
Tool Demonstration: The Visualizations of Code Bubbles
Steven P. Reiss and Alexander Tarvo
Department of Computer Science

Brown University
Providence, RI. 02912

{spr,alexta}@cs.brown.edu

Abstract—Code Bubbles is an integrated development
environment that concentrates on the user experience. The
environment is very visual and includes a number of different
visualizations, both static and dynamic. We will demonstrate
the environment and the various visualizations on a realistic
scenario based on our current work.

I. CODE BUBBLES

Code Bubbles is an integrated development environ-
ment for Java built on the notion of working sets rather than
files [1,2]. Code Bubbles lets the user create relevant
working sets composed on code fragments, typically meth-
ods, small classes, notes, documentation, etc. Each of these
is displayed in a separate bubble or lightweight window.
The user can rearrange the bubbles as needed to provide a
logical context for the particular maintenance or develop-
ment task they are currently working on.

Code Bubbles provides a wide range of features to
support this style of development. To support interruptions
and multiple tasks, it provides a large overview space in
which the user can embed multiple working sets. Moreover,
working sets can be saved and restored for later use. To
support working set creation, the environment provides a
number of navigation aids, making it easy to bring up a
called method, all uses of a method or variable, or the type
of an item; and easy to browse or search for elements by
name or name fragment.

Code Bubbles also supports collaborative develop-
ment, allowing users to share working sets and to have mul-
tiple users working simultaneously on the same code base.
It supports cloud-based development by allowing the envi-
ronment back end to run in the cloud while the front end
runs on the user’s machine [5].

Code Bubbles provides a range of debugging features.
In addition to the normal notions of breakpoints and step-
ping, Code Bubbles lets the user see multiple debugging
sessions in parallel (including previous ones), and provides
bubbles for each stack level.

II. CODE BUBBLES VISUALIZATIONS

Code Bubbles is an inherently visual environment. The
basic environment provides a visualization of the user’s
code though code bubbles that can be organized in various
ways, that are linked to each other, and that are highlighted
by package and class.

Since the initial development and deployment of Code
Bubbles, we have worked on a variety of additional visual-
izations that have been designed to enhance the program-

ming experience. These include visualizations that provide
context, visualizations that show static software structures,
visualizations of file histories, and visualizations that
support debugging and understanding the dynamics of the
program.

III. USING CODE BUBBLES

We have been using Code Bubbles for its own develop-
ment as well as the development of a number of other
projects. Recently, for example, we have been working on
extending the S6 search engine [4] to handle searching for
user interfaces.

Figure 1 shows Code Bubbles as we are developing
code for S6. This figure shows the basic visualization of
code including code bubbles, links between the bubbles,
highlighting by package, and a compact representation of a
file that includes key comments to provide context for that
file.

In the middle right of the figure is a visualization of the
context of the current working set. This view shows a
SeeSoft [3] like view that indicates what files are repre-
sented in the working set, showing the bubbles from those
files in yellow and the currently focused bubble in red.
Panning over the view will show the actual code.

In the upper right of the figure is a visualization of the
static structure of the software system. Here we have
chosen to display the structure of the particular package we
are working on. The visualization is hierarchical and
designed to be used with large systems. Different color
nodes represent packages, classes, interfaces, enumerations,
exceptions, and methods. The user can choose which types
of nodes to display and can dynamically expand and col-
lapse nodes. Arcs represent the different relationships
between nodes. Again, the user can determine which types
of relationships should be displayed. The graph can also be
localized to the subgraph induced by a particular node. This
visualization is designed to address specific questions about
software structure that might not be obvious from the code.

Complex systems such as S6 use version management
systems and record their history. Code Bubbles provides
access to such systems. For example, Figure 2 shows how
two Code Bubbles versioning features. The file history
view on the left illustrates the history of each line of the
selected file. Time runs from right to left, with the current
code being displayed on the left as a SeeSoft-style view
with tool tips to show the actual code. Times where the file
was changed are shown with a saturated color. Color repre-
sents the different authors of this file. The graph at the top

illustrates the complete version history of the file, while the
view at the bottom show the different authors. Another
feature illustrated in this figures is that the system can
determine what other programmers are working on in terms
of the project and can highlight any changed lines with
appropriate annotations.

Program development requires support both for static
code development and for debugging. Hence Code Bubbles
provides an appropriate visual environment for debugging.
An example of debugging part of S6 can be seen in
Figure 3. This view illustrates how Code Bubbles lays out
the current context using a combination of stack and code
bubbles. It also shows a visualization of the history of the
debugging session based on UML sequence diagrams in the
lower left. This view is interactive in that the user can click
on it to see the code and values at that point in the execution
history. The figure also contains a performance visualiza-
tion, here represented as a sortable table, that is updated
dynamically as the program runs.

Code Bubbles provides additional debugging visualiza-
tions as well. On the left side of Figure 4 is the Java/Swing
interactor. This tool can show the call stack for the instanti-
ation of each widget in the user’s application and can show
how each pixel of the output was drawn.

The right side of Figure 4 shows another debugging
visualization. This view, which is generated completely
automatically and is updated dynamically as the program
runs, shows what each thread is working on over time. It
automatically determines the relevant transactions and tasks
in the program through a combination of static and dynamic
analysis. In the visualization, time runs along the X-axis,
and each thread is represented as a row. The transaction and
task the thread is working on are shown as a pipe within
that row, color coded by the task and transaction type. For
example, the visualization in the figure shows an example
of S6 in action. The red on the left indicates 32 threads
obtaining results from the underlying search engine. The
green that follows is the transformation phase, run in 6
threads. Finally, the orange on the right is the testing phase,
again run in 6 threads. One can see immediately from the
diagram that testing is the most expensive part of the pro-
cess.

Availability. Code Bubbles is available both as open
source through SourceForge, and as a runnable and auto-
matically updated binary. For more information see http://
www.cs.brown.edu/people/spr/codebubbles.

FIGURE 1. Code Bubbles being used for code development. The bubbles (views) on the left represent code fragments, either methods or classes. Links
between the methods show relationships that were used to bring up the additional bubbles. The bubble at the bottom left lists the errors and warnings for

the code and is updated as the user types. The bar at the top shows the overall context where the user can set up multiple working sets as needed. The
three bubbles on the right show some of the static visualizations provided by the system. The top view shows the static structure of the package we are

working on. The middle view shows the files that are visible in bubbles, highlighting the bubbled areas and the current bubble. The bottom view shows a
summary of a particular file including comments.

FIGURE 2. The Code Bubble visualization showing file history. The bubble on the left shows the history of each line of a source file, colored by author.

FIGURE 3. Code Bubbles debugging view include different code-stack views, a debugging history view and a performance visualization.

Acknowledgements. This work was done with support
from the National Science Foundation through grants CCR-
1012056 and support from Microsoft and Google.

IV. REFERENCES

1. Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola, Jr., “Code bubbles: rethinking the user interface
paradigm of integrated development environments,” ACM/IEEE
International Conference on Software Engineering 2010, pp. 455-464
(2010).

2. Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola, Jr., “Code bubbles: a working set-based interface
for code understanding and maintenance,” Proceedings SIGCHI
Conference on Human Factors in Computing Systems, pp. 2503-2512
(2010).

3. Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, Jr., “Seesoft -
a tool for visualizing software,” AT&T Bell Laboratories (1991).

4. Steven P. Reiss, “Semantics-based code search,” International
Conference on Software Engineering 2009, pp. 243-253 (May 2009).

5. Steven P. Reiss, “Plugging in and into Code Bubbles,” Proceedings
Workshop on Developing Tools as Plug-ins 2012, pp. 55-60 (June 2012).

FIGURE 4. The Code Bubbles Swing interactor, shown on the right with an application interface on top, can display the dynamic call stack for the cre-
ation of each widget and the drawing operations for any particular pixel of the program’s output. The Code Bubbles Thread-Transaction-Task visualiza-
tion of S6 running on a simple example is shown on the right. This view shows the different phases of the program and how they are divided among the

32 threads. Color indicates the different tasks at each time.

