
Defining Software Visualizations Dynamically
Steven P. Reiss

Department of Computer Science
Brown University

Providence, RI 02912-1910
(401)-863-7641, FAX: (401)-863-7657

spr@cs.brown.edu

ABSTRACT

In this paper we describe a system that allows the user to
rapidly construct software visualizations over a variety of
data sources for software understanding. The system pro-
vides the user with a visual front end that supports the defi-
nition of queries over multiple data sources without
knowledge of the structure or contents of the sources and
with a variety of back end visualizations. It produces a
high-quality, easy-to-define software visualization that can
address specific problems quickly and efficiently.

KEYWORDS

software visualization

1 BACKGROUND AND MOTIVATION

Software Visualization is the process of providing visual
representations of a program and its execution to the pro-
grammer. Because software developers typically draw dia-
grams to describe and help others understand how their
software works, the classical motivation for software visu-
alization has been that it is an aid to software understand-
ing. Software understanding is the task of helping a
programmer to answer questions about the software during
design, maintenance or development. It is a key to software
development since it involves the ability to answer the spe-
cific questions that tend to arise in these phases. For exam-
ple, a developer might want to know why a particular
function is called so often or how a particular situation
involving timing constraints could arise or what needs to be
modified to add a parameter to a given function. For a
variety of reasons, software visualization has not fulfilled
its promise for software understanding. In this paper we
provide a brief analysis of these reasons and describe a new
visualization system, Cacti, that is designed to be used for
software understanding.

1.1 Software Visualization Results

Software visualization has been quite beneficial as an aid to
navigation. Our studies [14] and reports from FIELD users
demonstrated that this use was by far the most important
application of the various diagrams that FIELD provided.
Moreover, this lesson has been taken to heart by environ-
ments such as Microsoft’s Visual C++ where the only visu-
alizations that are provided are small hierarchical displays
of file contents or the class graph shown almost exclusively
for navigation purposes.

Specific software visualizations have also been quite suc-
cessful in addressing some explicit problems. The FIELD
memory visualization has been used effectively for finding
memory leaks and understanding anomalous program
behavior. The various performance visualizations provide a
more compact and easier to understand display of perfor-
mance information and are widely used for this purpose.
This is especially true in the more complex domain or par-
allel performance where textual displays and listing have
problems conveying the time-dependence of the relevant
information.

Software visualization, on the other hand, has not been
widely used for understanding. The results of our study
showed little if any effect on software understanding from
using visual tools. Similar experiences and the fact that
these tools, while practical, are not widely used and have
not been widely adopted, show the same thing. Our concern
in renewing our efforts in software visualization was to
understand why previous efforts have failed and to see
whether the roadblocks to such success could be addressed.

Our analysis has identified three reasons why software visu-
alizations have not succeeded for software understanding.
The first problem is that today’s visualizations do not
address the specific questions that are inherent to software
understanding, i.e. they can not display the information that
is relevant to the question at hand and discard the remaining
information. The second problem is that current visualiza-
tion techniques are not capable of displaying the large
amount of information or complex mutli-dimensional rela-
tionships that are needed for software understanding. The
third problem is that today’s software visualizations are too
difficult to set up, requiring extra work on the part of the
programmer to generate data for any visualization and

demanding a significant amount of programming to imple-
ment a custom visualization.

1.2 Overview of our Approach

To create a practical approach to software visualization we
need to deal with the three problems cited above. The Cacti
system we are developing, and the Desert environment [23]
it is a part of, attempt to accomplish this by 1) providing a
range of automatic and inexpensive data collection tech-
niques, 2) offering a range of back-end visualization meth-
ods, and 3) providing the facilities to allow the user to
define high-quality visualizations quickly and easily. While
the first two of these techniques are covered elsewhere, the
third is the primary topic of this paper.

The first component of our solution is to gather the infor-
mation to visualize using automatic and inexpensive data
collection techniques. We achieve this through a variety of
techniques, most of which have been implemented in our
previous environment, FIELD, in our current programming
environment, Desert, or in an experimental project, AARD.

Most compilers today will generate cross reference infor-
mation. For example, Visual C++ generates *.bsc files
while Sun’s compilers generate source browser files. Our
approach is to piggyback on the compilers by using these
files with our own conversion tools running in background
to translate the resultant data into a common format and
extract more detailed semantic information. This informa-
tion is augmented by fast scanners included in Desert to
extract basic information not available from the compiler
output. These scanners identify logical units of the source
files, identify the top level components in files that are not
ready to compile (i.e. while files are being edited or cre-
ated), and handle other software artifacts such as object
design diagrams or user interface definition files.

Access to this information is provided by a set of back-
ground database processes that automatically update as the
underlying files change [25]. These processes provide
shared databases for common projects and local databases
for single-user projects. They offer an extended SQL-based
interface to applications such as a visualization engine. The
underlying databases are viewed as relational.

The FIELD environment provided additional data stores for
program information. The formserver back end used
various versions of the UNIX make and rcs tools to deter-
mine file dependencies and provided a queryable interface
to this information. The profserver back end used different
UNIX performance evaluation tools to gather performance
information about a binary and offered a simple interface to
return this information to other tools. The symtblserver
back end reads the symbol table from an executable file and
allows queries of the relevant information. All these run
when necessary without user intervention.

We have developed other data collection tools as part of the
AARD project. These tools are based on dynamic modifica-
tions to a running binary to gather run time information
similar to that done by MIPS’ Pixie, Purify [8], and others
[10,11]. These tools have been used to implement an
instruction count profiling package, fast call tracing, heap
utilization tracing, and full memory tracing. We are cur-
rently in the process of organizing these tools so that they
will provide a queryable interface to the gathered data that
can be used for visualization.

A practical visualization facility must provide a wide range
of visualization strategies. This allows an appropriate strat-
egy to be used for each specific visualization to maximize
the amount of information presented and to highlight the
important relationships. Our previous experience with soft-
ware visualization indicated that, especially for large visu-
alizations, abstract representations such as those provided
by Seesoft or the performance visualizations of AARD
provide more information in a limited space than do graphs.
The experiences of the Xerox information visualizer and
our own experiments with 3D visualization have demon-
strated that using the third dimension can increase the
amount of information that can be presented effectively by
about a factor of ten. Because the field of interactive infor-
mation visualization is quite young, new visualization tech-
niques are continually being developed. It is important that
any practical software visualization system offer an extensi-
ble variety of two and three-dimensional visualizations
strategies.

At the same time, the visualization back end must provide
powerful techniques for browsing over the resultant visual-
ization. The purpose of the overall visualization is to
provide an overview of the data. The user needs to use this
overview to understand relationships and then to concen-
trate on particular items of interest. Browsing here should
be done using implicit hierarchies, user selections, naming
conventions, and any other techniques that are available.
Providing high-quality browsing facilities also eases the
burden on the user when defining the visualization since it
will be easier to specify an approximation to the desired
information and then to use the browsing capabilities to
narrow the focus once the visualization is available.

Our previous visualization work, with Garden [19], FIELD,
and our more recent three-dimensional efforts, Valley [22],
provide a framework that accomplishes both of these tasks.
The more recent work provides an extensible framework
that allows the easy incorporation of a wide variety of visu-
alization strategies. We have currently integrated about ten
different strategies and are able to add a new strategy with a
day or two’s effort. Moreover, these facilities provide a
variety of browsing techniques that utilize multiple hierar-
chies, naming, user selection, and implicit and explicit rela-
tionships. We are using an updated version of Valley as the
back end for the Cacti visualization system described here.

Once we have a variety of information available for visual-
ization and a broad range of visualization strategies that can
be used for realizing visualizations, the key to producing a
practical software visualization environment is to provide a
powerful front end that allows the user to quickly define the
appropriate visualization for the task at hand. To be suc-
cessful this front end must:

• Provide access to all data sources. The real power of
visualization comes to play when multiple data sources,
e.g. performance data and the underlying program struc-
ture, can be integrated in a seamless manner. The front
end should allow the user to select from and integrate
data from the different sources in a unified manner.

• Allow simple selection of the data to visualize. The
selection of data should not require the user to under-
stand the format or the source of the data. In particular,
the user should not be aware if the data is stored as a
straight file or in a database, and, if it is a database, the
user should not need to know the schema of that data-
base.

• Utilize a straightforward query language. While the
problem of selecting the data is essentially that of defin-
ing a query, the user should not be forced to construct
queries in a non-intuitive language. Rather the query
interface should be as simple and intuitive (and visual)
as possible.

• Allow easy selection of the visualization strategy. Once
the data to be visualized is defined, it should be simple
for the user to choose between the different visualization
strategies and construct an appropriate visualization of
that data.

The rest of this paper describes the Cacti software visual-
ization system. In developing Cacti we attempted to meet
the above criteria by developing a front and back end that
offered the user a variety of data sources, a very simple
query interface, and flexible visualization strategies. We
begin in the next section by describing our visualization
model based on objects, relationships, and parameterized
visualization strategies. This is followed by detailed discus-
sions of how the user can define objects using the Cacti
interface and how the visualization is selected. We conclude
with a brief discussion of the implementation and our expe-
riences with it.

2 OUR APPROACH

2.1 An Example

Digital Equipment Corporation had a problem with
understanding C++ programs. Inefficiency and potential
bugs are introduced in such programs when the compiler
creates class temporaries for call parameters or within an
expression. They wanted a tool that could find all instances
of such temporaries over a large system and allow the user
to browse over the result to find code fragments that should
be changed.

Rather than creating a separate tool, we can define an
appropriate visualization using Cacti. A temporary can be
identified by the existence of a constructor call and a
destructor call for the same class at the same line in some
source file. We use Cacti to create two classes, one to repre-
sent constructor calls and one to represent destructor calls.
Figure 1 shows the first step in this process, with the Con-

structorCall class of objects defined. This was built by
first selecting new class and then choosing the file name, to
name, and line number from the set of known fields dis-
played in a dialog window, then defining the class field as
a computed field based on the ToName, and restricting the
ToName field to be a constructor name. The set of known
fields is the union of data fields from all available data
sources. Note that the user does not need to know the struc-
ture of this data or its form in order to use the system.

The second step in creating the visualization is to create
a similar class for destructors, repeating the above opera-
tions but this time restricting the ToName field to be a
destructor name. After this is done, the two classes are
related using a reference field as shown in Figure 2. Refer-
ence fields provide a way of relating information in one
class to that of another. In this case, we specify that a con-
structor must be found with a matching file name, line
number, and class name or the corresponding destructor call
entry should be deleted. Here we have also designated the
ConstructorCall class as passive so that only the
remaining destructor calls, those that reflect temporaries,
will be display.

The next step is to request that this data be visualized.
The user does this by clicking on the Visualize button. At

FIGURE 1. A view of cacti showing the definition of a
class of objects corresponding to constructor calls
within a system.

this point, Cacti uses a variety of built-in mappings and
heuristics to determine how to map the class specification
given by the user into a set of queries on the underlying
databases. If the result cannot be determined or if it is
ambiguous, the user is asked for clarifications. Otherwise,
Cacti looks through the set of available visualizations and
determines which of these might be appropriate for the
given set of objects. If more than one visualization is appro-
priate, Cacti asks the user to select the desired visualization
style. In this case, we choose a FileMap style that provides
a mapping of information to source files and works over a
large domain.

At this point, Cacti puts up the dialog box shown in
Figure 3 to allow the user to specify parameters for the
visualization and the mapping from fields to visualization
information. In this case we have specified that the back-
drop color be white and that the remaining parameters be
assigned default values and presented to the user as dynam-
ically settable options as part of the visualization. More-
over, we have specified which fields of the
DestructorCall class should be viewed as containing the
file name, line number, and data statistic that is required by
a FileMap visualization. In this case, we specified that the
statistic should be the class name.

Once we accept these parameters, Cacti runs the visual-
ization engine Mirage with a data file describing how to get
the appropriate data and how to display the result. This data
file can be saved to allow the same visualization to be
applied to different systems or at different times without
having to rebuild the description in Cacti. Mirage contacts
the necessary databases, extracts and combines the data

from possibly multiple sources, and then uses the underly-
ing visualization engine to put up a display.

The display corresponding to this example can be seen
in Figure 4. The visualization displays each file as a row
split into buckets for the different lines. In this case,
because there are a large number of files, multiple files are
shown in each row. An instance of a temporary is shown as
a box on top of the file displays. If multiple instances occur
within the same bucket, these are stacked up on top of each
other in such a way that a top-down view would show all

FIGURE 2. The complete description of the visualization
of class temporaries.

FIGURE 3. Cacti’s dialog box for defining the visualiza-
tion of class temporaries.

FIGURE 4. The resultant visualization of class temporaries
in the Desert environment.

the different colors within a bucket. The statistic field is
used to determine color. Mirage automatically determines
that the value specified in this case, the class name, is a
string, and maps this into integer values for the visualiza-
tion which then use the values to determine the color of the
different nodes. Thus each class for which temporaries are
created is given a different color. The relative preponder-
ance of one color indicated a large number of temporaries
of that class type. This is particularly useful in this case
since temporaries of some classes are benign which those
of others indicate real or potential problems. By simply
looking at what colors correspond to what classes, the user
can quickly identify where the actual problems might be.

2.2 The Visualization Model

While there are a variety of designs that could be used for
general purpose software visualization, we have chosen a
strategy that separates the definition of what should be visu-
alized from how it should be visualized. This has allowed
us to deal with visualization issues, i.e. different visualiza-
tion strategies, browsing techniques, and graphical support,
independently of the issues of what data should be visual-
ized.

Our visualization back end assumes that the data to be visu-
alized has been organized as sets of objects and relation-
ships. Objects are viewed as collections of fields;
relationships consist of connections that relate two objects.
The visualization engine maps the objects and relationships
into corresponding graphical objects, components and con-
straints based on a visualization specification that describes
the type of visualization, the types of objects in that visual-
ization, and the mapping from user objects to visualization
objects. The relationships can be used to construct graphi-
cal objects (such as arcs) and are used to define hierarchies
for browsing. In addition, each visualization strategy is
parameterized. The parameter values can either be pre-
defined or can be set dynamically by the user to affect the
visual presentation. This is described in more detail in [22].

Given this model for the visualization back end, the func-
tion of the front end is two-fold: to generate the sets of
objects and relationships and to choose the visualization
strategy to be used along with its various parameter settings
and the mapping from objects to visualizations.

Objects for visualization need to be built from a variety of
data sources in a standard way. Relationships can be viewed
as special types of objects, or more simply, as fields in those
objects that are essentially pointers to other objects. Given
this view, the problem of constructing the appropriate set of
objects is essentially a database query problem where the
data sources vary from actual databases to dynamically
generated trace data. The important point, from our per-
spective, was that while users would be defining such que-
ries, they should not be aware of the underlying data

structures, should not be forced to use a query language,
and should be provided with a simple and direct interface
that allows the task to be done quickly and accurately. How
we achieve this is described in the next section.

Once the user has defined a set of objects, the visualization
system needs to define the visualization specification. We
use a resource file to describe all the available visualization
strategies. Each strategy description contains the parame-
ters of the visualization and information for mapping data
objects to their visual counterparts. The latter is organized
so that the front end system can readily determine which
visualization techniques might be appropriate to the user’s
defined objects. The user is then asked to select the tech-
nique to be used. Once the technique is selected, the user is
asked to define initial values for parameters and whether
those parameters can be changed during the visualization.
The actual mapping from data to visual objects is mapped
into a set of parameter settings for this purpose. This is
described in the following section.

3 DEFINING THE QUERY

In order to simplify the definition of objects by the user, we
needed to develop a unified data model to describe the
variety of data sources, a common model for representing
the target objects, and an algorithm that allows us to define
a query building the target objects from the underlying data
sources. To simplify the user’s task in defining objects, we
decided to use a variation of a universal relation model with
a visual front end. While there are a number of visual query
languages [4,6,30], those that have been proposed required
too much knowledge of the underlying databases for our
purposes. By hiding the structure of the underlying data, we
intend to greatly simplify the user’s query definition. How-
ever, doing so requires a more elaborate underlying data
model and a heuristic algorithm for actually defining the
query from the user’s specification.

3.1 A Unified Data Model

For simplicity and consistency, we view each data source as
a relational data store. That is, each database consists of a
set of relations with each relation consisting of a set of
tuples. Each tuple contains data for one or more base fields,
with all tuples for a given relation containing the same set
of base fields. The base fields in this case contain raw data
(i.e. numbers or strings) and not pointers to other objects.
This approach seems to be sufficient for the data sources
that we currently have available. Our sources of cross-refer-
ence data are currently organized as relational data. Build
dependency and profiling information can easily be viewed
as a relational database consisting of a single relation con-
taining the information of interest. Similarly, trace data can
be viewed as a single relation where each trace item con-
tains appropriate descriptive fields and an event counter.
None of our current data sources contain pointers (such as

an object-oriented database). If there were one, we would
incorporate it into this scheme by replacing the pointer with
one or more data fields that uniquely identify the object
pointed to.

The key to our representation is that we associated each
base field with a domain. Domains provide a consistent
internal type structure that allows the system to relate
common data across multiple relations and across multiple
databases. Domains are arranged in a hierarchy that repre-
sents generalizations. For example, the name field of the
Ref relation is of domain RefIdName which is a subdo-
main of IdName. Similarly, the name field of the Def rela-
tion is of domain DefIdName which is also a subtype of
IdName. This allows the user to choose IdName where
either the definition or the reference may be appropriate or
RefIdName if the reference name is to be used explicitly. It
also allows the underlying system relate the Ref and Def

relations using the corresponding names.

The domain identifiers represent the interface provided to
the user. Instead of selecting base fields from the various
relations, the user selects the appropriate domains. The
system then maps the domains into the most logical base
field based on the overall query using a set of heuristics
described later in this section. The fact that two base fields
share a common domain is used as an indication that they
can be used to relate two different relations. Additional
information on how the various relations are associated can
be explicitly provided to the system as mappings. For
example, the relationship between a reference and its defi-
nition can be specified so that a tuple in the reference rela-
tion is mapped by default to its corresponding definition
rather than to any definition with the same name, type and
file. The underlying system relies on these explicit map-
pings to insure a consistent interpretation of the underlying
data sources.

All this information is provided to Cacti in a set of resource
files that describe the underlying data sources. This pro-
vides a flexible interface that allows new data sources to be
easily incorporated into the system and allows the system to
be adapted to other applications. An extract from the cross-
reference database specification is shown in Figure 5.

3.2 The User Object Model

While the underlying data model is relational, the model
presented to the user is object-oriented, consisting of a set
of class definitions defining the sets of objects to visualize.
Each class consists of a set of data members. There are four
types of data members:

• Domain members. A domain member corresponds to a
single domain from the underlying data model. These
represent base data that can be derived from any of the
base fields that correspond to that domain or any of its
subdomains. For example, just from the specifications of

Figure 5, a domain member referring to IdName could
represent Def.name, Hierarchy.from or Hierar-
chy.to.

• Computed Members. These data members are defined
using expressions that can range over constants and
other data members of the same class. The restriction to
data members of the same class insures that the specifi-
cation of a class remains consistent. Additional domain
members can be added to a class where necessary just to
serve as data for a relevant computed member.

• Static Members. These represent dynamically settable
constants. They are not actually a part of any resultant
class. Static members can be used as constants in a com-
puted member or in a restriction (defined below). They
are assigned an initial value by the user when the visual-
ization is defined. However, when the visualization is
presented, the user has the ability to reset this value and
thereby cause the visualization to be recomputed. Static
members can be used to set thresholds on what should
be displayed and to identify focal points for the visual-
ization.

• Reference Members. These are used to define links
between classes and hence to define relationships. Each
reference member refers to an object in another class. In
defining the relationship, the user must specify a match
value or a don’t care for each field of the class that is
referred to. These values, for simplicity purposes, must
be other members of the class where the reference mem-
ber is defined and not arbitrary expressions. (Note that
expressions could be used by simply defining a com-
puted member.) Reference members can either be pas-

DATABASE SXRFDB:
ACCESS “SAND(SXRFDB)”

RELATIN Def ::
 scope : String => DefScopeName < ScopeName
 name : String => DefIdName < IdName
 type : Integer => DefIdType < IdType
scope_type : Integer => DefScopeType < ScopeType
line : Integer => DefLineNumber < LineNumber
file : Integer => DefFileId < FileId

RELATION Hierarchy ::
from : String => SubClassName < ClassName < IdName
to : String => SuperClassName < ClassName
line : Integer => HierLineNumber < LineNumber
file : Integer => HFileId < FileId
virtual : Boolean => HVirtualFlag

FIGURE 5. Extract from the data source resource file for
the cross reference database SXRFDB. The Access
line indicates how data from this database should be
accessed. Two relations are defined here. Each con-
sists of base fields. For each base field the file indi-
cates the name, its internal type, the domain of that
field, and superdomains of the domain. Additional
information that can be specified includes mappings
between relations and semantic information relating
the fields within a relation.

sive or generative. A generative member will cause a
new object to be added to the referent class if no match
can be found. Here, if a match value is a don’t care, a
default value must also be specified for building the new
object.

In addition to the definition of members, each class can
have a set of associated restrictions. In the front end these
are associated with individual members, but internally, all
restrictions are viewed as relating to the class as a whole.
Each restriction is a Boolean expression that must evaluate
to true for a valid object of the given class. Restriction

expressions again are constrained to constants (and hence
static members) and members of their own class.

The Cacti user interface corresponding to this model can be
seen in Figure 6. The overall window is divided into seven
regions. The top pane is a menu bar containing most com-
mands on pull-down menus. Immediately below this is a
class panel. Here the user can view and edit the properties
of the currently selected class. This class can be selected
either by clicking on it or by choosing its name in the class
panel. The two buttons in the class panel allow the class to
be part of the definition or not, to make the class sequential

FIGURE 6. The Cacti user interface showing a user model. The window consists of a menu bar, panels for displaying
and editing properties of the current class and member (called a field in the interface), button panels for common
operations, and a visual display of the current user object model.

and hence animated, and to make the class part of any
future saved definitions.

Below the class panel is a field panel for displaying and
editing properties of the currently selected member. (Mem-
bers in the model are referred to as fields in the user inter-
face.) Fields can again be selected either by clicking on
them or by choosing their name in this panel. The value
button is specialized to the different types of members. Cur-
rently the user must type in expressions and restrictions, but
we expect to provide more convenient dialog boxes in the
future.

Below the field panel on the left are three button windows
providing fast access to common operators. The Visualize
button under general operators constructs a visualization
from the current model; the Check Consistency button
checks whether the current model has a valid associated
query; the Clear button clears the model. The class opera-
tors allow the user to manipulate the set of classes that are
part of the model. Similarly, the field operators allow the
user to manipulate the set of fields in the current class as
well as static fields.

The core of the interface, beyond the panels and buttons, is
the visual display of the current user object model in the
remainder of the window. Here each class is displayed with
all of its members. The box to the left of the field is used to
indicate the member type (empty is a domain member, =
indicates a computed member, ^ indicates a reference mem-
ber). Static members are shown as part of a special class.
Class types are indicated by shading in the class name
region. The user can select members of classes by clicking
on them with the mouse. The currently selected class is
shown with a light-blue background, while the currently
selected member has a light green background.

3.3 Building a Query from the User Model

The user model described above provides a convenient
mechanism whereby the user can define the data to be visu-
alized. It satisfies many of our objectives, i.e. it does not
require the user to be aware of the underlying data stores, it
does not introduce a complex query language, and it is pri-
marily a visual representation. The problem that arises with
this formulation is that the representation does not define a
query in an unambiguous manner. There are two sources of
ambiguity. First, each domain member can correspond to a
variety of different base fields. Second, if different base
relations are referenced by members of a class, there may
be multiple ways of joining these relations.

Our approach to this ambiguity is to attempt to select the
query that is most “natural” and therefore most likely repre-
sents what the user intended. To do this we associate
weights with different ways of relating two underlying rela-
tions, and then attempt to find a minimal cost solution that
assigns each domain member to a base field and that joins

all the referenced relations. This problem is inherently NP-
complete [9], but our cases are relatively small and a
branch-and-bound approach is feasible. Moreover, it can be
the case that two solutions are equally “good” (or close
thereto), and we want to ask the user which was intended.
Thus we actually need to find all solutions within a given
bound of the optimal one. The cost model we are currently
using is shown in Figure 7.

While there has been significant theoretical criticism of the
universal relation assumption for general databases, we feel
that our use of domains augmented with the ability to define
explicit mappings between relations and the fact that we are
working in a well-understood domain where we have
control over the underlying databases, allows us to circum-
vent these problems and create a practical interface.

The algorithm we use resolves one class at a time. The
classes are first ordered topologically based on reference
members so that when the objects of a class are created, it
will be possible to define the reference fields as well. Each
class is then considered independently.

The first step in resolving a class is to try out each possible
assignment of base fields to domain members. This is done
one field at a time. First, the field that has not be resolved
that has the minimum expected cost is chosen. If this is a
domain field, then the possible base fields are ordered so
that those with the minimum expected cost will be consid-
ered first. Then each possible base field is considered in
turn and all potential solutions with that field are consid-

FIGURE 7. The current cost values used in determining the
appropriate query for a given user model. The first
three costs are added to the total cost when a member is
used (static and reference members are ignored). The
latter three costs are used when relations used by the
base fields need to be related to each other.

Cost Situation

1 Domain member whose base field is in a rela-
tion that is already used.

5 Computed member.

100 Domain member whose base field is in a rela-
tion that hasn’t been used.

50 Two relations associated via a mapping speci-
fied in the data model resource file

50 Two relations associated using domain rela-
tionships

10 Two relations associated using a user restric-
tion

10 Delta for which two selections are considered
identical

ered. At all times, the algorithm keeps track of the best
solution that has been found. If the actual cost of a new
solution being constructed is greater than the cost of the
best solution plus a delta, then the new solution is dis-
carded.

The task of building an actual solution for a given assign-
ment of domain members to base fields is more complex.
The basic problem here is to take the set of relations that are
used by the selected base fields and determine how these
might be related to each other as part of the query. One pos-
sibility is that there might be a user restriction given for the
class that associates items in one relation with items in
another. This is a preferred choice as reflected in the cost
model since it indicates the user’s understanding of what
the relationship should be. Alternatively, relations can be
associated with each other either through explicit mappings
defined as part of the data model or through fields that share
a common domain. The algorithm does not have to find
pairwise relationships between all the relations, but rather
has to find a set of relationships so that each relation can be
related to any other relation using a series of relationships.

Our approach views the possible pairwise relationships as
arcs over the graph of the available relations. We first build
such a graph internally for the particular query. Most of the
graph is fixed; however the need to incorporate user restric-
tions means that the graph is actually specific to the particu-
lar class being resolved and to the particular assignment of
domains to base fields. Then we compute all-pairs shortest
paths on this graph to determine the minimum cost way of
relating any two relations. The result is an augmented graph
over the set of all relations. Next we compute the minimum
cost tree that covers the set of relations referenced by the
selected base fields using this augmented graph using a
modified minimum spanning tree algorithm. This tree rep-
resents a set of relationships that both has a minimum cost
and satisfies the necessary criteria for building a query. If
the new solution is less expensive (relative to the specified
delta) than the current best solution, then it is added to the
set of available solutions and other solutions are discarded
if appropriate.

When this algorithm completes, it yields a set of solutions
each of which specifies an ordering for the members and an
ordered set of relationships among the reference base rela-
tions. If more than one solution is found, the different alter-
natives are presented to the user and the user is asked to
choose the appropriate query.

3.4 Generating the Objects

Once a class is resolved, its objects can be retrieved. The
basic idea is to construct a database query using the solu-
tion. Before optimization, this query is formed algebraically
by taking the relational product of all the base relations
used, defining all the computed fields, selecting based on

the domain associations and user mappings, selecting based
on all the user restrictions, projecting onto the target mem-
bers, and then outputting the tuples that result. The query as
it is actually implemented must be optimized (e.g. using
joins wherever possible), and must take into account the
fact that the data can come from multiple data stores.

Our implementation uses a query engine that we built previ-
ously for data management in Desert. It offers an extensible
set of relational operators, it provides both an algebraic and
a SQL-based front end, and it will deal either with data in
memory or on disk. It also includes a powerful optimization
framework that can transform a raw query as described
above into a form that can be efficiently evaluated. To use
this package, we augmented the base package with a new
type of relation that was a mirror of a remote data store. The
task of generating the objects is then relegated to building a
query as described above using the algebraic front end of
this augmented query engine.

While we could build the whole query this way, it would
not take best advantage of the capabilities of the remote
data stores, some of which are efficient databases in their
own right. What we actually do is to build a query for each
external data store that is referenced in the solution. What
can be included in this query is determined by the access
description that is provided by the data store in the descrip-
tive resource file. For example, the access description
shown in Figure 5 for the database SXRFDB is SAND(SXR-

FDB). This indicates that the database is a Sand database
(Sand is the database component of Desert) and tells the
back end that it can handle algebraic query specifications
directly. Other access methods only allow all raw data to be
obtained or provide a simplified indexed access method
only.

The overall query is then built by making multiple passes
over the solution structure. First there is a pass for each
database. This pass gathers whatever information needs to
be passed to the external data store and then asks that store
to pass back the corresponding information in one or more
temporary data files. The pass also constructs an appropri-
ate database expression to access this data file and marks
those parts of the solution that have been completed. After
all these passes have been made, a final pass over the solu-
tion is used to build the actual database query that will be
evaluated in memory to generate the objects. This is similar
to the basic query idea described above except that it uses
the access operators generated by the various database
passes as the base and ignores any components that have
been marked as completed. The result is a query that is effi-
ciently evaluated within the visualization engine using the
capabilities of the remote data stores as much as possible.

Once all the non-reference members of a class are defined,
we are able to generate the reference members. This is done
by making a pass over each generated object in the class

and using the reference matching parameters to find the
associated element of the referenced class. If a new instance
has to be created, then one is added, and its reference
members are also found. Note that we do not currently
allow restrictions on reference members, but plan to do so
in the future.

4 DEFINING THE VISUALIZATION

Once the data to visualize has been defined, Cacti needs to
have the user define the appropriate visualization. The visu-
alization framework we provide offers an extensible selec-
tion of visualization strategies, each of which is applicable
in certain circumstances and each of which is parameter-
ized. We wanted the system to provide the user with the set
of relevant visualizations for the defined data.

To accomplish this and to allow the set of visualizations to
remain extensible, we define the set of available visualiza-
tions in a resource file. There are two parts to the visualiza-
tion definition in this file. The first describes the situations
under which the visualization is applicable and the second
describes the set of parameters that are associated with the
visualization. An example visualization file definition is
shown in Figure 8.

The first part of the resource file defines a data model for
the visualization. The data model can identify one or more
classes, each of which has an associated set of fields. For
each class defined here there must be at least one data class
defined by the user that matches. A class matches if it con-
tains distinct fields that have the same types as the fields of
the required class. A special set of field types was created
for this purpose so that FILE corresponds to any internal
type that indicates a file or file name and NUMERIC can be
any numeric type. The keyword MULTIPLE allows multiple

data classes to match and be considered for visualization.
Finally, the requirement definition specifies the mapping
from a user data object to a visualization object, in this case
an ExternalData object inside a FileMapItem compo-
nent.

The second part of the resource file description defines the
parameters of the visualization. There are two types of
parameters. The first type, represented by the first four
parameters in the figure, describe the actual visualization
parameters. These have a label and type and are used both
when the user is specifying the visualization to define
default values and, if the USER option is specified, when
the visualization is being displayed to allow the viewer to
adjust the visualization. The second type of parameter is
used for mapping data members of the given classes to
fields or values needed for visualization. In this case there
are two required fields, one specifying the file name and
one the line number, and one optional field specifying the
statistic to be associated with that file/line pair. These
parameters currently are not settable at run time. Moreover,
unless the keyword OPTIONAL is specified, they must be
defined by the user.

When the user has finished defining data and requests a
visualization, Cacti first determines the set of visualizations
whose requirements are met by the defined classes. If there
is more than one, it asks the user which is appropriate. Then
it creates a dialog box similar to that of Figure 9 allowing
the user to set initial values for the parameters.

When the user clicks on accept the visualization appears.
The actual visualization is generated by creating the appro-
priate root visualization object based on the visualization
type. Then for each generated class, each object of the class
is used to generate a visualization object and its associated
component. We first do this generation for all classes that
have not been marked as SEQUENTIAL and display the
result. Then for each class that is sequential, we add the
corresponding object to the display and redisplay the result.
Because our back end visualization engine automatically
animates between redisplays, the effect of this is to provide
an animation where the tuples of the sequential class are
added dynamically.

Figure 10 shows the visualization from the example of
Figures 2 and 5. We are still working on developing more
sophisticated mappings between the generated objects and
visualization objects to take into account visualizations
where a user object might yield more than one visualization
object and where hierarchies of visualization objects need
to be generated explicitly.

STYLE FileMap
REQUIRE
CLASS object MULTIPLE => FileMapItem(ExternalData)
 FIELD file : FILE
 FIELD line : NUMERIC
 FIELD data : NUMERIC

PARAMETERS
 NumBucket “Number of Buckets” : INTEGER(1,1024) USER
 MaxLines “Maximum # of Lines” : INTEGER(64,1024) USER
 ExpandBucket “Expand Buckets” : BOOLEAN USER
 FilesPerRow “Files Per Row” : INTEGER(1,32) USER

 FileIndex “File Field” : FIELD FILE
 LineIndex “Line Field” : FIELD NUMERIC
 StatIndex “Statistic Index” : FIELD INTEGER OPTIONAL

END FileMap

FIGURE 8. Visualization resource file definition of a visu-
alization strategy. The first part describes the data
requirements for this visualization style. The second
part defines the visualization parameters.

FIGURE 9. Dialog box for defining a visualization. The user can name the visualization, define initial values for the
settable parameters, and associated members with visualization fields. Each non-field parameter allows the user
to specify whether it is settable or constant at visualization time. Field parameters provide a list of fields of each
class of the appropriate type. When the box is accepted the visualization appears.

4.1 Visualization Examples

5 RELATED WORK

Software visualization efforts have a long history, dating
back to a variety of programs that would automatically
produce flowcharts from a deck of Fortran cards [18,24].
More recent efforts have aimed at providing interactive
visualizations of large software systems. The FIELD envi-
ronment, for example, provided call graphs, dependency
graphs, and a class browser, all of which were designed to
handle moderately large software systems [21]. Similar
tools have since been implemented as part of a number of
commercial systems including ObjectWorks, DEC’s Fuse,
Sun’s Workbench, HP’s Softbench, and SGI’s CodeVision.
These tools provide views of the static program structure.
They typically exploit the implicit hierarchies to provide
browsing capabilities and use a variety of information
encoding techniques to provide substantial information to
the user. Other related work can be found in visual
approaches to reengineering such as the Rigi system [16].

More dynamic visualizations can be seen in the display of
data and related program structures. This work has taken
two forms. The first involves data structure display, starting
with the work of Brad Myers [17]. More recent work here
ranges from FIELD where full data structures are displayed
automatically using standard or user-customizable graphics
and with automatic or semiautomatic update as the program
executes, to the displays found in Sun’s Workbench or
ObjectWorks where only standard displays are available
and the user decides what information to display and its
screen location. The various efforts at algorithm animation
represent a second approach to this problem [2,3,12,29].
Here the implementor crafts detailed displays that describe
the underlying behavior of a specific program and its data.

Another category of software visualizations deal with
understanding performance. Displays for sequential pro-
grams range from the typical histogram displays found in
UNIX prof, FIELD, and most current software environ-
ments, to the sophisticated graph displays provided by Pure
Software Corporation or the 3D displays we developed for
the AARD project [20]. A large body of visualization
research has been devoted to understanding the behavior of
parallel or distributed programs [1,7,15,28]. Displays here
have typically concentrated on one aspect of the problem,
either processor utilization for or message passing.

Finally, there are a number of more recent software visual-
izations that are more difficult to classify. One set of these
is heap visualizations such as that provided by FIELD
where the system displays a picture of how heap memory is
being used, using colors to encode information about each
allocation and its use. Another set involves relating infor-
mation to large bodies of source code as in Seesoft [5].

Software visualization is also related to the more general
field of information visualization. This is a problem that has
received considerable attention in recent years both for
visualizing graphs and hierarchical structures and for dis-
plays for data mining. Significant work in developing infor-
mation visualizations has been done at Xerox PARC
[13,26], SGI, and elsewhere. We make use of this work by
incorporating the visual metaphors that are incorporated
into our generic back end visualization engine. The Visage
system represents a more general approach that, like ours,
attempts to combine data specification, browsing, and visu-
alization in an easy-to-use framework [27]. Our system
differs in providing a more data-centric approach, in con-
centrating more on abstract data from a variety of sources
rather than more concrete visualizations from an object data
base, and on managing dynamic as well as static data.

6 IMPLEMENTATION AND EXPERIENCE

Cacti is currently implemented as part of the Desert soft-
ware development environment. It uses the Desert cross ref-
erence databases as its data sources. The front end, shown
in Figure 6, allows the user to easily define visualizations
by defining the data to be used and then selecting and
parameterizing the visualization strategy to be used. At this
point Cacti generates a file describing the visualization and
runs a back end, Mirage, with this file. Mirage is responsi-
ble for reading in the data and providing the actual visual-
ization. Cacti and Mirage are implement in about 23,000
lines of C++.

This two-step approach and the use of resource files
throughout the process provides a great deal of flexibility.
We have extended the resource file definitions for Cacti to
allow the definition of classes as well as data sources. This
allows Cacti to provide a wide range of predefined data
visualizations and simplifies the user’s task. In addition,
definitions themselves can be saved in such a resource file.
The visualization description file output by Cacti for
Mirage can also be saved and reused. This allows the
system to be used to defined fixed visualizations while still
offering the user the flexibility of parameterizing the result.

While our experiences with Cacti and Mirage have been
limited (like the overall Desert project, these packages are
early prototypes and are not widely used), we are optimistic
that this approach will be successful. We have been able to
define a wide range of visualizations using the front end.
These have been defined quickly and logically. The heuris-
tic algorithm for converting the class and member defini-
tions into a query has worked quickly and has generated the
right query for all our tests.

At the same time, there is a significant amount of work
remaining to be done on the system. We have to work on
making available and integrating more and varied data
sources to Cacti to verify that different types of sources will
fit comfortably into our model and to make the resultant

visualizations more useful. We need to examine a much
wider range of different visualizations to verify the heuris-
tics and weights that are used in converting the data defini-
tion into a query. We have to build up a library of
predefined data classes that are useful to visualize. Finally,
we have to offer this facility to a broader audience to get
feedback on the user interface and the ease of defining visu-
alizations.

The back end, Mirage, also requires significant work. We
need to add more sophisticated mappings between data
objects and visualizations, allowing a data object to map
into multiple visual objects (e.g. an arc and the node the arc
points to). We need to provide user feedback about what
object the mouse is pointing to in a meaningful way (the
hooks for this are there, but we haven’t determine how or
what to output as a result). We also need to work on perfor-
mance issues when displaying large numbers of objects.

7 REFERENCES

1. Bill Appelbe, Kevin Smith, and Charlie McDowell, “Start/Pat:
a parallel- programming toolkit,” IEEE Software Vol. 6(4) pp. 29-
38 (July 1989).

2. Marc H. Brown and Robert Sedgewick, “Techniques for
algorithm animation,” IEEE Software Vol. 2(1) pp. 28-39 (1985).

3. Marc H. Brown and Marc A. Nojork, “Algorithm animation
using 3D interactive graphics,” DEC Systems Research Center
(1992).

4. I. F. Cruz, “DOODLE: a visual language for object-oriented
databases,” ACM SIGMON Intl. Conf. on Management of Data,
pp. 71-80 (1992).

5. Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, Jr.,
“Seesoft - a tool for visualizing software,” AT&T Bell
Laboratories (1991).

6. K. Goldman, S. Goldman, P. Kanellakis, and S. Zdonik, “Isis:
interface for a semantic information system,” Proceedings of the
ACM SIGMOD, (1985).

7. Vincent A. Guarna, Jr., Dennis Gannon, David Jablonowski,
Allen D. Malony, and Yogesh Gaur, “Faust: an integrated
environment for parallel programming,” IEEE Software Vol. 6(4)
pp. 20-27 (July 1989).

8. Reed Hastings and Bob Joyce, “Purify: fast detection of
memory leaks and access errors,” Proc. Winter Usenix Conf,
(January 1992).

9. P. Honeyman, R. E. Ladner, and M. Yannakakis, “Testing the
universal instance assumption,” Information Processing Letters
Vol. 10(1) pp. 14-19 (February 1980).

10. S. C. Johnson, “Postloading for fun and profit,” USENIX
Winter ’90, pp. 325-330 (1990).

11. James R. Larus, “Abstract execution: a technique for
efficiently tracing programs,” U. Wisc.-Madison Computer Sci.
Dept. TR 912 (February 1990).

12. Ralph L. London and Robert A. Duisberg, “Animating
programs using Smalltalk,” IEEE Computer Vol. 18(8) pp. 61-71
(August 1985).

13. Jock D. Mackinlay, George G. Robertson, and Stuart K. Card,
“The perspective wall: detail and context smoothly integrated,”
Proc. CHI’91, pp. 173-179 (April 1991).

14. Scott Meyers and Steven P. Reiss, “An empirical study of
multiple-view software development,” Software Engineering
Notes Vol. 17(5) pp. 47-57 (December 1992).

15. Thomas G. Moher, “PROVIDE: a process visualization and
debugging environment,” IEEE Trans. Soft. Eng. Vol. 14(6) pp.
849-857 (June 1988).

16. H. A. Muller, S. R. Tilley, M. A. Orgun, B. D. Corrie, and N.
H. Madhavji, “A reverse engineering environment based on spatial
and visual software interconnection models,” Software
Engineering Notices Vol. 17(5) pp. 88-98 (December 1992).

17. Brad A. Myers, “Incense: a system for displaying data
structures,” Computer Graphics Vol. 17(3) pp. 115-125 (July
1983).

18. B. A. Price, I. S. Small, and R. M. Baecker, “A taxonomy of
software visualization,” Journal of Visual Languages Vol. 4(3) pp.
211-266 (Dec. 1993).

19. Steven P. Reiss, “Working in the Garden environment for
conceptual programming,” IEEE Software Vol. 4(6) pp. 16-27
(November 1987).

20. Steven P. Reiss, “Trace-based debugging,” Proc. AADEBUG
’93, (May 1993).

21. Steven P. Reiss, FIELD: A Friendly Integrated Environment
for Learning and Development, Kluwer (1994).

22. Steven P. Reiss, “An engine for the 3D visualization of
program information,” Journal of Visual Languages, (December,
1995).

23. Steven P. Reiss, “Simplifying data integration: the design of
the Desert software development environment,” Proc. 18th Intl
Conf on Software Engineering, pp. 398-407 (March, 1996).

24. Steven P. Reiss, “Software tools and environments,” in
Software Visualization: Programming as a Multimedia
Experience, ed. Blaine Price,MIT Press (1997).

25. Steven P. Reiss, “Dynamic management of the Desert
program data store,” Brown University CS Tech Report (1997).

26. George G. Robertson, Jock D. Mackinlay, and Stuart K. Card,
“Cone trees: animated 3D visualizations of hierarchical
information,” Proc. CHI’91, pp. 189-194 (April 1991).

27. Steven F. Roth, Peter Lucas, Jeffrey A. Senn, Cristina C.
Gomberg, Michael B. Burks, Phillip J. Stroffolino, John A.
Kolojejchick, and Carolyn Dunmire, “Visage: a user interface
environment for exploring information,” Proc. Information
Visualization, pp. 3-12 (October 1996).

28. Lawrence Snyder, “Parallel programming and the Poker
programming environment,” IEEE Computer, pp. 27-36 (July
1984).

29. John T. Stasko, “TANGO: a framework and system for
algorithm animation,” IEEE Computer Vol. 23(9) pp. 27-39
(September 1990).

30. M. M. Zloof, “Query by Example: a data base language,” IBM
Systems J. Vol. 16(4) pp. 324-343 (1977).

