cashing In
We recommend you individually come up with a top-level design before getting toge

with your group to work out the complete design. You must meet with a TA on or before Th
day, March 5 to go over your design. Please try to go meet a TA together, rather than sepe
You must give the TA a copy of your detailed, fully annotated design (i.e. commented objec
gram) which the TA will keep, and which will count as part of the grade for this assignment.
should also bring a copy of the design for you to make notes on. When you are finished with
program, hand it in electronically by the end of the day Thursday, March 12, 1998. When
hand in your finished program (one handin for each pair), you should also hand in a revised
of your object diagram which reflects your final design. You should also create a README
which describes your overall design, each file in your project, any known bugs or bells and
tles, and anything else you want us to know. Note that both of the designs you hand in will c
as a substantial part of your grade.

You are responsible for printing out source code and the README, labelling the sep
files andputting both your names and account numbers on thembefore 5pm on the day after
your handin. This should give you ample time to print out your code. Please put the printout
sensible order, with the README first. Please hand in only the README and the source c
and not any extraneous pages (cover pages, etc.) printout by the CIS printer.
Slogo 5

orted

gle

ents.
rn 0.

dy of

d the
Appendix A
Simple Logo Language Details

This document contains a description of the Simple Logo language, including supp
commands, their usage and effects.

Language Structure
• A word beginning with a colon is a variable.
• A word beginning with a letter is a command.
• A word beginning with a number is a numerical value.
• Words are delimited by spaces, tabs, newlines, brackets, or an =.
• Names of variables and commands are case-insensitive in Simple Logo.

• All values are integers.
• Simple Logo, unlike Logo, will expect only one command per line. That is, a sin

command plus its arguments is to be terminated with the newline character. Thus,
fd 50
rt 90

is syntactically valid while
fd 50 rt 90

is not.
•There is variable assignment. A variable assignment can have one of three forms:

:var_name = COMMAND
:var_name = :other_var_name
:var_name = number
For example, the following are valid:
:foo = SUM 12 34
:bar = :foo
:fish = 23

• Commands will be in prefix form; that is, the command name will precede the argum
• All commands return a value. If no return value is defined, the command should retu
• The variable :TRUE should be defined to be 1, and :FALSE should be 0.
• The supported conditional is IF. If the command or variable has a value of 0, the bo

the IF should be skipped, otherwise it should be executed.
IF <command or variable> [
 instruction
 instruction
 ...
]

• The supported loop is REPEAT. The instructions in the body should be execute
Slogo 6

xt
ine is
number of times given by the value or variable.
REPEAT <variable or number> [
 instruction
 instruction
 ...
]

• The command nameTO denotes the beginning of a subroutine definition. The ne
argument should be the name of the subroutine. Then the body of the subrout
specified.

TO mysub [
 instruction
 instruction
 ...

]

Table 1: Math Operations

Name Description

SUM num1 num2 outputs the sum of its inputs

DIFFERENCE num1 num2 outputs the difference of its inputs

MINUS num outputs the negative of its input

PRODUCT num1 num2 outputs the product of its inputs

QUOTIENT num1 num2 outputs the quotient of its inputs

REMAINDER num1 num2 outputs the remainder on dividing num1 by
num2. The result is an integer with the same
sign as num2

Table 2: Drawing Operations and Turtle Commands

Command Description

FORWARD dist
FD dist

moves the turtle forward by the amount specified

BACK dist
BK dist

moves the turtle backwards by the amount specified

LEFT degrees
LT degrees

turns the turtle counterclockwise by the specified angle

RIGHT degrees
RT degrees

turns the turtle clockwise by the specified angle

SETXY xcor ycor moves the turtle to an absolute screen position.
Slogo 7

SETX xcor moves the turtle horizontally to a new absolute horizontal
coordinate

SETY ycor moves the turtle vertically to a new absolute vertical coor-
dinate.

HOME moves the turtle to the center of the screen (0 0)

XCOR outputs the turtle’s X coordinate

YCOR outputs the turtle’s Y coordinate

HEADING outputs the turtle’s heading in degrees

TOWARDS xcor ycor outputs a heading the turtle should be facing to point from
its current position to the given position

SHOWTURTLE
ST

makes the turtle visible

HIDETURTLE
HT

makes the turtle invisible

CLEAN clears the drawing area (the turtles statistics do not reset)

CLEARSCREEN
CS

erases the drawing area and sends the turtle to the home
position (Like CLEAN and HOME)

PENDOWN
PD

sets the pen’s position to DOWN

PENUP
PU

sets the pen’s position to UP

PENDOWNP
PENDOWN?

outputs 1 (:TRUE) if the pen is down, 0 (:FALSE) if it’s up.

Table 3: File Commands

Command Description

SAVE filename Saves the definitions of all procedures and variables in the
named file.

LOAD filename Loads the definitions from the named file.

BYE Exits LOGO

Table 2: Drawing Operations and Turtle Commands

Command Description
Slogo 8

s all
uck,
If all of these tables seem confusing and you’d just rather see the grammar for slogo, here’
you need. If this doesn’t make sense to you, review your notes from 31 or 51. If you’re still st
come see a TA. It’s worth knowing.

! grammar for simple logo

! a program is a list of instructions
<prog> ::= <ilist>

! an ilist is a list of instructions and function declarations
<ilist> ::=

::= <instr> <ilist>
::= <fdecl> <ilist>

! an instruction might be an assignment; function call; a conditional; or a loop
<instr> ::= <asgn>

::= <fcall>
::= <if>
::= <repeat>

Table 4: Control Structures and Procedures

Command Description

REPEAT numOrVar [
instructionlist
]

runs instructionlist numOrVar times

IF varOrCommand [
instructionlist
]

if varOrCommand is not 0, run instructionlist

TO subr_name [
instructionlist
]

defines a new subroutine (command) named subr_name.
When invoked, the subroutine will execute the body of
instructions included in the definition.

Table 5: Boolean Operations

Command Description

LESS? num1 num2 outputs 1(:TRUE) if its first input is strictly less than its
second, or 0 otherwise (:FALSE)

GREATER? num1 num2 outputs 1 if its first input is strictly greater than its second,
or 0 otherwise

EQUAL? thing1 thing2 outputs 1 if the two inputs are equal, 0 otherwise

NOTEQUAL? thing1
thing2

outputs 1 if the two inputs are not equal, 0 otherwise
Slogo 9

! an assignment always looks the same: a variable gets an expression
<asgn> ::= <var> = <expr>

! variables always look the same; colon followed by an identifier
<var> ::= :identifier

! expressions can look like anything; they bottom out with vars and numerical constants
<expr> ::= number

::= <var>
::= SUM <expr> <expr>
::= DIFFERENCE <expr> <expr>
::= MINUS <expr>
::= PRODUCT <expr> <expr>
::= QUOTIENT <expr> <expr>
::= REMAINDER <expr> <expr>

! fcalls are either subroutine calls or built-ins; we don’t bother putting
! in all the built-ins here for brevity
<fcall> ::= identifier

::= ... ! Imagine all the built-ins from table 2 and 3 here

! blocks of code delimited by [] cannot contain function declarations, unlike
! the top-level instruction list, so we introduce strict_ilist to be a list
! only of instructions
<strict_ilist> ::=

::= <instr> <strict_ilist>

! loops
<repeat> ::=REPEAT <expr>[<strict_ilist>]

! conditionals
<if> ::= IF <cond>[<strict_ilist>]

! function declarations
<fdecl> ::= TOidentifier [<strict_ilist>]

! conditions; for tests in IF statements
<cond> ::= <condop> <expr1> <expr2>

<condop> ::=LESS?
::= GREATER?
::= EQUAL?
::= NOTEQUAL?
Slogo 10

	Simple Logo (“Slogo”)
	CS32 Assignment 3
	Due Dates:
	Assignment Out: February 26, 1998
	Partner’s Chosen: Feburary 28, 1998 (11:59pm)
	Individual Designs Due: March 2, 1998 (11:59pm)
	Group Design & Interfaces Due: March 5, 1998 (11:59pm)
	Logo Due: March 12, 1998 (9:00pm)
	(The following is a paid advertisement for Slogo by the CS32 TA staff...)
	“Say hi to our hosts Don ‘Cash’ and ‘Money’ Lapre!”
	“It’s based on a simple concept, yet the possibilities are limitless!”
	“Terrific! What do I need to start?”
	“The Making Logo Quick Package”
	“Don, This sounds great! Where do I start?”
	“That’s fantastic! It sounds so easy! How does it work and is it legal?”
	“I’m so excited! Where can I find out more?”
	“Wow! In just one week I’ve created Logo using the Making Logo Quick Package! I have another week...
	Cashing In

	Appendix A
	Simple Logo Language Details
	Language Structure
]
	Table 1: Math Operations
	Table 2: Drawing Operations and Turtle Commands
	Table 3: File Commands
	Table 4: Control Structures and Procedures
	Table 5: Boolean Operations

	If all of these tables seem confusing and you’d just rather see the grammar for slogo, here’s all...
	! grammar for simple logo
	! a program is a list of instructions
	<prog> ::= <ilist>
	! an ilist is a list of instructions and function declarations
	<ilist> ::=
	::= <instr> <ilist>
	::= <fdecl> <ilist>
	! an instruction might be an assignment; function call; a conditional; or a loop
	<instr> ::= <asgn>
	::= <fcall>
	::= <if>
	::= <repeat>
	! an assignment always looks the same: a variable gets an expression
	<asgn> ::= <var> = <expr>
	! variables always look the same; colon followed by an identifier
	<var> ::= :identifier
	! expressions can look like anything; they bottom out with vars and numerical constants
	<expr> ::= number
	::= <var>
	::= SUM <expr> <expr>
	::= DIFFERENCE <expr> <expr>
	::= MINUS <expr>
	::= PRODUCT <expr> <expr>
	::= QUOTIENT <expr> <expr>
	::= REMAINDER <expr> <expr>
	! fcalls are either subroutine calls or built-ins; we don’t bother putting
	! in all the built-ins here for brevity
	<fcall> ::= identifier
	::= ... ! Imagine all the built-ins from table 2 and 3 here
	! blocks of code delimited by [] cannot contain function declarations, unlike
	! the top-level instruction list, so we introduce strict_ilist to be a list
	! only of instructions
	<strict_ilist> ::=
	::= <instr> <strict_ilist>
	! loops
	<repeat> ::= REPEAT <expr> [<strict_ilist>]
	! conditionals
	<if> ::= IF <cond> [<strict_ilist>]
	! function declarations
	<fdecl> ::= TO identifier [<strict_ilist>]
	! conditions; for tests in IF statements
	<cond> ::= <condop> <expr1> <expr2>
	<condop> ::= LESS?
	::= GREATER?
	::= EQUAL?
	::= NOTEQUAL?

