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Abstract The performance of multithreaded programs is often difficult to under-
stand and predict. Multiple threads engage in synchronization operations and use
hardware simultaneously. The result is a complex non-linear dependency between
the configuration of a program and its performance.

To better understand this dependency a performance prediction model is used.
Such a model predicts the performance of a system for different configurations.
Configurations reflect variations in the workload, different program options such as
the number of threads, and characteristics of the hardware. Performance models
are complex and require a solid understanding of the pogram’s behavior. As a
result, building models of large applications manually is extremely time-consuming
and error-prone.

In this paper we present an approach for building performance models of mul-
tithreaded programs automatically. We employ hierarchical discrete-event models.
Different tiers of the model simulate different factors that affect performance of
the program, while interaction between the model tiers simulates mutual influence
of these factors on performance.

Our framework uses a combination of static and dynamic analyses of a single
representative run of a system to collect information required for building the
performance model. This includes information about the structure of the program,
the semantics of interaction between the program’s threads, and resource demands
of individual program’s components.

In our experiments we show how the models are constructed and show they
accurately predict the performance of various multithreaded programs, including
complex industrial applications.
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1 Introduction

Multithreaded programs utilize resources of modern hardware more efficiently.
However, behavior of multithreaded programs is significantly more complex than
behavior of single-threaded applications. Threads rely on synchronization to en-
force ordering of computations and to protect shared data. Moreover, multiple
threads use shared hardware resources, such as the CPU, disks, and the network
simultaneously. This results in the parallel execution of some some parts of the
program’s code and the sequential execution of others.

As a result, multithreaded programs demonstrate complex non-linear depen-
dency between the configuration and performance. Configurations may reflect vari-
ations in the workload, program options such as the number of threads, and char-
acteristics of the hardware. To better understand this dependency a performance

prediction model is used. Such a model predicts performance of a program in dif-
ferent configurations.

Performance models are essential for a variety of applications [41], [19], [51].
For example, a model may be used to find a good configuration for deploying the
Tomcat web server. For each combination of configuration parameters, including
the number of available CPU cores, the number of Tomcat working threads, or
the rate of incoming connections, the model will predict response time, through-
put, and resource utilization for Tomcat. A configuration that utilizes resources
efficiently and satisfies the service agreement can be used for deployment. Per-
formance models also can be used to detect performance anomalies and discover
bottlenecks in the program.

Modern multithreaded applications can be large and complex, and are updated
regularly. Building their models manually is extremely time-consuming and error-
prone. To be practical, building such models should be automated.

Building performance models of such applications is hard. First, it requires
discovering queues, threads, and locks in the program; details of their behavior; and
semantics of their interaction. Doing this automatically requires complex program
analysis. Second, it requires measuring demand for hardware resources such as the
CPU, disk, and the network. This is a complex problem that requires collecting
and combining information from multiple sources. Third, the performance of a
parallel system is dependent on its contention for computation resources and locks.
Accurate modeling requires simulating these resources and locks in detail.

This paper presents an approach towards automated performance modeling
of multithreaded programs. Its main contribution is a combination of a model
that accurately simulates complex synchronization operations in a program and
a methodology to build such models automatically. Specifically, the paper makes
the following technical contributions:

– A simulation model for predicting performance of multithreaded programs;
– A combination of static and dynamic analyses for understanding the structure

and semantics of multithreaded programs automatically;
– An approach for collecting parameters of performance models from user- and

kernel-mode traces;
– Verification of our approach by constructing models of various multithreaded

programs



Title Suppressed Due to Excessive Length 3

While working on the automatic model generation we made important findings.
First, the analysis of a program could be greatly simplified if that program relies
on well-defined implementation of high-level locks (semaphores, barriers, blocking
queues etc.). Second, in order to be fast and easy to understand the resulting
model must be simple and compact. Building compact models requires identify-
ing program constructs that do not have significant impact on performance, and
excluding these constructs from the model. Third, accurate prediction requires
precise measures of resource demands for the elements of the program. In cer-
tain cases small errors in measuring resource demands can lead to large prediction
errors.

2 Scope and Challenges

In this work we analyze performance of multithreaded applications such as servers,
multimedia programs, and scientific computing applications. Such programs split
their workload into separate tasks such as an incoming HTTP request in a web
server, a scene or a some part of it in a 3D renderer, or an object in a scientific
computing application [56]. We do not model the performance of individual tasks
or requests; instead we predict the aggregate performance of the system for a given

workload.
Processing tasks is parallelized across thread pools. A thread pool is a set of

threads that have same functionality and can process tasks in parallel. Multiple
threads rely on synchronization to ensure semantic correctness (e.g. the thread
may start executing only after a barrier is lifted) and to protect shared data. This
results in the parallel execution of some computations and the sequential execution
of others. Threads also use shared hardware resources, such as the CPU, disks, and
the network simultaneously, which may lead to their saturation. This combination
of locking and simultaneous resource usage leads to complex non-linear depen-
dencies between configuration parameters of the program and its performance. As
a result, even an expert may be unable to understand such dependencies on a
quantitative level. The best approach is to build a performance prediction model.

In our work we concentrate on the following aspects of performance modeling:
Automatic generation of performance models. We minimize the need for

human participation in building the model. All our program analysis and model
generation are done automatically. The analyst need only inspect the generated
model and specify configurations in which performance should be predicted and
the metrics that should be collected.

Generating models from running a program in a single configuration.

Building the model should not require running the program many times in many
configurations. Such experimentation is time-consuming and may not be feasible
in a production environment. Instead, we want to generate the model by running a
program in a single representative configuration. In this configuration the behavior
and resource demands of the program approach the behavior and resource demands
of a larger set of configurations.

Accurate performance prediction for a range of configurations. Our goal is
to accurately predict program-wide performance metrics such as the response time,
throughput, or the running time of the program; as well as utilization of hardware
resources, such as CPU and hard drive. This lets our model answer “what-if”
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questions about the program’s performance, detect performance anomalies in the
running program, and be used as a decision-making element of a self-configuring
data center.

Modeling programs running on commodity hardware. Predicting perfor-
mance of programs running on cluster and grid systems would require developing
an additional set of hardware models and potentially different approach for pro-
gram analysis, which is beyond the scope of this paper.

Constructing performance models of complex, multithreaded systems is a chal-
lenging problem. The primary challenges are:

Accurate modeling of locks and hardware resources. Performance of a
multithreaded program is determined by contention of shared resources such as
the CPU, disks, and locks. To accurately simulate resource contention the model
must simulate locks, hardware, and corresponding OS components, such as the
thread and I/O schedulers, and interactions between those. Building models of
locks, OS and hardware that are both fast and accurate is challenging.

Discovering the semantics of thread interaction. Building the performance
model requires knowledge of the queues, buffers, and the locks in the program,
their semantics (e.g. is this particular lock a semaphore, a mutex, or a barrier),
and interactions (e.g. which thread reads or writes to a particular queue or accesses
a particular lock). There are numerous ways to implement locks and queues, and to
expose their functionality to threads. Discovering this information automatically
requires complex program analysis.

Discovering parameters of the program’s components. Performance of the
program depends on parameters of its locks and queues, and on the resource
demands of its threads. For example, the amount of time the thread has to wait on
a semaphore depends on the number of available semaphore permits. The amount
of time the program spends on the disk I/O depends on the amount of data
it has to transfer. However, the retrieving parameters of locks and queues may
require further program analysis and obtaining resource demands may require
instrumenting the OS kernel.

3 Model definition

Below we define the model for predicting performance of multithreaded programs.

Our models rely on the concept of a task, which is a discrete unit of work
that can be performed by the thread in the program (see Section 2). The perfor-
mance of the task processing system can be described by various metrics, such as
the response time R (an overall delay between task arrival and its completion),
throughput T (the number of task served in the unit of time), or the number of
task dropped.

We use discrete-event simulation models, where the simulation time t is ad-
vanced by discrete steps [45]. It is assumed that the state of the system does not
change between time advances.

Our models are built according to the hierarchical principle [29] and consist of
three levels (tiers). The high-level model explicitly simulates the flow of tasks as
they are being processed by the program. The middle-level models simulate delays
that occur inside the program’s threads as they process tasks. The lower-level
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model simulates delays that occur when multiple threads compete for a particular
resource, such as a CPU, a hard drive, or a synchronization construct.

3.1 High-level model

The high-level model is based on a queuing network model [46]. Service nodes of
the model {tr1, ..., trm} correspond to the program’s threads (the full notation used
to describe the model is provided in the Table 1). Queues {q1, ..., qn} correspond to
the program’s queues and buffers used to exchange the tasks between the different
components of the software system. This includes queues and buffers present both
in the program itself as well as in the operating system (OS).

Each thread tri can be related to one (and only one) thread pool Tpj. The thread
pool or thread group Tpj ∈ {Tp1, ..., T pk}, k ≤ m is a set of one or more threads
that have same functionality and can process tasks in parallel. The number of
threads in the pool is one of the most important configuration parameters that
can significantly affect performance of the program. Each thread in a thread pool
is represented as a separate service node in the model.

Figure 1 (top) depicts a high-level model of the web server. The incoming
connections are placed into the OS connection queue q1, from which they are
fetched by the accept thread tr1. tr1 forms a task object, which represents the
HTTP request, and places that task into the program’s task queue q2. One of the
working threads tr2,...,trn fetches the task from the queue q2 and processes the
request.

Our model differs in important ways from the classical queuing networks. First,
it does not restrict the structure of the model, the number of service nodes, or dis-
tribution families of the network’s parameters. Second, the service nodes are mod-
els on their own that simulate program’s threads. When the service node receives
a task, it calls the model of the corresponding thread to simulate the amount of
time necessary to process that task. Finally, the high-level model does not explic-
itly define service demand for a task; these are implicitly defined by parameters
of lower-level thread models. Nevertheless, the high-level model is capable of col-
lecting same performance measures as queuing models, such as response time,
throughput, or the number of task in the system.

3.2 Middle-level model

The middle-level model simulates the delays that occur in the program’s threads
as they process tasks. The thread model is a probabilistic execution graph (PEGs)
of the corresponding thread. Each vertex si ∈ S of the PEG corresponds to a piece
of the thread’s code – a code fragment (CF). The special vertex s0 corresponds to
the code fragment executed upon a thread start.

Edges represent possible transitions of control flow between the CFs and are
labeled with their probability. For each vertex si ∈ S there is a subset of vertices
Snext = {sk, . . . , sm} that can be executed after si. The probability that the the
CF sj , j ∈ (k . . .m) will be executed after si ∈ S is denoted as p(si, sj), where

m∑

j=k

p(si, sj) = 1 (1)
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Fig. 1 A model for a web server

Probabilities of transitions between all the CFs constitute a mapping δ : S → P (S).
For certain CFs the set Snext can be empty, such that Snext = ∅. These are terminal

CFs. After executing these CFs the thread stops.

Computations performed by every CF si ∈ S take a certain amount of time to
complete. In the terms of the model computations performed by si are simulated
as introducing a delay with duration τi. The duration of the delay τi may vary
between different invocations of the same CF.

We distinguish three major sources of delays in processing tasks, which cor-
respond to three distinct classes of code fragments: I/O code fragments (denoted
as cIO) represent I/O operations; synchronization (csync) CFs represent synchro-
nization operations; computation (cCPU ) CFs represent computations and memory
operations.

In addition, we define cin and cout CFs that communicate with the high-level
queuing model. cin CFs fetch tasks from the queues of the upper-level queuing
model. As a part of this the thread model can suspend its execution until the
request become available. cout CFs send tasks to the upper-level queuing model.
In the context of the multithreaded program, cin and cout CFs correspond to
operations on the program’s shared queues.
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Table 1 Notation used for description of the model and its parameters

Notation used in a high-level thread model

q1, ..., qn A set of queues and buffers in the program
tr1, ..., trm A set of all threads in the program

Tp1, ..., T pk, k ≤ m A set of all threads pools in the program,
where Tpk = {tri, ..., trj}

Notation used in a mid-level thread model

S = {s1...sn} The set of all nodes (code fragments) in the PEG

δ : S → P (S) Transition probabilities between nodes of the
probabilistic call graph

τi Delay caused by executing CF si ∈ S

ci ∈ C Class of the CF si

C = {cCPU , cIO, csync, cin, cout} Allowed CF classes: CPU-bound computations, I/O operations,
synchronization operations, fetching data from queues, and
sending data to queues correspondingly

Πdisk = 〈dio1, ..., diok〉 Parameters of an I/O CF: a sequence of low-level I/O
operations initiated by the CF

ΠCPU = 〈τCPU 〉 Parameters of a computation CF: the amount
of CPU time

Πsync = 〈li, optype, τout〉 Parameters of a synchronization CF: the lock
which is called, the type of synchronization operation,
the timeout

Πinout = 〈{qi, ..., qj}, optype, τout〉 Parameters of cin and cin CFs: a set of queues that
can be accessed, the type of the operation
(send or fetch), the timeout

Notation used in a low-level model

L = {l1...lm} The set of all locks in a program

Πlock = 〈ltype, lparam〉 Parameters of a lock: the lock type and the
type-specific parameters

Figure 1(middle) deipcts the mid-level model of a web server. In the model of
the accept thread the s1 CF fetches incoming connections from the queue q1, s2 -
s4 CFs create a task object, and s5 sends it into the task queue. In the model of
the working thread the s6 CF fetches the task from the task queue and processes
it (s7 - s8). The working thread verifies that the requested page exists, reads if
from the disk, and sends it to the client. Finally, the thread closes the connection
and fetches the next task from the queue.
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3.3 Low-level model

Execution of each code fragment (CF) results in the delay τ . While the call graph
structure 〈S, δ〉 does not change between different configurations, execution times

for code fragments can be affected by resource contention. Resource contention occurs
when multiple threads simultaneously attempt to access a shared resource such as
the CPU, the disk, or a lock. For example, if the number of working threads that
perform CPU-intense computations exceeds the number of physical CPUs, the time
required for each thread to finish computations will be higher than if that thread
was running alone. Similarly, as more threads compete for a mutex, the waiting
time for each of those threads increases. As a result of resource contention, the
time delay τi for the CF si can vary significantly across different configurations of
the program and cannot be specified explicitly in the mid-tier thread model.

To accurately simulate the time delays τ that occur due to contention we use
lower-level models. The lower-level model simulates the system’s shared resources:
the CPU and the OS thread scheduler, the disk I/O subsystem, and the set L =
{l1, ..., lm} of locks in the program. These models are part of Q(t) – the state of
the whole simulation at each moment of time t.

To accurately compute τi we describe each code fragment si with a set of
parameters Πi, which represent the resource requirements for si. When the thread
model needs to simulate the τi, it calls the corresponding low-level model, passes
it the parameters Πi, and waits for the response. When the lower-level model
receives the call, it updates the state Q(t) and simulates the delay τi. Once the
delay has passed, the lower-level model returns control back to the thread model.

The nature of the parameters Πi and the actual semantics of interaction be-
tween the thread model and the low-level model depends on the class ci of the
code fragment si. Below we describe modeling different types of computations in
detail.

Modeling CPU computations. CPU computations and memory operations
are simulated by the cCPU computation CFs. The parameter of a computation
CF ΠCPU = 〈τCPU 〉 is the CPU time for that fragment. The CPU time is the
amount of time required for the computation CF to complete if it would run on
a CPU uninterrupted. As τCPU fluctuates across different executions of si, ΠCPU

is represented as a distribution of CPU times PΠ
CPU .

When the thread model has to compute τ for the computation CF, it sam-
ples τCPU from the P

Π
CPU and calls the CPU/Scheduler low-level model. The

CPU/Scheduler model simulates a round-robin OS thread scheduler with equal
priority of all the threads. It is a simple queuing model, whose queue corresponds
to the queue of “ready” threads in the OS thread scheduler, and service nodes
correspond to the cores of a simulated CPU.

Upon receiving the request the CPU/Scheduler model creates a new job with
service time SCPU = τCPU and inserts it into the back of the “ready” queue.
Once the service node becomes available, it fetches the job from the queue and
introduces a delay equal tomin(τCPU , OStimequantum). After the delay is expired,
the CPU/Scheduler checks if computations are complete for the job. In this case the
CPU/Scheduler deletes the job and notifies the thread model. Otherwise it places
the job back into the “ready” queue, where it awaits another time quantum.

Modeling disk I/O operations. I/O operations are simulated using cIO I/O
code fragments, whose parameters form a distribution P

Π
IO. Members of this distri-
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bution are tuples Πdisk = 〈dio1, ..., diok〉 of low-level disk I/O operations initiated
by that CF. Properties of each I/O operation dioj include the amount of data
transferred and the type of the operation such as ”synchronous read” or ”reada-
head”.

The number k of I/O operations allows to implicitly simulate the OS page
cache. It was shown [28] that after serving a sufficient number of requests (104 to
105 in our experiments), the cache enters a steady state, where the probability of
cache hit converges to a constant. In terms of our model, k follows a stationary
distribution, where k = 0 indicates a cache hit.

When the mid-level thread model must simulate the I/O CF, it fetches a sam-
ple of disk I/O operations 〈dio1, ..., diok〉 from the distribution P

Π
IO and issues a

sequence of calls to the DiskIO low-level model. Here each call represents a cor-
responding I/O operation dioj ∈ Πdisk. If the I/O operation is synchronous (file
read or metadata read), the thread model waits for the response from the low-level
model. If the operation is asynchronous (readahead) the thread model does not
introduce such wait.

Disk I/O model is a queuing model whose queue represents the request queue
in the actual I/O scheduler, and the service node represents the hard drive. The
service node delays the job for the τdisk, which is the amount of time necessary
for the hard drive to complete the I/O operation. τdisk can vary depending on
the locality of the operation (how close are the disk sectors accessed by different
requests), the number of requests in the queue, and other factors. Many of these
factors are beyond the control of the model. Thus we simulate the τdisk as a
conditional distribution P (τdisk|dio type, dio rate, dio parallel), where

– dio type: the type of the request;
– dio rate: the intensity of the I/O workload; measured as the mean interarrival

time for the previous N I/O requests (in our experiments typically N = 20);
– dio parallel: the degree of parallelism in I/O workload; measured as the number

of distinct threads that initiated the previous N requests.

Our models do not explicitly simulate write I/O operations at the moment,
which are normally executed asynchronously. However, in our experiments we ob-
served that unless the application performs a massive amount of writes, the write
I/O requests do not have a noticeable impact on the performance of the system.
Thus we leave implementation of disk I/O write model as a subject of a future
work.

Modeling synchronization operations and queue accesses. Synchronization
operations are simulated using csync synchronization code fragments. Parameters
of synchronization CFs are defined by the tuple Πlock = 〈lj , optype, τsync〉, where

– lj ∈ L is the synchronization construct (lock) that is called;
– optype is the synchronization operation performed on a lock. Possible values

of optype depend on the type of the lock. For example, the possible values of
optype for a mutex are {acquire, release}, and for a barrier optype is {await};

– τsync ∈ (0, ...,∞) is the timeout for synchronization operation. By default
timeout is τsync = ∞, which denotes the infinite timeout. Correspondingly,
τsync = 0 denotes the absence of the timeout.

When the mid-level thread model has to simulate τ for the synchronization CF
si, it calls the lower-level model and passes the parameters Πi of that CF along
with the call.
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Fig. 2 Model creation stages and intermediate results

The lower-level model explicitly simulates behavior of each lock {l1, ..., lm} ∈ L

in the program. We developed separate models for various types of locks such as
barriers, semaphores, mutexes, etc. Each lock lj ∈ L is described using 〈ltype, lparam〉

parameters, where ltype is the type of the lock, such as a semaphore, a barrier, or
a mutex, and lparam are the type-specific parameters of the lock. For example,
the parameter of the barrier indicates the barrier capacity, the parameter of the
semaphore is the number of permits, and the mutex has no parameters.

Fetching and sending a task to a queue are simulated by cin and cout code
fragments. Their parameters Πinout = 〈qid, optype, τinout〉 are the ID of the queue
being accessed, type of the operation such as {fetch, send}, and the optional time-
out.

4 Automatic Model Generation

Constructing the performance model requires collecting the following information
about the program automatically:

– The set q1, ..., qn of queues and buffers used to exchange tasks between pro-
gram’s threads. These correspond to the queues in the high-level model;

– The set tr1, ..., trm of threads in the program. Threads correspond to the service
nodes of the high-level model;

– The set Tp1, ..., T pk of thread pools. The sizes of thread pools are configuration
parameters that impact performance;

– Information on interactions between the threads and queues in the program.
This corresponds to cin/cout CFs in the middle-level model;

– The computations, I/O, and locking operations in a program (correspond to
the set S of CFs) and the sequence of their execution (correspond to transition
probabilities δ);

– The parameters Π of CFs, required to model delays τ ;
– The set L of locks in the low-level model, their types, and parameters Πlock.

We collect required data using a combination of static and dynamic analysis.
During data collection, the program is executed in a single representative config-
uration, in which 〈S, δ〉 and Π would be similar to the 〈S, δ〉 and Π of a larger set
of configurations for which the program’s performance should be predicted. This
requires the usage scenario for the program (e.g. the probabilities of accessing par-
ticular web pages for a web server or the input dataset for a scientific application)
to be similar across the configuration space.

We collect the required data in four stages (see Figure 2). Each stage saves
intermediate results into files that are used as input to subsequent stages.
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Fig. 3 An example of a call trie

First, the program is executed and its call stack is sampled. The stack samples
are used to detect thread groups and libraries in the program. Second, a static
analysis of the program is performed. During this stage we detect csync, cin, cout,
and cIO CFs. Third, the program is instrumented and executed again with the
same configuration. The instrumentation log is used to detect program-wide locks
and queues, properties Π of code fragments, and to build the probabilistic call
graphs 〈S, δ〉 of the program’s threads. Finally, the collected information is used to
build a performance model. All these operations are performed automatically.

Below we describe these stages in more details.

4.1 Collecting stack samples

During the stack sampling stage our framework finds thread pools, frequently
called functions and methods in the program, and frequently called library func-
tions. Identifying libraries is essential for generating correct probabilistic call graphs
(see Section 4.3.1).

As the program is being executed, the framework periodically takes “snap-
shots” of the call stack of the running program, which are merged to build a call

trie of the program. In a call trie each leaf node contains the code location being
executed, which includes the name of a function or a method being executed, and
a line number. The non-leaf nodes provide a call stack for that code location. For
each leaf the framework maintains the list of pairs 〈tr1, ex1〉, . . . 〈trn, exn〉, where
the exi is the number of executions of that code location by the thread tri.

An example of the call trie for a multithreaded program is depicted at the
Figure 3. Here the method waitForce() was called by the method run(), while
run() itself was called by the method main(). The waitForce() method was al-
ways executed by the thread tr1; the total number of executions of that method
detected during the stack sampling is ex1 = 126. Similarly, the method getLen()

was executed by threads tr2 and tr3 98 and 117 times respectively.

Thread groups are detected in two steps. First a map T is created. Its keys
are thread tuples discovered by sampling, and its values are execution counts.
For each leaf in the trie the framework retrieves a tuple Tpi = 〈tr1, . . . trk〉 of
threads that executed the node along with the total number of executions Exi =∑

(ex1, . . . , exk). If T does not contains the tuple Tpi, the pair 〈Tpi, Exi〉 is inserted
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into T. Otherwise the number of executions for the existing tuple is increased by
Exi.

In our example the following tuples are created:

– Tp1 = 〈tr1〉, Ex1 = 5+ 126 + 137 = 268
– Tp2 = 〈tr2, tr3〉, Ex2 = 409 + 98 + 722 + 512+ 117+ 698 = 2556
– Tp3 = 〈tr4, tr5〉, Ex3 = 384 + 276 = 660
– Tp4 = 〈tr4〉, Ex4 = 12
– Tp5 = 〈tr5〉, Ex5 = 25

The resulting tuples represent the thread pools that can be possibly found in
the program. However, the data collected by the stack sampling is not guaranteed
to be accurate. It is possible that some of the executions of a method by the
thread were not detected during the stack sampling, which results in a number
of “spurious” thread pools detected at the first stage. In our example it is likely
that calcRadius and calcMass methods were also executed by threads t5 and t4
correspondingly. But these executions were either too infrequent or too short to
be detected by the stack sampling. This resulted in detection of “spurious” thread
pools Tp4 and Tp5.

During the second step the spurious thread tuples in in T are detected are
merged with the correct ones. The tuple 〈Tp1, Ex1〉 is considered a spurious one
and can be merged with 〈Tp2, Ex2〉 if and only if all threads in Tp2 also present
in Tp1 and Ex1 ≫ Ex2. The resulting tuple is formed as 〈Tp1, Ex1 + Ex2〉. After
merging, the remaining tuples Tp1 . . . T pm ∈ T represent the thread pools detected
in the program.

In the example depicted at the Figure 3, the tuple Tp4 and Tp5 is merged into
Tp3 because Ex3 ≫ Ex4 and Ex3 ≫ Ex5. The resulting set of thread pools is
Tp1 = 〈tr1〉, Tp2 = 〈tr2, tr3〉, Tp3 = 〈tr4, tr5〉.

Stack samples are also used to identify program’s libraries. The knowledge
of libraries is necessary to generate a semantically correct performance model.
For every function or a method f the framework generates the set of functions
〈f1, ..., fncall〉 that called f . If the number of callees ncall > 1, f is added to the
set of library functions. Although the stack sampling may not detect some rarely
executed library functions, this does not affect correctness of our models.

4.2 Static analysis

During the static analysis our framework scans the code of the program and detects
csync, cIO, cin and cout CFs. It also detects the creation points of locks and queues
in the program, as a prerequisite for the dynamic analysis.

The static analyzer represents the program as a dependency graph. The vertices
of this graph correspond to functions and methods in the program (both called
“function” herein). The edges are code dependencies (e.g. the function A calls
the function B) and data dependencies (e.g. the function A refers the class B or
creates the instance of B) between these functions. The transitive closure of all
the vertices in the dependency graph represents all the code that may be executed
by the program.

The static analyzer traverses the dependency graph, starting from the functions
discovered during the stack sampling. It scans the code of the functions, searching
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for the specific constructs that represent csync, cIO, cin and cout CFs. In the
process the analyzer searches for references to other functions and methods, that
are subsequently loaded and analyzed.

There are numerous ways to implement synchronization and queue operations
in a program. Practically all the modern programming languages such as C, C++
or Java provide low-level primitives to implement threading and synchronization.
These primitives are built around the concept of the mutexes and condition vari-
ables [37].

However, programmers rarely design and think of their programs in the terms
of mutexes and condition variables. Instead, programmers design their programs
in terms of higher-level locks such as semaphores, barriers, read-write locks, or
producer-consumer queues. Similarly, we simulate the semantics of thread inter-
action in the program in terms of these high-level locks.

Unfortunately, there can be numerous ways to design and implement high-level
locks using low-level primitives. As a result, detecting cin, cout and synchronization
CFs and determining their operation types optype may require complex analysis
that is very hard to automate.

However, manually implementing high-level synchronization constructs is a
work-intense and error-prone task for most programmers. Resulting implementa-
tions often had inferior performance and were prone to bugs. To facilitate work of
developers, most of modern programming languages provide standard libraries
of concurrent constructs: semaphores, barriers, synchronization queues, thread
pools and other means for thread interaction. Examples of such libraries are the
java.util.concurrent package for Java, the System.Threading namespace in C#,
and boost threading library in C++. Using standard implementations of locks and
queues instead of constructing them from low-level synchronization primitives is
a recommended way to developing concurrent applications [1].

From the standpoint of building performance models, using known implemen-
tation of high-level locks and queues greatly simplifies the analysis of the program.
Implementing thread interaction using a set of standard constructs allows program
analysis to accurately identify queues Q and locks L and in the program, deter-
mine their types and parameters Πlock, and discover synchronization operations
that involve these locks. Thus in the current study we concentrate on building
models of programs that employ standard implementation of locks and queues to
implement thread interactions.

The analyzer considers calls to specific functions that perform synchronization
operations and access program’s queues as csync, cin, and cout CFs appropriately.
Typically, these are the functions that constitute the API of the corresponding
thread and locking library. The class of the CF and the type of synchroniza-
tion operation optype are inferred from the name and the signature of the called
function. For example, in a Java program the call to the Semaphore.acquire(int

permits) is considered as a csync CF whose type is optype=“Semaphore acquire”.
Similarly, the call to the Semaphore.release() method is a csync CF whose type
is optype=“Semaphore release”.

The analyzer also tracks low-level synchronization primitives, such as monitors,
mutexes, and synchronized regions. These constructs are often used to implement
simple synchronizations. Our models simulate these constructs explicitly as csync

CFs. However, when the combination of low-level primitives is used to implement a
high-level lock, the probabilistic execution graph (PEG) may not be able to capture
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the deterministic behavior of such lock. Consider a custom implementation of a
cyclic barrier that maintains the counter of waiting threads. When the thread calls
the barrier, the program checks the value of the counter. If the value of the counter
is less than the capacity, the calling thread is suspended; otherwise the program
wakes up all the waiting threads. In the PEG this behavior will be reflected as a
fork with the probability of lifting the barrier equal to 1/(barrier capacity). As a
result, in certain cases the model will lift the barrier prematurely, and in other
cases it will not lift the barrier when it is necessary.

cin/cout CFs are detected in the same way as synchronization CFs. The only
difference is that the analyzer tracks a different set of API functions or methods,
which represent operations on the program’s queues. The analyzer also tracks calls
to the constructors and initializers of locks and queues. These calls do not directly
correspond to the csync CFs, but they are used to detect queues and locks in the
program and retrieve their parameters during the dynamic analysis.

cIO code fragments are discovered in a similar manner. The static analyzer
tracks API functions that can perform disk I/O. Calls to the functions that may
access the file system metadata, such as File.exists() Java method or stat() libc

function, are considered as I/O CFs. Similarly, the bodies of low-level functions
that perform file I/O, such as native methods of the FileInputStream Java class,
are also considered as I/O CFs.

4.3 Dynamic analysis

The purpose of dynamic analysis is to identify cCPU CFs, the parameters Π of
locks and CFs, and the probabilistic call graphs 〈S, δ〉 of the program’s threads.

The dynamic analyzer instruments the program and runs it again in the same
configuration as the initial stack-sampling run. Each CF detected during the static
analysis is instrumented with two probes. A start probe is inserted immediately
before the CF, and an end probe is inserted right after the end of the CF. Each
probe is identified by the unique numeric identifier (probeID).

Probes report the timestamp, the probeID, and the thread ID. For CFs corre-
sponding to a function call, the start probe reports function’s arguments, and the
end probe reports the return value. For method calls probes also report the refer-
ence to the called object, if relevant. This information is used to obtain parameters
of csync, cin, and cout CFs.

During its execution the instrumented program generates the sequence of probe
hits on a per-thread basis, which constitute a trace of the thread. Two coincident
probe hits in the trace form a pair 〈start probe ID, end probe ID〉. Every such pair
represents an execution of a single code fragment.

The 〈start probe ID, end probe ID〉 pairs are “overlapping” in the trace, so the
end probe ID of one pair becomes the start probe ID of the next pair. Thus execu-
tions of cIO, csync, cin, and cout CFs in the trace are interleaved with pairs of probe
IDs. These pairs, which represent computations performed between executions of
cIO, csync, cin, and cout CFs, correspond to cCPU CFs.

TODO: should we provide a code example for this trace?

The Figure 4 depicts an example of such trace. Here the CF 〈10, 11〉 is a cin
CF. The object ID=7683745 recorded by the probe 10 identifies the queue, while
the argument value 0 correspond to the timeout of 0 milliseconds. The probe 11
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ProbeID Timestamp ObjectID Arguments/
return value

10 11345231 7683745 0

11 11387461 7683745 4387459

27 11391365 87235467

28 11392132
10205 11396190 1872565

10206 19756012 1872565

6 19873872 87235467

7 19873991
10205 19923752 32748998

10206 25576572 32748998

...

Fig. 4 A fragment of the trace for a thread.

reports the return value 4387459, which is an ID of the retrieved object. 〈27, 28〉
and 〈6, 7〉 are synchronization CFs corresponding to the entry and exit from the
synchronized region. The object ID=87235467 and 32748998 identifies the monitor
associated with that region. Two instances of 〈10205, 10206〉 I/O CF correspond
to two (unrelated) file read operations from the disk. Their object IDs 1872565
identify the instances of the corresponding file objects. Pairs 〈11, 27〉, 〈28, 10205〉,
〈10206, 6〉, and 〈7, 10205〉 are the computation CFs.

4.3.1 Construction of probabilistic execution graphs

A näıve approach to generating the probabilistic execution graph (PEG) for a
thread is to treat the set s1 . . . sn of CFs discovered in the trace as the set S

of nodes in the PEG. For each node si ∈ S the subset Snext = {sk, . . . , sm} of
succeeding nodes is retrieved, along with the numbers of occurrences of the pairs
(si, sk), . . . , (si, sm) in the trace. The probability of transition from the node si to
sj , j ∈ (k . . .m) is calculated as

p(si, sj) =
count(si, sj)∑m
l=k count(si, sl)

(2)

Probabilities of transition for every pair of nodes constitute the mapping δ :
S → P (S) in the mid-tier model.

However, the näıve approach results in problems when building execution
graphs for real-world applications. It may not represent calls to the program’s
libraries correctly and generates overly complex PEG. To become practical, this
approach must be improved.

Correct representation of library calls. Distinct execution paths in the pro-
gram must be represented as non-intersecting paths in the PEG, so that the control
flow in the model will not be transferred from one such path to another. However,
if these execution paths call a library function containing a code fragment, the
instrumentation would emit same probe IDs for both calls, which correspond to
executing the same CF. As a result, distinct execution paths will be connected
by the common node in the PEG. During the simulation the thread model may
“switch” from one execution path to another unrelated execution path, which is
semantically incorrect.
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Fig. 5 Top: the ground truth PEG from the thread trace. Bottom: the incorrect PEG gener-
ated from the trace that contains a library call.

For example, according to the trace shown on the Figure 4 the program enters
the synchronized region, reads data from a file, exits the synchronized region, and
performs another unrelated file read. The “ground truth” call graph has no loops
or branches (see Figure 5, top). However, both I/O operations will eventually call
the same read() I/O API that contains an 〈10205, 10206〉 I/O CF. As a result, the
generated PEG will contain a loop in it (see Figure 5, bottom). While simulating
this loop the model may not exit the synchronized region, or may attempt exiting
it multiple times. In both cases the behavior of the model will be incorrect.

To address this problem the dynamic analyzer represents separate calls to the
library CFs as separate PEG nodes using the node splitting technique described
in [59]. For every CF located within one of the program’s libraries, the analyzer
adds a context information describing the origin of the call to that library.

This information is obtained by instrumenting calls to the library functions
discovered during the stack sampling (see Section 4.1). An entry library probe is
inserted before every call to a library function; an exit library probe is inserted
after such call. As the analyzer scans the trace, it maintains a call stack of library
probes. When the entry library probe is encountered in the trace, its ID is added
into the stack. This ID is removed from the stack when the corresponding exit
probe is detected. When the analyzer detects the CF, it adds the sequence of
library probe IDs present in the stack as the prefix of that CF ID. As a result,
calls to the library CFs that originate from different locations in the program are
represented as separate nodes in the PEG.

For an example, consider that entry/exit library probes 500/501 and 502/503
were inserted into the program, so the resulting sequence of probe IDs in the
trace is 10, 11, 27, 28, 500, 10205, 10206, 501, 6, 7, 502, 10205, 10206, 503. The
corresponding sequence of CF is 〈10, 11〉, 〈11, 27〉, 〈27, 28〉, 〈28, 10205〉, 〈500, 10205,
10206〉, 〈10206, 6〉, 〈6, 7〉, 〈7, 10205〉, 〈502, 10205, 10206〉, which is consistent with
the ground truth PEG.

Reducing the complexity of the model. According to the näıve approach, all
the computations between cIO, csync, cin, and cout CFs are represented as cCPU

CFs, even if their impact on performance is negligible. Similarly, every synchro-
nization region is represented as a pair of CFs, even if it is very short and never
becomes contended in practice.

TODO: Add an example from the trace we shown above?

This leads to an unnecessary complex PEG, consisting of thousands of CFs (see
Table 3). Such complex models have low performance and are hard to analyze. To
simplify the model we remove all the insignificant CFs that have negligible impact
on the program’s performance.
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Model optimization is performed in two steps. The first step is finding phases
in the program’s execution that do not affect performance measurements and
excluding these phases from modeling. The second step is analysis of the remaining
CFs and eliminating those which do not have a noticeable impact on performance.

During the first step the whole timeline of the program’s execution is split into
three phases: the startup phase, when the program doesn’t process tasks yet; the
work phase, when the program processes tasks; and the shutdown phase, when the
program doesn’t process tasks any more. Finding phases is easy for programs that
handle external requests, such as servers. A timestamp marking the beginning of
the work phase is recorded before issuing the first request, and the end timestamp
is recorded after the last request is complete. If startup or shutdown phases cannot
be easily defined for a program, we assume these phases are absent in the trace.

The model doesn’t simulate program’s performance during the startup and
shutdown phases. Among all CFs executed during the startup phase, only the CFs
that are required to build a semantically correct model (cin, cout, and csync CFs
that perform complex synchronization operations, such as awaiting on the barrier)
are incorporated into the model. Remaining CFs are considered as insignificant.
All the CFs executed during the shutdown phase are considered as insignificant. In
fact, when the program enters the shutdown phase, all the performance information
has been already collected and there is no need to further simulate the program.

During the second step the insignificant CFs executed during the work phase
are detected and removed from the model. The following CFs are considered as
insignificant:

– Non-contended synchronized regions. A synchronized region is non-contended
if the mean time required to enter that region is comparable with the instru-
mentation overhead;

– Computation CFs whose summary CPU times amounts to less than t% of the
overall CPU time for the thread;

– I/O CFs whose total number of I/O operations and summary data transfer
amounts to less than t% of data transferred by the thread.

Setting t = 3 − 5% allows shrinking the PCG by 50-70% without noticeable
impact on the accuracy.

Accounting for determinism in the program behavior. Some program be-
haviors express deterministic behavior that is difficult to represent accurately using
a probabilistic model. This deterministic behavior must be addressed in the model
in order to obtain accurate prediction.

First, the execution flow of a thread may take different paths depending on
the availability of the task in the queue. Namely, the program will attempt to
fetch the blocking queue and impose a timeout for the operation. Depending on if
the request was fetched successfully, or if the fetch operation has timed out, the
program may execute a different set of code fragments.

To account for this the analyzer inserts “virtual” nodes after each cin node in
the PEG. The c

fetch
in virtual node is executed when the cin CF was able to fetch

the task from the queue. cnofetchin node is executed if cin did not fetch the task and
exited by the timeout.

Second, representing loops as cycles in a PEG may affect the model’s accuracy.
If a loop that performs exactly n iterations is represented as a cycle in a PEG, then
the number of iterations X for that cycle will not be a constant. It can be shown
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that X will rather be a random variable that follows a geometric distribution with
mean n and a probability mass function Pr(X = k) = 1

n · (1 − 1
n )

k−1. In most
cases this representation has a minor effect on the prediction accuracy. However,
if the program’s performance y strictly follows the function y = f(n), the predicted
performance y′ will be a function of a random variable y′ = f(X), whose parame-
ters (mean, standard deviation) may differ noticeably from y. In our experiments
such mispredictions occurred if the loop performed an initial population of the
program’s queues with tasks.

For an example, consider a program with O(N2) runtime complexity, where
N is the number of tasks (the size of the input). Assuming N = 5 and length
of iteration 1 millisecond, the average running time of the program will be 25
milliseconds. However, if the loop that populates program’s queues with input
tasks is modeled as a cycle in the PEG, then the total number of tasks actually
generated by the model will follow a geometric distribution with Pr(N = k) =
0.2 · (0.8)k−1 and mean N = 5. The predicted average running time will be 45
milliseconds, which corresponds to the mean prediction error ε(T ) = 0.80.

To address this issue the dynamic analyzer detects loops in the trace using the
algorithm [50]. If the loop contains the cout node, the model explicitly simulates
it. Otherwise the loop is represented as a cycle in the PEG.

4.3.2 Retrieving parameters of code fragments

The dynamic analyzer retrieves parameters of the model’s constructs from the
trace.

Parameters of locks and task queues. Parameters of locks and queues are
obtained from the arguments passed to constructors and intializers of these locks
and queues, and from their return values. As we mentioned earlier, the lock type
ltype is inferred from the signature of the constructor/intializer of that lock during
the statuc analysis (see Section 4.2). The type-specific parameters lparam are
retrieved from the values of arguments passed to that constructor. The lock ID lid

is obtained from the reference to the lock returned by the constructor; it uniquely
identifies each lock li ∈ L. Queues and their parameters are obtained in the same
manner.

For example, in a Java program the capacity of the barrier is specified by the
value parties argument of the CyclicBarrier(int parties) constructor. Corre-
spondingly, the capacity of the queue is specified as the capacity argument of the
ArrayBlockingQueue(int capacity). The ID of the object returned by the con-
structor uniquely identifies the corresponding lock or queue.

Parameters of csync, cin, and cout CFs. Parameters of these CFs are also
obtained from the arguments passed to functions and methods operating on locks
and queues, and from their return values. The ID of the called lock lid is ob-
tained from the reference to the lock; it is matched to the lid returned by the lock
constructor/initializer. The type of synchronization operation optype was inferred
from the signature of the called function earlier during the static analysis. The
operation timeout τout is retrieved from the arguments passed to the function.
Parameters of the cin/cout CFs are obtained in the same manner.

Some low-level synchronization operations, such as an entry/exit from a syn-
chronized block, might not call functions or methods. optype for such operation is
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obtained by analyzing the corresponding instruction in the program. lid is obtained
from the reference to the associated monitor.

cCPU CFs. The parameter of the cCPU CF is the distribution P
τ
CPU of CPU

times τCPU . In a general case the τCPU for a code fragment can be obtained as
a difference τendCPU − τstartCPU between the thread CPU time τstartCPU measured before
executing the CF and the thread CPU time τendCPU measured after executing the
CF. Here thread CPU time denotes the amount of time the CPU was executing
instructions of that CF.

τCPU can be accurately measured when the execution time of a thread can be
determined. When this is not the case, τCPU is measured as the difference between
the timestamps of start and end probes of the CF, substituting clock time for CPU
time. However, in order to use the latter approach we need to avoid configurations
where CPU congestion is likely.

cIO CFs. The parameters of the cIO CF are the number k and properties (the
type of I/O operation and the amount of data transferred) of low-level disk I/O
requests {dio1, ..., diok} initiated by that cIO CF. This request-specific data can be
retrieved only from the OS kernel. We used the blktrace [2] to retrieve the log of
all kernel-mode disk I/O operations initiated by the program.

Generally, the timestamps and thread IDs in the kernel-mode I/O log might
not match the timestamps and thread IDs in the instrumentation log. This makes
associating low-level I/O requests with execution of I/O code fragments in the
program difficult.

To match blktrace log to the instrumentation log the dynamic analyzer uses
cross-correlation – a technique used in signal processing [64]. The cross-correlation
(f ⋆ g)[t] is a measure of similarity between signals f and g, where one of the
signals is shifted by the time lag ∆t. The result of a cross-correlation is also a
signal whose maximum value is achieved at the point t = ∆t. The magnitude of
that value depends on similarity between f and g. The more similar are those
signals, the higher is the magnitude of (f ⋆ g)[∆t].

The analyzer represents sequences of I/O operations obtained from the kernel-
mode trace and user-mode trace as signals taking values 0 (no I/O operation
at the moment) and 1 (an ongoing I/O). It generates user I/O signals U =
{u(t)1 . . . u(t)N} for each user-mode thread obtained from the program trace, and
kernel I/O signals B = {b(t)1 . . . b(t)M} for each kernel-mode thread from the blk-
trace log. The analyzer discretizes those signals with the sampling interval of one
millisecond.

Figure 6 depicts the cross-correlation between signals u(t) and b(t). The cross-
correlation signal (u(t) ⋆ b(t))[t] reaches its maximum value at the point ∆t = 324,
which means that the user signal u(t) is shifted forwards by ∆t = 324 ms with
relation to the kernel signal b(t).

TODO: fix the notation on the image

The dynamic analyzer matches user to the kernel I/O signals using a greedy
iterative procedure. For each pair of signals 〈u(t)i ∈ U , b(t)j ∈ B〉 the ana-
lyzer computes a cross-correlation signal xcorrij = b(t)i ⋆ u(t)j and the value
∆tij = argmaxt(xcorrij). The user signal u(t)i matches the kernel signal b(t)j
if the maximum value of the cross-correlation signal xcorrij [∆tij ] is the highest
across the signal pairs.

Next the analyzer aligns user and kernel-mode traces by subtracting the ∆t

from the timestamps of the user-mode trace. Finally, the kernel-mode I/O opera-
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Fig. 6 Cross-correlation between Java and Btrace I/O logs. Distinctive features of the signals
are highlighted by circles.

tions are associated with the user-mode states. Each kernel mode I/O operation
dioj is described as a time interval [tbstart, t

b
end] between its start/end timestamps.

Similarly, invocations of the user mode I/O CFs are described as time intervals
[tustart, t

u
end]. The kernel-mode I/O operation dioj is considered to be caused by

the user-mode I/O CF if the amount of intersection between their corresponding
time intervals is maximal across all the I/O CFs in the trace. Correspondingly, a
sequence dioj ...dioj+k of low-level I/O operations associated with the execution of

the user-mode CF are considered to be parameters 〈dio1 · · · diok〉 ∈ P
Π
disk of that

CF. A user-mode I/O CFs that does not intersect any kernel-mode I/O operation
is considered as a cache hit (k = 0).

4.4 Constructing the performance model

The result of the program analysis is a set of text and xml files, which contain all
the information required to generate the model: the list of threads, thread pools,
and queues in the high-level model; the set S of CFs, their classes and properties
Π; transition probabilities δ; the set of locks L and their properties Πlock. This
information is used to generate the three-tier performance models described in the
Section 3. The models are implemented using the OMNeT simulation toolset [3]
and can reviewed in the OMNeT IDE.

To start using the model the analyst must specify the model’s configuration
parameters (the numbers of threads in the thread pools, intensity of the workload,
sizes of the queues, the numbers of CPU cores etc). The analyst must also specify
what performance data should be collected. The model can provide performance
data for CFs (execution time τ), for a group of CFs (e.g. a processing time of the
task by the thread), or for the whole program (e.g. throughput or a response time).
These are the only manual actions performed during the model construction.
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5 Model Verification

We implemented our approach as a tool for automatically building models of Java
programs. The tool uses ASM [4] framework for bytecode analysis and instrumen-
tation.

In this section we present experimental evaluation of our methodology for auto-
matic generation of performance models. The main evaluation criteria is prediction
accuracy of the generated models.

To estimate the accuracy of our predictions we built the model of each program
from one configuration and used it to predict performance in a set of other config-
urations. Then we measured actual performance of the non-instrumented program
in same configurations. To get reliable measurements we performed three runs of
both the actual program and its model in each configuration. The mean values of
measured and predicted performance metrics were used to calculated the relative
error ε of the model:

ε =
|measured− predicted|

measured
(3)

Performance metrics we predict include program-widemetrics, such as response
time or throughput of the program, and also utilization of the computation re-
sources, such as a hard drive or a CPU.

Below we describe our simulations in detail. First, we present results for mod-
eling various small- to medium-size programs. These results demonstrate that our
simulation framework is capable of predicting performance of various programs
that use different synchronization constructs and hardware resources. Second, we
present results for large industrial programs. These results demonstrate that out
approach can be used to build accurate models of large, industrial-grade multi-
threaded programs.

5.1 Modeling small- to medium-size programs

We built models of the following applications: Raytracer (a 3D rendering program),
Montecarlo (a financial application), Moldyn and Galaxy (scientific computing
applications), and Tornado (a Web server). Raytracer, Montecarlo and Moldyn are
parts of the Java Grande benchmark [22] suite. Although relatively small in size,
these programs express functionalities peculiar to a wide range of multithreaded
programs. They implement thread interaction in different ways and use a great
variety of synchronization mechanisms to enforce a correct order of computations
across multiple threads.

We used two hardware configurations for our experimentation. The Config
I is a PC equipped with the Intel Q6600 quad-core CPU, 4GB RAM, and 250
GB HDD. The computer was running Ubuntu Linux OS. The Config II is a PC
equipped with 2 eight-core AMD Opteron CPUs (total 16 CPU cores) and 64 GB
RAM. The computer was running Debian Linux OS. All the programs, except
Tornado, were run in both Config I and Config II configurations. Tornado, as an
disk I/O-heavy application, was run only in the Config I configuration.

Table 2 present a summary on these programs and their models. Below we
briefly describe these programs, along with results of their simulations.
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Table 2 Small- to medium-size programs and their models

Raytracer Montecarlo Moldyn Galaxy Tornado

Size, lines of code 1468 3207 1006 2480 1705
Number of probes 16 18 30 72 40
Number of CFs 43 17 72 124 88
Number of nodes
in the model 25 24 46 59 36

Raytracer program renders the image at a given resolution using a ray tracing
algorithm. The rendering is parallelized across a pool of working threads; each
thread renders a given row of pixels and thus corresponds to a “task” in the
terms of the formal model. These tasks are stored in a synchronized queue that is
initialized upon the start of the program.

In our experiments Raytracer rendered a scene containing 64 spheres at a
resolution of N x N pixels. The overall time required to render the frame is the most
important performance metric of Raytracer. Assuming the constant size of the
image, the number of working threads is is a determining factor for the performance
of the Raytracer.

We built the model of Raytracer using a configuration with 3 working threads
in both Config I and II. Figures 7 and 8 compare the actual and predicted perfor-
mance of Raytracer in Config I and II correspondingly. We ran Raytracer in the
Config I with 1,2,3,4,8,10,12,16 working threads. The relative prediction error in
the Config I varied in ε ∈ (0.029,0.156) with the average error measured across
all the configurations ε = 0.117 (see Figure 7). Correspondingly, we ran the Ray-
tracer in the Config II with 1,2,4,6,8,10,12,15 working threads. The relative error
in the Config II varies in ε ∈ (0.041,0.173) with the average error ε = 0.086 (see
Figure 8). These results demonstrate good prediction accuracy for both hardware
configurations.

Fig. 7 Predicted and measured running time for Raytracer in hardware Config I

Montecarlo simulates price of marked derivatives based on the prices of the
underlying assets. Using historical data on asset prices, the program generates a
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Fig. 8 Predicted and measured running time for Raytracer in hardware Config II

number of time series using Monte Carlo simulation. Each time series is consid-
ered as a “task”; time series are generated independently using a pool of working
threads. Threads are synchronized using a barrier.

The number of threads is the main factor determining the performance of
Montecarlo. The total time required to finish a simulation is the most important
performance metric in this case.

In the Config I we built the model of Montecarlo using a configuration with 2
working threads and executed Montecarlo with 1,2,3,4,8,10,12,16 working threads.
The relative error in this configuration varied in ε ∈ (0.014,0.105) with ε = 0.062
(see Figure 9). Correspondingly, in the Config II the model of Montecarlo was built
using a configuration with 4 working threads. Montecarlo was executed with with
1,2,4,6,8,10,12,15 working threads; the error varied within ε ∈ (0.029,0.319) with
ε = 0.184 (see Figure 10).

Although the prediction error remains within the acceptable limits in Config
II, the performance of the Montecarlo becomes less linear in relation to the num-
ber of threads. To understand the cause of these errors we studied behavior of
MonteCarlo using Linux perf utility. It appeared that the Montecarlo performs a
large number of memory operations. When executed on a 16-core machine these
operations saturate the memory bus, which leads to a performance degradation
of the application. These errors can be addressed by more detailed simulation of
memory operations, which involve collecting the information on memory accesses
by the program and by developing robust models of a memory subsystem.

Moldyn simulates motion of argon atoms in a cubic volume. Moldyn discretizes
time into small steps (iterations). During each iterationMoldyn computes the force
acting on every atom in the pairwise manner, and then updates the positions of
the atoms.

Moldyn parallelizes computations across a pool of working threads. Objects
that represent atoms are stored in the global synchronized queue. One of these
threads (the main thread) coordinates actions of other threads using barriers. Dur-
ing each iteration working threads compute forces acting on atoms, and then the
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Fig. 9 Predicted and measured running time for Montecarlo in hardware Config I

Fig. 10 Predicted and measured running time for Montecarlo in hardware Config II. Con-
tention of the memory bus has some impact on performance.

main thread merges forces computed by different threads and calculates updated
positions of the atoms.

The length of the iteration is the most important performance metric of the
Moldyn. Given the constant number of atoms, the number of working threads in
the thread pool is the only parameter that determines performance of the Moldyn.

We built the model of Moldyn using a configuration with 2 working threads
in both hardware Config I and II. Figures 11 and 12 depict prediction results
in these configurations. In Config I we executed Moldyn with 1,2,3,4,8,10,12,16
working threads; the relative varies in ε ∈ (0.013,0.155) with the average error
measured across all the configurations ε = 0.083 (see Figure 11). In Config II we
executed Moldyn with 1,2,4,6,8,10,12,15 working threads, and the relative error os
ε ∈ (0.006,0.485) with the average error ε = 0.255 (see Figure 12).

The model predicts performance of Moldyn on a 16-core machine with lower
accuracy than on a 4-core machine. Again, we used perf utility to understand
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the root cause of these errors. We discovered that specifics of data structure used
by the Moldyn causes the cache miss rate to increase along with the number of
threads. In particular, the miss rate for 1 thread is 0.0063%, while the miss rate for
15 threads is 0.0131% (5x increase). As a result, as the number of threads increases,
the CPU time for the CFs increases as well, which leads to the reduction in the
accuracy. An accurate model for CPU cache remains a subject of future work.
Directions toward developing this model are outlined in the Section 6.3.

Fig. 11 Predicted and measured iteration length for Moldyn in hardware Config I.

Fig. 12 Predicted and measured iteration length for Moldyn in hardware Config II. Variations
in cache miss rate have noticeable influence on performance.

Galaxy simulates the gravitational interaction of celestial bodies using the
Barnes-Hut [16] algorithm, which relies on an octree data structure to speed up
computations. During each iteration the main thread of the Galaxy rebuilds the
octree, then the pool of “force threads” computes forces and updates positions of
bodies, and, finally, the pool of “collision threads” detects body collisions. Pools
communicate through the synchronized queues. The order of computations is en-
forced by the main thread. The number of force threads and the number of collision
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threads are the two parameters affecting the performance of the Galaxy. The time
taken by an iteration is the most important performance metric of the Galaxy.

Fig. 13 Predicted and measured iteration length for Galaxy program on a 4-core machine.
Impact of collision threads on performance is minimal.

Fig. 14 Predicted and measured iteration length for Galaxy program on a 16-core machine.
Increase in the number of working threads doesn’t lead to the proportional improvement in
performance.
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In both Config I and Config II we built the model of the Galaxy with 2 force
and 2 collision threads. In the Config I we ran the Galaxy with 1,2,3,4,8,12 and
16 “force” and “collision” threads (total 49 combinations). The relative error for
Galaxy in the Config I varies in ε ∈ (0.002,0.291) with average error ε = 0.075
(see Figure 13). In the Config II we ran the Galaxy with 1,2,4,6,8,10,12 and 15
“force” and “collision” threads. The relative error in the Config II varies in ε ∈

(0.004,0.358) with ε = 0.092 (see 14), which is almost as accurate as the prediction
for 4 CPU cores.

Our model correctly predicts some interesting aspects of the Galaxy perfor-
mance. First, the model correctly points that the influence of the number of “col-
lision threads” on performance is minimal, as these threads constitute a minor
fraction of computations if compared to the “force threads”. Second, the model
predicts the non-linear dependency between the number of “force threads” threads
and performance of Galaxy. Increasing the number of “force threads” from 1 to
8 results in 5-fold improvement in performance, while increasing the number of
these threads from 8 to 15 improves performance only by 35%. This phenomenon
is explained by the Amdahl’s law [13]. Namely, rebuilding the octree is not par-
allelized, and is performed by the main thread. As the number of working thread
increases, the time for rebuilding an octree becomes a dominant factor in perfor-
mance. Furthermore, accessing synchronized queues by the program’s threads is
also a sequential operation, whose impact on performance becomes noticeable as
the number of threads grow.

Fig. 15 Predicted CPU utilization for Galaxy in Config II. All CPU cores are never utilized
due to the incomplete parallelization of the workload.
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Fig. 16 Predicted and measured response time for Tornado

This analysis is reinforced with the prediction of CPU usage by the Galaxy
in Config II (see Figure 15). In particular, we correctly predict that all the CPU
cores are never utilized. The relative prediction error for CPU utilization varies in
ε ∈ (0.004,0.191) ε = 0.080.

Tornado is a simple web server, whose structure and behavior are described
as an example in the Section 3. Unlike Moldyn, Montecarlo, and Galaxy, which
engage the CPU-intense computations, Tornado workload is dominated by disk
I/O operations. The performance of the web server is influenced by two parameters:
the incoming request rate (IRR), which represents the intensity of the workload,
and the number of working threads. IRR is measured as the number of requests
the web server receives in a time unit. The performance of the web server is
characterized by two main metrics: its response time R and throughput T .

Predicting performance of the web server is a more complex problem because it
requires simulating not only computations but also the disk and network I/O op-
erations. In our experiments Tornado was deployed in hardware Config I and used
to host about 200000 Wikipedia web pages. We used a separate client computer
to simulate the incoming connections.

In our experiments we ran Tornado with with 1,2,4 and 8 working threads and
IRR ranging from 19.75 to 97.2 requests per second (rps), measured at the server
side. The model of the web server was built using a configuration with IRR=57.30
requests per second (RPS) and 1 working thread.

The prediction of the response time is shown at the Figure 16. Predictions of the
throughput are shown at the Figure 17. The relative prediction error for response
time R is in ε(R) ∈ (0.017,1.583) with ε(R) = 0.249. Prediction for throughput T
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Fig. 17 Predicted and measured throughput for Tornado. The number of working threads
has a weak impact on performance due to hard drive contention.

Fig. 18 Predicted utilization of the hard drive by Tornado. A single hard drive becomes a
bottleneck in the system.

and hard drive utilization Udisk are considerably more accurate. The relative error
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for T is ε(T ) ∈ (0.000,0.051) and ε(T ) = 0.012; the error for hard drive utilization
ε(U) ∈ (0.000,0.077), while ε(U) = 0.025.

One cause for the relatively high error terms for R is the variance in page
cache hit rate; the next section of the paper reviews these effects in more details.
Another cause is the simplistic model of networking operations, which are currently
simulated as CPU computations.

The model correctly predicts that the number of working threads has a weak
influence on the performance of Tornado. The single hard drive becomes a bottle-
neck, so any increase in the number of parallel I/O operations is negated by the
proportional increase in the average execution time for each I/O request (see Fig-
ure 18 for predicted hard drive utilization). We believe this example demonstrates
the necessity of proper simulation of I/O operations in multithreaded programs
because they often become a determining factor in the program’s performance.

5.2 Modeling large industrial applications

Modern multithreaded applications are significantly larger and more complex than
programs we have studied in a previous section. To prove the practical value of
our methodology we must demonstrate that our framework is capable of building
accurate models of large industrial applications. We built models of the following
large open-source programs: Sunflow 0.07 3D renderer and Apache Tomcat 7.0
web server.

We predicted the performance of Tomcat in two setups: as a standalone web
server hosting static web pages and as a servlet container that hosts an iText
library for text conversion. Considering difference in Tomcat functionality over
these setups, corresponding models are significantly different. Table 3 provides
information on programs and their models.

Instrumentation did not alter semantics of these programs, but it introduced
some overhead. The amount of overhead, measured as a relative increase in the
task processing time by an instrumented program, constituted 2.5%-7.6%.

The complexity reduction algorithm eliminated 99% to 99.5% of all CFs as
insignificant in Tomcat and Tomcat+iText models correspondingly. Most of in-
significant CFs were detected during the startup or shutdown phases. No startup
or shutdown phases were detected in the Sunflow, and only 80% of its CFs were
eliminated as insignificant.

Our models run 8-1000 times faster than the actual program (see Table 3).
The actual speedup depends not on the size of a program, but on a ratio between
the times required to simulate CFs by the model and times required to execute
these CFs by the program. Simulating a CF requires a (roughly) constant amount
of computations, regardless of its execution time. Thus models that invoke many
CFs with short execution times or simulate intense locking operations tend to run
slower than models that execute few long-running CFs. As a result, eliminating
insignificant CFs is essential for achieving a high performance of the model.

Using performance models offers two additional sources of speedup over bench-
marking. First, multiple instances of a model can run simultaneously on a multicore
computer. Second, the model does not require a time-consuming process of setting
up the live system for experimentation.
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Table 3 Large programs and their models

Tomcat Tomcat+iText Sunflow
(web server) (servlet container)

Program size (LOC) 182810 283143 21987
Number of probes 3178 3926 380
Mean instrumenta-
tion overhead 7.3% 2.4% 5.7%
Number of CFs 11206 9993 209
Total number of
nodes in the model 82 49 42
Simulation
speedup 8-26 37-110 1050

All the experiments with large applications were performed in the hardware
Config I, with a quad-core CPU. Below we briefly describe architecture of our
large-size testing applications and discuss the result of our simulations.

Sunflow 3D renderer. Sunflow is a 3D renderering program for photo-realistic
image synthesis. The program features an extensible object-oriented design that
allows for extending and customizing the ray tracing core [5]. The Sunflow offers
a wide range of features including various types of cameras, surface shaders and
modifiers, light sources and image filters, and various file formats for importing
and exporting data.

Upon the start of the Sunflow the main thread reads a scene specification
from the disk, splits the frame into multiple tiles that correspond to “tasks” in
our model, and stores tile coordinates in the queue. Then the main thread starts
working threads. The pool of working threads reads tile coordinates from the
queue, renders the image tiles, and synthesizes the resulting image.

Given the constant size of the image, the number of working threads and the
number of CPU cores are two main factors that determine the performance of the
Sunflow. The time required to render the image is the main performance metric.

We predicted Sunflow performance with 1,2,3,4,5,6,8,11,12 and 16 working
threads and with 1,2,3 and 4 active CPU cores. Figure 19 compares predicted
and measured rendering times in each of these configurations. The relative error
varies in ε ∈ (0.003,0.097) with the average error across all the configurations
ε = 0.032.

Our framework could accurately predict performance of Sunflow across dif-
ferent hardware configurations. This does not yet translate into an accurate pre-
diction of the program running on a totally different hardware. Differences in
characteristics of CPU, memory, and cache will result in different execution times
for individual CFs. Nevertheless, it opens a path for such a prediction because
CF timing can be estimated by an analytic CPU model (e.g. by applying scaling
coefficients to execution times of CFs) or by using microbenchmarks on the target
architecture.

Apache Tomcat as a web server. Apache Tomcat is a web server and Java
servlet container [6]. Thanks to its reliability, flexibility, and high performance
Tomcat is widely used in industry; more than a half of Fortune 500 companies
reportedly use Tomcat in their business [7]. However, these Tomcat features come
at the cost of the high internal complexity. Tomcat consists of over 200000 lines
of Java code and hundreds of Java classes. Tomcat uses up to 10 different thread
pools to start up and shut down the program, to accept incoming connections,
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Fig. 19 Predicted and measured performance of Sunflow. Good accuracy for configurations
involving under- and over-utilization of resources

to process timeouts, to serve incoming HTTP requests, and for other purposes.
Web applications hosted by the Tomcat can perform synchronization and start
additional threads, further increasing complexity of the system.

We used Tomcat to host about 600000 Wikipedia web pages. In our experi-
ments Tomcat relies on a single blocking queue to pass incoming HTTP requests
to a fixed-size thread pool. The performance of the Tomcat was influenced by the
size of the thread pool and by the the workload intensity (the number of requests
the server receives in a second, req/s). The performance metrics are response time
R and throughput T .

The model of the web server was built using a configuration with workload
intensity 92 requests per second (req/s) and 1 working thread. We predicted per-
formance of Tomcat with the number of working threads ranging from 1 to 10,
and with and workload intensity ranging from 48.3 to 156.2 req/s. During each
run 10000 requests were issued.

The prediction results for R and T are depicted at the Figures 20 and 21
respectively. The relative prediction error ε(T ) ∈ (0.001,0.087) with average error
ε(T ) = 0.0121. In non-saturated configurations throughput is roughly equal to the
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incoming request rate, thus the relative error for saturated configurations is a more
informative accuracy metric: ε(Tsat) = 0.027.

The error for R is ε(R) ∈ (0.003,2.452) and ε(R) = 0.269. Similarly to results
for the Tornado web server, the prediction error for the response time was relatively
high. We investigated this phenomena and concluded that increase in error terms
is attributed to fluctuations of the page cache hit rate k across a configuration
space of Tomcat. According to our measurements, mean k = 0.755 with standard
deviation σ(k) = 0.046. In statistical terms this means that in 95% of cases the true
value of k will vary between (0.663,0.847) across different configurations. These
variations in the page cache hit rate cause proportional variations in the request
processing time by the working threads. However, in saturated configurations,
when the HTTP requests start to accumulate in the queue, even small variations
in the request processing time result in large variations in the response time R.

To verify our assumption about cause of inaccuracies we introduced a 15% arti-
ficial bias in k. This resulted in increasing the relative error to ε(R) ∈ (0.015,3.109)
with ε(R) = 0.882. We believe this experiment demonstrates the difficulties in pre-
dicting the inherently variable disk I/O operations. Moreover, it emphasizes the
importance of precise data collection for accurate performance prediction because
even a small bias in data collection results in a large prediction error.

Our model correctly predicts that the number of working threads has a minor
impact on performance of Tomcat in this setup. This can be attributed to a mixed
behavior in a web server setup Tomcat. 81% of computational resources consumed
during processing the HTTP request is the I/O bandwidth, and 19% is CPU
time. As a result, the single hard drive becomes the bottleneck that prevents
performance from growing significantly as the number of working thread increases.
At the same time, remaining CPU computations are parallelized across four CPU
cores, resulting in small but noticeable performance improvement.

Apache Tomcat as a servlet container. Tomcat is more frequently used as a
servlet container. We used Tomcat to host a web application that reads a random
passage from the King James bible, formats it, and converts into the PDF using
the iText [8] library.

The model of the web server was built using a configuration with workload
intensity 57.30 requests per second (req/s) and 1 working thread. We predicted
performance of Tomcat with number of working threads ranging from 1 o 10 and
workload intensity ranging from 19.67 to 132.68 requests per second. During each
run 10000 requests were issued. The prediction results for R is depicted at the
Figure 22, and results for T are depicted at the Figure 23.

The relative prediction error for response time across all the configurations
ε(R) ∈ (0.000,0.716) with the average error ε(R) = 0.134. The CPU time τCPU

fluctuates less than the demand for I/O bandwidth, which leads to the lower
prediction error in a servlet container setup.

The prediction error for throughput across all configurations ε(T ) ∈ (0.000,0.236),
while the mean error ε(T ) = 0.053. For saturated configurations, ε(T ) ∈ (0.000,0.356)
and ε(Tsat) = 0.099.

The model correctly predicts the workload intensity at which the server sat-
urates. PDF conversion is a CPU-heavy task, thus performance of the server is
bounded by the number and performance of CPU cores. Since there are four CPU
cores available, the actual saturation point depends on the number of threads. It
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Fig. 20 Response time of Tomcat in a web server setup. Small variation in demand for I/O
bandwidth lead to large changes in the response time.

Fig. 21 Throughput of Tomcat in a web server setup. Configurations leading to server satu-
ration are detected accurately.

ranges from 21.4 req/sec for a configuration with 1 thread to 85.5 req/sec for 8
threads.
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Fig. 22 Response time of Tomcat in a servlet container setup. Consistent demand for the
CPU time leads to an accurate prediction.

Fig. 23 Throughput of Tomcat in a servlet container setup.

6 Discussion and Future work

As we experimented with our models, we made some interesting findings about our
approach, discovered its limitations, and laid ground for the future work. Below
we discuss these aspects of our work in detail.
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6.1 Findings

We found that modeling locks and synchronization operations is essential for an
accurate and semantically correct model of the multithreaded system. Locks not
just influence performance of the system. They often form a “skeleton” of the
program, which coordinates work of all the program’s threads. Failure to simulate
these locks would result in a non-functional model of the program.

We learned that building simulation models that can handle a broad range of
multithreaded programs is difficult. In particular, different programs use various
approaches to implement threading, so discovering semantics of thread interaction
can be a hard problem in a general case. However, the analysis of the program
is greatly simplified if that program uses a specific implementation of high-level
locks and queues. Models of such programs can be built automatically.

Proper modeling of hardware is essential for an accurate simulation. This in-
cludes modeling of CPU computations, disk I/O, CPU cache, memory and net-
work. However, it is challenging to construct models of hardware that are both
accurate and fast.

Accurate performance prediction requires precise measures of resource de-
mands for the elements of the program. Small errors in measuring resource de-
mands may lead to large prediction errors. However, obtaining precise measure-
ments of resource demands without introducing a significant overhead is difficult.
Moreover, resource demands can vary in time, leading to decrease in prediction
accuracy.

We found that in order to be fast and easy to understand the resulting model
must be simple and compact. Building compact models requires identifying pro-
gram constructs that do not have significant impact on performance, and excluding
these constructs from the model.

Finally, debugging performance models is difficult. Often the only manifesta-
tion of the bug is the deviation between the predicted and actual performance.
Although we use a simple step-by-step procedure for locating bugs in models,
developing tools and approaches for debugging performance models may be a pre-
requisite for their practical use.

6.2 Limitations

Although our framework is capable of building performance models automatically,
it imposes certain limitations on the programs we can model.

Our high-level models represent computations as task processing. Although
this approach does not cover all possible programs, it allows simulating most pro-
grams of interest for performance purposes. Moreover, our models do not simulate
performance characteristics of individual requests but rather predict average per-
formance of the system for a given workload.

During data collection the program is executed in a single representative con-
figuration, where the transition probabilities δ and CF parameters Π would be
similar to δ and Π of a larger set of configurations. This requires the usage pat-
terns for the program, such as the image resolution in Sunflow or probabilities of
accessing individual web pages in Tomcat, to remain similar across the configura-
tion space. Changing usage patterns may require reconstructing the model.
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Our framework in its present state can build models of only those programs
that implement multithreading using the well-defined synchronization operations.
We do not see it as a major limitation as modern programming frameworks offer
rich libraries of locks, and programmers are encouraged to use these instead of
developing their own implementations of locks [1]. Moreover, semantics of locks
implemented using low-level constructs can be discovered using analysis described
in [57]. However, programs that implement “custom” locks that cannot be assigned
to one of existing lock types (semaphore, barrier, mutex etc), cannot be modeled
at this moment.

Our framework can handle some changes in hardware, such as the different
number of CPU cores. However, this does not yet translate into an accurate pre-
diction of the program running on a totally different hardware. Differences in
characteristics of CPU, memory, and cache will result in different execution times
for individual CFs.

PERSIK simulation framework does not include models of network, RAM, and
CPU cache. This prevents our framework from accurately modeling some aspects of
the system’s performance, such as of memory bus contention, network contention,
and cache coherence. As a result, the modeling accuracy can decrease for certain
workloads and hardware platforms.

Our models do not explicitly simulate calls made by the program to other
systems, such as Web services or SQL databases.

6.3 Future work

We plan to address limitations outlined above and to extend the scope of our ap-
proach, so it could predict performance for a wider range of programs and work-
loads. A special attention should be given to predicting performance of programs
running on different hardware and having a wide variety of usage patterns. Ex-
amples are predicting performance of Sunflow image renderer with different image
sizes, or predicting performance of Tomcat on different hardware. These predic-
tions may require developing new modeling architectures, and new approaches
towards automatic building of these models.

One approach that would allow modeling changes in both usage patterns and
hardware is a hybrid of statistical and simulation models. In a hybrid model the us-
age patterns such as an image size in Sunflow or the number of particles in Moldyn
are described using metrics Xpat. The dependency (δ,Π) = f(Xpat) between the
structure of the execution graph δ and resource demands Π on the one side and the
usage patterns Xpat on the other side would be approximated statistically. The re-
source demands ΠCPU and Πdisk for CFs running on different hardware would be
modeled in a similar manner. For example, the amount of CPU timeΠCPU = τCPU

for a computational CF could be defined as τCPU = f(XCPU , Xcf ), where XCPU

are metrics that describe a CPU (e.g. microarchitecture and clock rate), and Xcf

are metrics that describe the mix of CPU instructions executed by that CF.

Data required to approximate (δ,Π) = f(Xpat) will be collected by running
the program with different usage patterns. Similarly, the dependency τCPU =
f(XCPU , Xcf ) can be approximated using a library of microbenchmarks. Mi-
crobenchmarks that are representative over a variety of CF types will be executed
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on different hardware platforms. Performance of those microbenchmarks will be
measured, providing information for building a variety of models.

Although building the hybrid model would require multiple runs of the pro-
gram, we expect the number of these runs to be significantly smaller than if
the pure statistical model was used [25]. One reason for that is that parameters
XCPU , Xcf and Xpat are likely to be conditionally independent given δ, Π.

We expect that hybrid models would be particularly useful in a cloud setting.
In a cloud environment programs are executed in a variety of configurations, which
naturally provides data to approximate dependencies such as like (δ,Π) = f(Xpat).
Furthermore, cloud providers usually offer a limited variety of hardware, which
simplifies modeling of different hardware configurations.

In a case when multiple runs are undesirable, changes in usage patterns can
be tackled by recollecting δ and Π directly from the running program and updat-
ing the model on-line. This approach allows to account for usage patterns that
were previously unseen. However, it would require developing techniques for low-
overhead program analysis that can be enabled and disabled dynamically during
the program’s execution.

If measuring hardware performance through microbenchmarks is not possible,
then network, memory, and cache operations should be modeled explicitly. Al-
though models for predicting memory and cache performance are known [52] [34],
these models either require data specific to a particular execution of the program or
work significantly slower than the program itself. Developing accurate and robust
models for predicting performance of memory and cache is a challenging area.

Another direction for the future work is adopting PERSIK for modeling dis-
tributed systems. Modern server-side applications are usually distributed. These
programs issue calls to remote applications running on different machines, such as
databases or cache services. As a result, the performance of such program is often
determined by the timing of these calls.

PERSIK models in their current form cannot simulate such distributed sys-
tems. However, they can be extended by introducing another layer in the hierar-
chy of models. This layer will represent the topology of the distributed system,
where nodes represents individual hosts and links between these nodes are the
network connections. The topological layer of the model can be built using INET
[9] or NS3 [10] simulators. The topological layer will predict the performance of
the distributed system at the global scale by modeling delays caused by network
communication between its individual hosts. Subsequently, performance of each
individual host will be simulated using a corresponding PERSIK model.

7 Related work

We divide the related work into two categories: performance modeling and auto-
mated program analysis and model construction.

7.1 Performance modeling of computer programs

At the high level the performance of the system can be represented as a func-
tion y = f(x), where x are metrics describing the configuration and workload of
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the system, and y is a measure of the system’s performance. Existing approaches
to performance modeling can be divided into three classes based on their repre-
sentation of the dependency y = f(x): analytical models, statistical models, and
simulation.

Analytic models explicitly represent the dependency y = f(x) using a set
of equations. Narayanan, Thereska and Ailamaki used analytic model to predict
the dependency between the size of the DBMS cache and its response time R

and throughput T [51]; the reported relative errors are ε(T ) ≤ 0.1 and ε(R) ∈

(0.33...0.68).

Herodotou and Babu developed a set of analytical performance models to pre-
dict the running time of MapReduce tasks [36]. Authors reconstruct the profile
of the task using dynamic analysis and pass the profile to the “what-if” predic-
tion engine. The prediction engine relies on simulation and analytical models to
evaluate performance of the task for the given configuration.

Chen, John and Kaseridis used such model to predict utilization of the L2 cache
and memory bandwidth for a given program on a multiprocessor system. Their
model report average error in (0.09 to 0.13). Bennani and Menasce [19] developed
the analytical model of a transaction processing system to detect configurations
resulting in its high performance. The model was used as a central element of
the autonomic data center Strebelow at al. employed analytic models to study
performance of certain multithreaded design patterns [65].

Analytical models are compact and expressive; however they require knowledge
of system’s functionality and a substantial mathematical skill to formalize this
functionality using a set of equations. In particular, complex behavior is difficult to
express with the analytical model. Moreover, analytically modeling even a simple
multithreaded system is challenging [48]. Nevertheless, analytical models can be
used as a part of the larger model to predict performance for some of the system’s
components. For example, Thereska and Narayanan [70] uses analytical models as
a part of the larger model to simulate individual components of the distributed
system, such as network and disk.

Statistical models tend to overcome some drawbacks of analytical models. They
do not explicitly formulate the function y = f(x). Instead, the system is executed
in a number of configurations x1, ..., xn ∈ X, where performance measurements
y1, ..., yn ∈ Y are collected. Then a statistical method is used to approximate the
dependency Y = f(X).

Statistical models are a popular approach to predicting the performance of
SQL databases. Ganapathi et al used a statistical model to predict the running
time of SQL queries [32]. Authors construct the x vector from the DBMS query
plan and use a k-NN technique to predict performance for a given query. The
correlation between the actual and predicted execution times R2 ∈ (0.55 . . . 0.95) .
Authors further extend this technique to predict the running time of Hadoop tasks
[31]. The x vector included metrics such as the number of bytes written during
different phases of the task. This study reports correlation R2 ∈ (0.87 . . . 0.93)

Akdere et al used a similar approach to predict performance of the SQL queries
running in isolation [12]. The x vector can be built from individual operators of
SQL query, which allows to train models on-line. Authors developed an iterative
procedure to select relevant queries for training. The resulting model have relative
error in a range of (0.05 . . . 0.1). Finally, Duggan et al predict individual running
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time of a mix of concurrently running queries [27] using a multivariate linear
regression. The resulting model has accuracy ε ∈ (0.14 . . . 0.27).

Apart for predicting performance of queries, statistical models are used to pre-
dict performance for a wide range of systems. Happe et al employed a non-linear
regression for predicting dependency between the response time in the message-
passing middleware software and the size of the message [35]. Lee et al used linear
regression and neural networks to predict the running time of scientific computing
applications on a large grid system [47]. Their feature vector x included both pa-
rameters of the task and the configuration of the program. The relative prediction
error varied in ε ∈ (0.01, ..., 0.25).

Although statistical models do not require knowledge of system’s internals,
they have limitations. Building statistical models require running the system in
many configurations, which is time-consuming and costly. Any change to the soft-
ware or hardware of the system requires re-training the whole model [68]. Finally,
the accuracy of a statistical model strongly depends on the representativeness
of the training dataset. Cheung et al demonstrated that although his statistical
model based on a non-linear regression has good accuracy in extrapolating the
performance of the system (predicting performance within the ranges of configu-
ration parameters used for model training), the interpolation accuracy (predicting
performance for a point outside the training dataset) can be very low [24].

There are attempts to alleviate these shortcomings. Statistical models can be
built when large amounts of data are already available, e.g. from the prior runs
in the cloud environment or from a large user base [69]. Sophisticated program
analysis and machine learning techniques can help reducing the amount of training
data. In particular, Chun et al. [25] use internal program features such as values
of variables, loop and branch counts as metrics x, which allows to reduce the size
of training set by 50%. Westermann et al developed a methodology for iterative
selection of points into the training set [73]. Their approach allows to reduce the
size of the set, although both error terms and the number of points strongly depend
on the selection algorithm

Finally, statistical models can be successfully employed for those scenarios
when the training dataset can be collected relatively quickly, e.g. by benchmarking.
Thus statistical models can become a feasible approach for modeling individual
components of the large system, such as disk I/O subsystem. Huang et. al. used
CART trees to predict performance of the SSD disk with ε ∈ (0.17 . . . 0.25) [40].
Wang et al built a regression tree model of a traditional hard drive with ε ∈

(0.17 . . . 0.38) [72]. Anderson used k-NN algorithm to predict running time of disk
I/O operations; the accuracy of the model is ε ∈ (0.02 . . . 0.2) [14]. The size of
the request, its sequentiality, and length of the I/O sheduler queue are used as
predictor X

Simulation models, such as queuing networks, Petri nets, and their extensions
mimic the behavior and/or structure of the system. These models proved to be
the most flexible and capable techniques for modeling complex systems.

Although some of these models can be solved analytically, simulation remains
the main tool for predicting performance using simulation models. Simulation
can represent complex behavior of the system. Building a simulation model does
not require running the system in many configurations. However, constructing
simulation models require knowledge of the components of the system and their
properties.
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A variety of formal methods for building simulations have been developed.
The first such methodology was queuing networks [46]. In particular, van der Mei
et. al. used queuing networks to model impact of networking parameters at the
performance of the web server [71]. However, queuing networks in their classical
form can be too restrictive for simulating complex systems. As a result, a number
of extensions have been developed.

Layered queuing networks (LQN) extend traditional queuing networks by adding
the hierarchy of model components [75] [62]. In a LQN the queue and the server
are united in a single node. The nodes can represent different computers (e.g. the
client and the server), software components of the system, as well as the hardware
components, such as disk and CPU. The role of the node determines its position
within the network. In particular, nodes representing hardware components are
placed at the lowest level of the network.

LQNs can be solved analytically and are particularly useful for simulation of
distributed systems. Van Hoecke et al relied on the LQN to build models of simple
CORBA applications and web services [38] with ε ∈ (0.02 . . . 0.05). Rolia et al use
LQN to predict performance of the CPU-bound ERP application with accuracy
ε = 0.15, although their system did not carry out any I/O or synchronization
activities [60]. However, analytic modeling of complex threading behavior with
LQN [30] may be challenging.

Similarly, Palladio Component Models (PCM) is a novel approach to simu-
lation, where the system is divided into a number of interconnected components
[18].

Another well-known simulation methodology is Petri nets and their extensions.
One of the most widely used extensions is the colored Petri nets [44] that allow
assigning values (denoted as colors) to the tokens. Roy et al used colored Petri nets
to model performance of a simple multithreaded scientific computing application
[63].

In [54] Colored Petri Net (CPN) predicted performance of a parallel file system
with ε ∈ (0.2 . . . 0.4), and in [63] CPN was used to simulating the complex locking
constructs in a program. Nguen and Apon [53] used colored Petri nets to build the
model of a Linux Ext3 file system. Their implementation simulates read and write
operations, system’s page cache, and the filesystem journal. The model predict the
average throughput of the system with ε ∈ (0.12 . . . 0.34). This study was extended
[54] to allow simulation of the parallel file system with ε ∈ (0.2 . . . 0.4).

Queuing Petri Nets (QPN) extend the Colored Petri nets by adding queuing
and timing aspects into the model [17]. Kounev, Spinner, and Meier used Queuing
Petri Nets to simulate distributed component-based and event-based systems [43].

In addition to the models that use some formal method or its extension, certain
approaches rely on a combination of different formal methods or propose their own
modeling paradigms.

For example, IRONModel by Thereska and Ganger [70] relies on a queuing
network to simulate the flow of the request through a distributed system, and
uses analytical models to simulate performance of certain components, such as
the network and hard drive. PACE framework by Jarvis et al employs hierarchical
approach for building models of MPI appilcations [42]. In PACE the high-level
model represents the program as a whole, the middle-level models represent code
templates within the program, and lower-level models represent underlying hard-
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ware. PACE was used to predict the execution time of the nreg medical image
processing application with the ε <= 0.1 [42].

Simulation models are more flexible then analytical or statistical models. As a
result, CPN and other methodologies were successful in simulating some aspects of
multithreaded applications. However, we are not aware of any framework capable
of simulating both locks and simultaneous hardware usage. We address this by
developing performance models that can simulate both complex synchronization
operations and simultaneous usage of hardware. This allows our model to handle
a larger variety of multithreaded programs.

7.2 Automatic analysis and performance modeling of computer programs

Simulation models for performance prediciton are more flexible than analytical or
statistical models. Their construction is significantly more difficult though, mostly
because they require extensive information on the system’s internals and func-
tionality. This information can be retrieved manually, as in [75], [71], [38], [76].
However, the manual analysis of the software system is time-consuming and error-
prone. Furthermore, any change to the system will require recollecting necessary
information and rebuilding the model or some of its parts. These shortcomings of
the manual model building are apparent. Thus the problem of automated anal-
ysis of multithreaded programs and building their performance models gained a
significant attention in the research community.

Automatic construction of simulation models requires understanding the struc-
ture of the program, its semantics, and resource demands. This can be done using
the thorough and sophisticated analysis of the program. Below we will review the
main directions towards automatic program analysis and their application to the
automatic construction of performance models.

Program analysis have been extensively used to understand structure of mul-
tithreaded programs. In particular, Reiss proposed CHET - a tool for extracting
specifications from the parallel program itself and represnnting them in a form of
automata [58]. By further extending work in this area, Reiss produced a system
to identify locks (synchronization mechanisms) in a multithreaded program and
to determine their types [57]. Author uses program instrumentation to collect in-
formation about interactions of threads in a program and then relies on heuristics
to assign each lock into a corresponding category, be it a semaphore, a read-write
lock, a mutex etc.

Similarly, Burnim and Sen discovers deterministic specification in the multi-
threaded programs [23]. Authors define pre- and post-conditions for the block of
a program’s code that must hold for all the inputs in the multithreaded program.
Finally, Barham et al develop Magpie - a tool for understanding the characteristics
of the system’s workload [15]. Magpie relies on the user-supplied schema to infer
the flow of request the from the sequence of API calls.

Program analysis has been used extensively to collect detailed information
about the performance of the program. Teng et al developed THOR - a tool for
performance analysis of parallel Java applications [67]. THOR relies on a sophis-
ticated combination of kernel and user-mode instrumentations in order to to un-
derstand and visualize relations between the Java threads and locks.
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Coppa, Demetrescu, and Finocchi present the idea of input-sensitive profiling
[26]. Their profiler automatically measures how the input size of the program’s
function affects the running time of that function. Similarly, Zaparanuks and
Hauswirth develop a tool that automatically deduce the cost of the algorithm
based on the size of the supplied data structures [78]. Authors rely on the combi-
nation of static and dynamic analyses to produce a trace of the program, and then
approximate a dependency between the input size and the number of iterations
by the program. A similar approach was taken by Goldsmith et al to measure the
computational complexity of the application [33].

Stack sampling has become a popular technique to reduce the overhead of
dynamic analysis. Tallent and Mellor-Crummey use stack sampling to identify
parallel idleness and parallel overhead in the multithreaded program [66]. Their
work allows to discover areas of the code that contribute to non-linear performance
characteristics of the program. Mitchell and Sweeney applied a similar approach
towards predicting performance of multithreaded programs [49].

Program analysis techniques similar to ones described above were used to au-
tomatically construct performance models. Hrischuk et al conducted an initial
study on automatic generation of LQN models from the system’s trace [39]. The
Although this information allows generating the skeleton of the LQN model auto-
matically, it is not clear if the instrumentation or parameterization of the model
is automated as well.

Similarly, Israr et al [41] automatically build LQN models of message-passing
programs from their traces. In their work, authors concentrate on semantical cor-
rectness of the resulting model. Woodside et al [74] propose building LQN models
using information about the system available during its design phase. Authors im-
plement a prototype tool capable of generating the LQN model and extracting its
parameters, such as resource demand. Authors verify their approach by building
the model of the document distribution service application. The resulting model
have accuracy ε = 0.3.

Brosig, Huber, and Kounev [20] automatically generate the Palladio Compo-
nent Model (PCM) of the distributed EJB application from its traces. Authors
simulated dependency between the intensity of the workload and the performance
of the SPECj Enterprise2010 Java benchmark. Their predictions of CPU utiliza-
tion and the response time are accurate within ε ∈ (0.1 . . . 0.3).

Nudd et al proposed a PACE framework [55] to automate building performance
models of MPI/PVM message-passing programs. The skeletons of the PACE mo-
dels are built by the means of static code analysis, while model parameters can be
specified either manually or by benchmarking.

Xu and Subhlok [77] automatically build models of MPI applications from their
traces. Normally accuracy of their models is (ε ≤ 0.15). However the accuracy
drops to ε ∈ (0.3 . . . 0.5) in configurations where nodes of the system are involved
in synchronization operations.

Resource demands for the program are usually discovered by instrumenting
the program and measuring the resource demands of its individual components
[15]. If direct measurement is not possible, the resource demands can be inferred.
In particular, Rolia et al rely on a least square approach to infer resource demand
from higher-level measurements such as execution count [61]. Similarly, Brosig et
al rely on a Service Demand Law [21] to infer resource demand for PCM-based
models.
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Despite a great variety in techniques for automated modeling of computer pro-
grams, they share one common feature: most of them are designed to model dis-
tributed message-based systems. These techniques do not capture complex thread
interaction patterns and resource contention in the multithreaded systems. Con-
sequently, they cannot generate accurate performance models of multithreaded
programs.

We address this limitation by proposing novel static and dynamic analyses for
building performance models of multithreaded programs. Our analyses automati-
cally discover resource demands and semantics of thread interaction and translate
this information into a model of the multithreaded system.

8 Summary

In this paper we presented a methodology for automatic modeling of complex
multithreaded programs. We developed hierarchical models, where different model
tiers simulate different factors that affect performance of the program, and interac-
tion between the tiers simulates joint influence of these factors on the performance.
This unique architecture allows our models to accurately predict performance of
a wide range of multithreaded programs. To implement our models we have de-
veloped a PERSIK framework – a discrete-event simulator written using a C++
language.

Building a simulation model of an arbitrary multithreaded program is hard.
However, we discovered that analysis of a program is greatly simplified if that pro-
gram relies on well-defined implementation of high-level locks and queues. Based
on this finding we developed a four-stage methodology to generate performance
models automatically. Our methodology relies on a combination of a static and dy-
namic analyses to discover threads and thread pools in the program, interactions
betweeh these threads, operations performed by each thread, and their resource
demands. The discovered information is automatically translated into the PERSIK
model of the multithreaded program.

We verified our approach by building models of various Java applications, in-
cluding large industrial programs such as a 3D renderer and a web server. Our
models have average prediction error in (0.032 . . . 0.134) for CPU-intense and
(0.262,0.269) for I/O-intense workloads, which is comparable to results reported
by other studies [31] [27][40] [72] [76][54]. At the same time, our framework builds
program models automatically and does not require running the program in many
configurations. Source code of our framework and generated models is available at
[11].

Our next steps will be improving the flexibility of our framework, as discussed
in Section 6. These improvements will allow predicting performance for a wider
range of applications and workloads.
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