
.
ent

have
otta
Pinball
CS32 Assignment 2

Due Dates:

Assignment Out: Feb. 5, 1998
Design Check: Feb 12, 1998 (See a TA by 11:59pm)
Design Handin Due:Feb 14, 1998 (11:59pm)
UML Design Due: Feb 19, 1998 (11:59pm)
Pinball Due: Feb 26, 1998 (11:59pm)

Introduction

Your task is to write a pinball simulator that would make even the Who’s Tommy proud
Well, okay, it just has to satiate him for about ten seconds. Since this is the second assignm
in CS32, it is a significant step up in time and difficulty
from Minesweeper. Thus,starting late would be a
very bad thing to do. “Long is the way, and hard, that
out of hell leads up to light.” (Milton: Paradise Lost,
line 432) Because of this, we’ve provided you with a
number of graded checkpoints to guide you along the
path towards a completed project and an enlightened
soul.

Read this document many times. It is your primary
source of wisdom during this project. Remember to be
careful while reading: in the words of our beloved J. J.
Rousseau, “I warn the reader that I have not mastered the
art of making myself clear to the person who refuses to
pay attention.”

This assignment is designed to introduce you to a
medium scale (*cough* big) C++ program, to test your
ability to design and implement C++, to test your ability
to design object-oriented programs and augment and
modify those designs as needed, to give you experience
with appropriate C++ programming and debugging tools,
and to let you produce a program that you might enjoy
playing.

Design Overview

In all honesty, Pinball is a challenging assignment. To do it in three weeks, you’d better
a crackerjack design. It’s gotta be tight - more tight than a Kennedy on New Year’s Eve. It’s g

Not an example of our support code.
Pinball Page 1 of 12

rate

point,

ilable
 to be
ailed
rious
e,
al

plete
gth

low.
g a
than

 and
at we

rest or

! As a
ards.
te

how
rite

o
n

neral
mate

For
nes.
 the
d
aller
be cohesive, like the Wutang. It’s gotta work, like the Crimson Permanent Assurance corpo
pirates. And, when all is said and done, it’s gotta be done in UML (Universal Modeling
Language) with Rational Rose. There are three design checkpoints. The first is a TA check
which will help us make sure that you’re heading on the right track. For this checkpoint, you
should have a drawing of your design (hand-drawn is okay) at a high level of abstraction ava
for us to peruse. The second checkpoint is the final design checkpoint, where you will have
able to explain, in detail, how your pinball machine is going to work. You should have a det
written design available for us to evaluate, since your design will have to stand up to the noto
TA Tribunal. This checkpoint is to be turned in to the bin -- you will not be seeing a TA this tim
though you are encourage to talk to a TA about your design before this deadline. For the fin
checkpoint, you will be required to submit an Rational Rose-ified version of your design, re
with object relationships and class hierarchies. Rational Rose will be discussed at great len
during the Thursday, February 12th lecture.

Code Overview

What does coding a pinball simulation in CS32 entail, you ask? Good question.
First, you must become familiar with the support code, which is described in detail be

The support code, called the PIN Library, takes care of a lot of the nitty-gritty work of writin
pinball game. It allows you to concentrate on managing the internal logic of the game rather
worrying about the various drawing primitives, how to detect intersections between the ball
the various objects, and how to simulate gravity and force-added objects. The header file th
are providing,pin.H , provides some additional documentation and details the exact calling
sequences. Because we’re nice, friendly people, and because we want to destroy a rain fo
two, we’ve attached a copy of pin.H to the back of this handout.

After understanding the support code, you’ll want to know about the level file format.
(Honestly, these two go hand-in-hand.) No decent computer pinball game has just one board
result, we’ve provided you with a standard file format that can construct complex pinball bo
At the heart of the level description format is a way of describing pinball objects and the sta
transitions they should take. Part of the fun of playing a pinball game, after all, is figuring out
to get the most points and make the most noise. As the programmer of Pinball, you get to w
software which can take an arbitrary set of state transition rules and execute them.

This said, coding will consist of three general tasks. First, you will have to write code t
read in a level file, check for its validity, and construct pinball objects and internal informatio
about the state logic of the game. Second, you will have to code routines for handling a ge
state machine. Finally, you will have to make use of the support code in order to correctly ani
your board, test for user keystrokes, and perform other simulation tasks.

If you are careful with your object-oriented design, these three tasks won’t be too tricky.
this project, you may (hint, hint) be better off with many small objects rather than a few big o
Poor object-oriented design will lead to large code size and will make it difficult to complete
assignment on-time. A well-designed project will range from between three and six thousan
lines of code, depending on the additions you make. Note that the better the design, the sm
the code.
Pinball Page 2 of 12

t
. what
 gets a

and

trols

other

set of
e

cify
n

e and
ate
ably

pe of
e you
Level File Format

Input files consist of two main parts. The first section of a file describes the objects tha
make up the pinball board. The second section of a file describes the logic of the game, e.g
points are scored for hitting what objects, what internal states are present, when the player
free ball, when the game is over, etc. All input in the file consists of single line commands
containing a command name followed by a set of arguments to the command. Blank lines
lines whose first non-blank character is a pound sign (#) are ignored.

So what’s really going on here? The level file describes a finite state machine which con
the play of the game. For example, consider a common pinball device: when the ball hits a
rebounder, it turns the light on and you get 100 points, and when you hit it again, you get an
100 points and the light goes off. Here’s the finite state machine for the rebounder:

This finite state machine will be represented in the level file as a set of states and the
transitions between them. You will notice, if you have looked at the sample level file we hav
provided you with (/course/cs032/support/pinball/games/sample.game), that
after the finite state is set up there are a bunch of ACTION command lines. These lines spe
what actions will occur when a state transitions into the given state. In our clever example a
action would be giving the player some points or turning on/off the light.

Object Definitions

Objects are defined as 3D entities with respect to a fixed 2D board that is 10 units wid
16 units high. The X coordinate of the board runs from -5.0 (left) to +5.0 (right); the Y coordin
from -8.0 (bottom) to +8.0 (top); the Z coordinate from 0 to whatever height is desired (prob
0.5) Most of the objects are defined using the OBJECT command:

Each object specification take a different number of parameters depending on what ty
object it is. The handy table that follows shows you what parameters each object we provid
with expects to receive:

event: hit

action: light on
action: add 100 to score

event: hit

action: light off
action: add 100 to score

state 0 state 1
Pinball Page 3 of 12

 the

sts.

e

it by

al

tion

l
nd
* A wall is a flat surface of the given width and height centered along a line given by
sequence of points. Balls bounce normally off of walls.

* A bumper is a special type of wall consisting of an elastic cord stretched between po
A ball hitting a bumper bounces off with some additional force.

* A button target is a vertical circular target that the ball can hit. It is placed along th
line between (x0,y0) and (x1,y1) and has the given width. Note that because it is
circular, its height is the same as its length.

* A floor target is a circular region in the floor that the ball activates by rolling over.

* A flip target is a rectangular target that has two states: in state 1 it is up and can be h
the ball. In state 0, it is down and the ball moves smoothly over it.

* A light is a circular region on the floor that does not interact with the ball.

* A rebounder is a circular object that the ball can hit and will bounce off with addition
force.

* A valve is a one way gate that provides no resistance to the ball in the forward direc
and bounces the ball normally in the other direction.

* Finally, an image is a graphic which appears mapped onto the surface of the pinbal
board. <file> is the filename for the image, which must be in pnm format. (x0,y0) a
(x1,y1) represent the two points which form the bounding rectangle of the image.

All these objects are tagged with thename parameter; this name is used later in the logic
specifications.

Command Arguments

OBJECT

<name> WALL <width> <height> <#points> <x0> <y0> .. <xn> <yn>

<name> BUMPER <width> <height> <#points> <x0> <y0> .. <xn> <yn>

<name> BUTTONTARGET <x0> <y0> <x1> <y1> <width>

<name> FLOORTARGET <x0> <y0> <radius>

<name> FLIPTARGET <x0> <y0> <x1> <y1> <width> <height>

<name> LIGHT <x0> <y0> <radius>

<name> REBOUNDER <x0> <y0> <radius> <height>

<name> VALVE <x0> <y0> <x1> <y1> <width> <height>

<name> IMAGE <file> <x0> <y0> <x1> <y1>
Pinball Page 4 of 12

all
g-

p

ic.

CK,

r’s key

)

1).

r

All these specifications can be followed by any combination of the following standard
arguments consisting of a keyword and value pairs:

* Each object uses between one and three colors; thecolors parameter provides an initial
setting of these colors.

* The force parameter allows the definition of an additional force to be added if the b
collides with this object with sufficient force. Specify additional force using a floatin
point number (for example, FORCE 10.0 adds a hefty kick to a bumper).

* The drawstatespecifies an initial state for drawing (i.e. for a flip target, whether it is u
or down).

* Finally, each object maintains an integer state as a basis for the internal pinball log
Thestate parameter allows setting the initial value of this state.

* The sides parameter specifies which sides of the object should be collided with. If
omitted, all sides are considered. Possible values are FRONT, BACK, FRONT_BA
EDGES, TOP, and ALL, all of which have corresponding constants defined inpin.h .

There are also three objects that are distinguished because they are affected by the use
presses. These are defined using the commands:

* The first two define a trapezoidalflipper centered along the line from (x0,y0) to (x1,y1
with width w0 at its start point and w1 at its end point. The pivot location indicates
where along the center line the pivot for the flipper occurs.

* The shooter is a box of the given width centered along the line from (x0,y0) to (x1,y

All these can have any of the standard parameters described above appended to thei
description.

Keyword Values

COLORS <primary color> <secondary color> <tertiary color>

FORCE <additional force to be added on collision>

DRAWSTATE <initial drawing state>

STATE <initial object state>

SIDES <sides to collide against>

Command Arguments

LEFT FLIPPER <x0> <y0> <w0> <x1> <y1> <w1> <height> <pivot>

RIGHT FLIPPER <x0> <y0> <w0> <x1> <y1> <w1> <height> <pivot>

MAIN SHOOTER <x0 > <y0> <x1> <y1> <width> <height>
Pinball Page 5 of 12

oard

an be

 in
rlying

, our
 this
t to the

. The

event
There are three additional object commands:

* The ball command defines the ball size and color and defines the position on the b
where a new ball will appear (with zero velocity).

* The trigger command defines an object that does not appear on the board but that c
used as part of the state logic defined in the second part of the input specification.

* The timer command defines a named timeout of a given duration. If a message is
specified here, it will be displayed until the timer expires.

Logic Definitions

The internal logic of a pinball game is what makes the game fun. The user’s challenge
playing the game, in addition to the usual hand-eye coordination, is to deduce what the unde
logic is so as to maximize the number of points or to attain some hard-to-achieve (and high
scoring) state. In order to allow you to design relatively complex pinball games of your own
input language allows the definition of a rather complex state-action network. The basis for
network are the internal states of the objects defined above and the actions that are inheren
game.

The logic is defined in two parts using thestate andaction commands:

Thestate command defines a transition from one state of the named object to another
transition occurs when the specified event is seen. The states are integer values.

Look back to the finite state machine on page 3. The rebounder starts in state 0. The
that moves it to state 1 is a collision with the ball, which is the HIT event type.

The possible event include:

Command Arguments

BALL <start_x> <start_y> <radius> <color>

TRIGGER <name> [STATE <initial_state>]

TIMER <name> <timeout in milliseconds> [<message>]

Command Arguments

STATE <name> <state> <newstate> <event>

ACTION <name> <state> <action>

 Format Description

HIT Ball collides with the named object

TIMEOUT <name> Named timeout object times out
Pinball Page 6 of 12

The

iar),
), and

than
 and
at we

 it also
 the
Theaction specification defines what occurs when an object first enters a given state.
action specification here can be one of:

Going back to the example on page 3 (with which you should be rapidly becoming famil
moving into state 1 causes two ACTIONs to occur. One adds 100 to the score (SCORE 100
the other changes the color of the rebounder to make it look like it is “lit up” (by using the
COLOR action).

The PIN Library

The PIN library that we are providing takes care of a lot of the nitty-gritty work of the
pinball game, allowing you to concentrate on managing the internal logic of the game rather
worrying about the various drawing primitives, how to detect intersections between the ball
the various objects, and how to simulate gravity and force-added objects. The header file th
are providing, pin.h, provides some documentation and exact calling sequences. Note that
contains some methods that we are not describing here that may be used for extensions to
basic game.

NEWGAME Start of a game

NEWBALL Start of a new ball

ENDBALL After a ball has exited

ENDGAME When a game is complete

Action Format Description

SOUND <name> Play the named sound file

START <timer> Start the specified timer

CANCEL <timer> Cancel the specified timer

COLOR <c1> <c2> <c3> Change the colors of the specified object

DRAWSTATE <state> Change the drawstate of the given object

SET <name> <state> Set the named object to the given state

SCORE <value> Add the given value to the current score

ENDBALL End the current ball

NEWBALL Start a new ball (ends the current one as well)

FREEBALL Give the user a free ball

MESSAGE <text> Display the given message

 Format Description
Pinball Page 7 of 12

also
basic

one
can for
e a
w
und
ore to
The file defines the following standard types to be used in the interface:

A detailed description of the methods provided by this library is available online, and is
attached to the end of this document. In the following paragraphs we attempt to describe the
functionality that you should be aware of while designing your system.

ThePinDraw class provides a top level controller for the game. The user should create
of these as early as possible. Its constructor needs to be passed the initial argument set to s
X11 arguments, and remove any X11 arguments it finds. When it is constructed it will caus
window to be displayed containing the board, a score region and a message region. PinDra
provides the basic functionality for managing the game. The playAudio() method plays a so
file either once or repeatedly as background music. The changeScore() method sets the sc

Type Name Description C++ equivalent

PinString String parameter string

PinColor
Color parameter — currently the name
of the color as a string

PinString

PinBoolean A Boolean value bool

PinInt An integer value int

PinState A drawing state double

PinCoord
Coordinate value or value used in com-
puting

double

PinTime Time in milliseconds long

PinScore Score value long

PinKeySet
Combination of pressed keys — OR of
PinKey enumeration

long

PinSound
Sound (file name of a ulaw sound file in
/course/cs032/lib/sounds)

PinString

PinSide Description of the sides of an object (enumerated type)

PinCallback
User-defined callback object to handle
next event

PinCallbackInfo *

PinDraw Top level control object for drawing, etc. PinDrawInfo *

PinTimeOut Object for defining time outs PinTimeOutInfo *

PinComponent Component drawn on the pinball surface PinComponentInfo *

PinBall The ball component PinBallInfo *

PinComponentFactory Factory for generating components
PinComponentFactory-
Info *
Pinball Page 8 of 12

t of

it

ce the
p()
e

The
ser.

g”
n

ust
, and

ty,

the
).

at
f the

a
l

the specified value. The displayInfo() method displays a given message for a given amoun
time.

Important Note: the PinDraw class isn’t really a class. It is a defined as a pointer to a
class of type PinDrawInfo. When you instantiate a PinDraw, you have to treat it as if it were
were a PinDrawInfo*, which it actually is.

To control the game, your application must define an object that is a subclass of
PinCallbackInfo and pass this object to PinDraw using the setCallback() method. Then, on
game is set up, the startGame() method of PinDraw should be called. Finally, the mainLoo
method of PinDraw is invoked. Note that, like the Titanic, this method will never return. Onc
mainLoop() has been called, the PIN library will invoke the nextCycle() method of the user
callback function every cycle (currently 100 milliseconds) and will then update the display.
callback method is called with an OR’ed combination of the keys currently pressed by the u

A Note on Magic Numbers and Other CS32 Pinball Voodoo
Inside your callback function, nextCycle(), you need to update everythingmore than

once. Otherwise your game will move at a blinding crawl. When we say “update everythin
we mean checking for and reacting to collisions, and updating the ball position. The scree
will be updated once for each call of nextCycle(), and to get an accurate simulation, you m
update the game more often than you redraw the screen. Try something around 10 or 20
jack it up if your game isn’t moving quickly enough for your Nintendo-based upbringing.
Why, back in my day... (insert vehement Colecovision defense) - but I digress.

There are a few other magic numbers you’ll need to tweak. They are cycle time, gravi
and ball cycles. Call setGravity() and cyclesPerSecond() on your PinBall, and call
setCycleTime() on your PinDraw object. These important numbers obviously affect the
gameplay in countless subtle ways. Umm, if, however, you just want a good basis to get
#$@%!# thing working, try setGravity(90), cyclesPerSecond(1000), and setCycleTime(50

Here is some pseudocode for the nextCycle() method. Note that this is essentially wh
should get done each time the method is called, but delegating the actual implementation o
pseudocode to other methods or classes would be a good idea.

check to see what keys are pressed
repeat 10-20 times {

tell PinBall to update
for each component

if ball is intersecting with component
collide ball with component
do any necessary state transitions

}

To create timeouts with the library, the application needs to create a new class that is
subclass ofPinTimeOutInfo . Calling the activate() method on this class with a given time wil
Pinball Page 9 of 12

eled

by the
es an

tally)

al,
sed

nts are

e
or the
t
lled

es the
n.

hods
icitly
 own
et the
ates)
mpute

ently
idly.
ach
ition

s

 a

ese
digit
keys
ssed,
start the timeout. When the elapsed time (again in milliseconds) has expired, the
timeOutCallback() method of the application’s class will be invoked. The timeout can be canc
at any time using the cancel() method.

Components are created using aPinComponentFactory object that can be obtained from
the PinDraw object using the getComponentFactory() method. Components can be created
factory either by calling the specific routines or by using the simple create() method that tak
istream as its single parameter. The format of that stream is the name of the type of object
followed by the object parameters. The format of the type name and parameters (coinciden
match that of the OBJECT, LEFT, RIGHT and MAIN commands (except for the optional
standard parameters that can follow these). The create() method of the factory will return a
PinComponent to the calling function. Note that this is a polymorphic superclass of the actu
specific subclass of the component that was created. However, since all components are u
equally we can treat it as the superclass type and all will be fine.

All the PinComponent objects support a small set of standard methods including
changeColors to change the object’s colors and changeState to change its state. Compone
removed by deleting them. In addition all the components support two simple intersection
methods. The first, intersect(), simply tests if the ball is touching with the given object. The
second, bounce() does this test first and, if the ball is hitting the object, causes the ball to b
reflected off the object and adds additional force if desired. Different forces can be added f
different sides of the object the ball collides with. The state parameter of the Shooter objec
indicates the where the plunger on the shooter is, with 100 indicating all the way up (not pu
back by the user), and 0 indicating all the way down. The state parameter on a flipper indicat
angle (in a clockwise direction) that the flipper is offset around its pivot from its initial positio

ThePinBall object is a special case of a PinComponent. In addition to the standard met
defined above, it allows the programmer to specify the velocity and position of the ball expl
and to inquire about the current velocity and position. In addition, the ball object handles its
motion and the effect of gravity. To get the ball to behave properly, the application should s
value of gravity using the setGravity() method and should specify the number of cycles (upd
that occur per second using cyclesPerSecond(). [To do an accurate simulation you must co
the intermediate position of the ball and the corresponding game actions much more frequ
than you update the graphics — at least a factor of ten, possibly more if the ball is moving rap
The cyclesPerSecond() method takes a float argument that specifies this ratio.] Then, for e
subcycle, the application should call the PinBall’s update() method to move it to its new pos
and update its velocity due to gravity. [After the update it might be wise to test if the ball ha
collided with any of the other objects.]

Finally, thePinKey enumerated type defines a bunch of values which each correlate to
particular key the user can press. Examples of this are PIN_KEY_LEFT_FLIPPER or
PIN_KEY_QUIT. They also have values defined for them, which you will notice are in hex. Th
values specify powers of 2. So, if you think of each value in binary, each value has a 1 in one
of the number. The PinKeySet variable you are passed in will be the bitwise-OR of whatever
are pressed at that moment. This is called a bitfield. So, to determine if a given key was pre
you should do a bitwise-AND of the PinKeySet value and the key you wish to check.
Pinball Page 10 of 12

ine.
up key
ere
e file,

a
keep

ate -1.
er

t
tra

t.])
ill

 of the
ust

 the
 be
n,

nd so
o
ames
g the
d in
A or

of
pe it
finite

ME
gic

t
ity.
re,
at
Project Requirements

Your pinball program should take the name of a pinball game file from the command l
The program should set up and then play the given game. The setup stage involves setting
commands with the defineKeyMap() method, parsing the specified file, exiting gracefully if th
are any parse errors, and constructing objects based on what you read in. When parsing th
you should make use of the PinComponentFactory class, which is capable of instantiating
PinComponent directly from an istream, using the create() method. As you parse, you should
track of the states, actions, and state transitions for each object. All objects should start in st
In addition, you can use from-state -1 to mean a “don’t care” state (i.e. if the specified trigg
event takes place, you should follow the given state transition, regardless of which state the
particular object is in.) Be careful only to have one state change per trigger event per objec
specified... if you don’t, you’ll be working with a non-deterministic state machine! (But for ex
credit you could always consult Savage,Models of Computation: Exploring the Power of
Computing, pp. 156, on converting a NFSM to a DFSM. [That’s a joke. Please don’t do tha

You should handle the basic set functionality that levels can specify. This means you w
have to create your own subclass of the PinCallback class and send it to your instantiation
PinDraw (top-level) object, using the setCallback() method. Your subclass of PinCallback m
override the nextCycle(), which takes as its input a bitfield representing the set of keys that
user currently has pressed. This is where you’ll check to see if any state transitions should
taken, and if so, carry out the appropriate action(s), such as writing a message to the scree
updating the score, changing object colors, jumping up and down and shouting “Oogah”, a
forth. You can subclass the PinTimeOut class and override the timeOutCallback() method t
handle chores which need to go off after a specified length of time. Timeouts make pinball g
more interesting and also make it easier to start a pinball game, while at the same time givin
user warning that their first ball is about to appear. The remainder of the support code foun
pin.h should be self-explanatory; if you have any questions, however, feel free to see a T
(even better) post to the CS32 newsgroup.

We’d also like you to design a game file of your own. After all, part of the fun of
programming pinball should be in playing your own “dream machine.” A very small portion
your project grade will be devoted to this. It is advisable to do this first, using the demo to sco
out, so that you have a good understanding of what each object is and how to write and use a
state machine.

There are a slew of possibilities for extra credit here. (Please detail them in your READ
file and check with a TA before proceeding.) These could include extensions to the game lo
such as counters and new arithmetic tests, or additions to the level file format, or just abou
anything else you can dream up. What you can accomplish is bounded only by your creativ

You can locate the support files for this program in /course/cs032/support/pinball. The
you will find the PIN Library header file, a (very useful) makefile, and one or two test files th
you can use to get your software up and running.
Pinball Page 11 of 12

.
ext
ME

t

Handing In

To hand in your UML design, type
/course/cs032/bin/cs032_handin design2
To hand in your code and header files, your README file, and your executable, type
/course/cs032/bin/cs032_handin pinball
at the promt. You must be in the directory that contains all files in order for this to work

Handin your program electronically by 11:59pm on February 26, 1998. You have until the n
day at 5pm to turn in a hardcopy of your code and README file. Please staple your READ
file on top, and turn your entire packet into the CS32 bin, near the TA Room.

Parting Wisdom

In the immortal words of St. Bernard of Clairvaux, “Arouse yourself, gird your loins, pu
aside idleness, grasp the nettle, and do some hard work.”

Tho’ much is taken, much abides; and tho’
We are not now that strength which in old days
Moved earth and heaven, that which we are, we are,--
One equal temper of heroic hearts,
Made weak by time and fate, but strong in will
To strive, to seek, to find, and not to yield.

- Tennyson
Pinball Page 12 of 12

	Pinball
	CS32 Assignment 2
	Due Dates:
	Assignment Out: Feb. 5, 1998
	Design Check: Feb 12, 1998 (See a TA by 11:59pm)
	Design Handin Due: Feb 14, 1998 (11:59pm)
	UML Design Due: Feb 19, 1998 (11:59pm)
	Pinball Due: Feb 26, 1998 (11:59pm)
	Introduction

