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ABSTRACT
One of today’s challenges is producing reliable software in the
face of an increasing number of interacting components. Our
system CHET lets developers define specifications describing how
a component should be used and checks these specifications in real
Java systems. Unlike previous systems, CHET is able to check a
wide range of complex conditions in large software systems
without programmer intervention. This paper explores the
specification techniques that are used in CHET and how they are
able handle the types of specifications needed to accurately model
and automatically identify component checks.

Categories and Subject Descriptors
D. Software; D.2 SOFTWARE ENGINEERING; D.2.4
Software/Program Verification; Subjects: Model checking;
Programming by contract.

General Terms
Verification, Design, Experimentation, Languages.

Keywords
Components, verification, specifications, flow analysis, finite-
state automata.

1. INTRODUCTION
Much of software engineering is concentrated on statically
ensuring the reliability of software. Program-oriented work in
this area includes safer languages, contracts, and tools for find-
ing specific local problems such as buffer overflow. Most of
this work is limited in that it considers only the local execution
behavior of a system. Software model checking takes the glo-
bal behavior into account, but has typically only been used to
prove relatively simple and specific properties of small soft-
ware systems. While these efforts are helpful, they fail to
address many of the problems of modern software develop-
ment, especially problems related to the proper use of compo-
nents.
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1.1 Component Properties
Components are becoming more pervasive in software devel-
opment. They exist in the form of large libraries such as those
accompanying Java, remote object implementations such as
CORBA, and web services. Components are typically more
complex than traditional libraries, retaining state and requiring
multiple calls of a variety of functions to perform these tasks.
One of the major problems in dealing with components is
ensuring that the application uses the components correctly.

We wanted to develop a tool that would be able to check for
the proper use of components in real software systems. Such a
tool that would take a specification of how a component
should be used along with an existing software system and
would then identify possible executions of the program where
the component was used incorrectly. While designing and
implementing such a tool we realized that the same mecha-
nisms could be used to check a wide variety of safety proper-
ties involving virtual components such as design patterns,
internal components (e.g. user classes), and proper use of the
programming language itself.

1.2 The CHET Architecture
To tackle this problem we have developed a system, CHET,
that takes specifications and a user program and then produces
a interactive display of where and how the various specifica-
tions are violated [28]. CHET works by splitting the task into
distinct subproblems. The first problem is to provide a specifi-
cation language that is suitable for describing component
usage in an abstract way. These specifications have to be easy
to provide, understandable by programmers, and general
enough to describe component usage at a high level rather that
describing each specific use of a component. For example, one
should be able to specify that all instances of an XmlWriter
library should obey certain properties without knowing what
instances existed in the application or where they were used.
CHET uses a specification based on extended automata over
parameterized events to accomplish this. This is described in
this paper.

The second problem involves finding, for each specification,
all the particular instances that occur in an application. The
identification of an instance is part of the specification prob-
lem. Finding all instances that meet the specification is done in
CHET using a full interprocedural dataflow analysis that iden-
tifies both where instances occur and how they are used. For
example, for the XmlWriter library, this would identify each
location where an XmlWriter was created and also identify all
uses of each creation so that each can be checked accurately.

The third problem involves creating a simple abstraction of the
original program that accurately reflects a particular instance
but that can be effectively checked. This is done in CHET by



creating a nondeterministic abstract program containing calls,
simple variables, tests, synchronization primitives, and output
statements that generate events. To minimize the size of this
program, CHET uses the results of the previous flow analysis
and does additional flow analysis related to the particular case.

The final problem that CHET tackles involves comparing the
abstract program with the original specification. Here CHET
uses model checking techniques to simulate all possible execu-
tions of the abstract program and thus determine how the
resultant output event sequences relate to the specification
automaton.

CHET puts this all together with a user interface that lets the
programmer browse over the different specifications and
instances and then, having chosen one, look at the code and
execution sequences that yield particular outcomes. An exam-
ple of this is shown in Figure 1.

The remainder of this papers looks at the problems involved
with developing a suitable specification languages. We start by
describing the overall solution and then provide a series of
examples that motivate the different aspects of the solution.

2. SPECIFICATIONS
To be practical our tool needs a specification model that is
both easy to use and powerful. We want to check a wide vari-
ety of properties and we want to automatically identify each
occurrence of those properties in real Java systems.

The underlying model we use for specifications is that of
extended finite state automata over parameterized events.

Finite automata are relatively easy to define for the various
properties and are generally well understood by programmers.
We use a modified form with bounded local variables to sim-
plify nested specifications. The automata are driven by param-
eterized events that represent program actions or states. The
set of available events is central to both specifying and identi-
fying properties.

2.1 Events
Events represent the basic actions of the program relevant to a
particular property. To express a broad range of properties, we
need to have a variety of actions. For components, most of
these actions involve method calls. Other relevant actions
include creating a component, setting fields, handling excep-
tions, and locking.

To support automatic identification of property occurrences,
we need to have events describing what is going on at run time
that can be detected statically from the code. We also need to
be able to restrict these events to a particular instance of the
property. This is done by choosing the proper event set and
having the events be parameterized. Parameters on events are
used both to define and limit their occurrence. For example, an
allocation event can define a parameter representing the object
being allocated, while a call event can be limited to those cases
where the this object represents the allocation. Noting that the
problem of identifying specific events in this context is similar
to that faced by aspect-oriented languages we defined our ini-
tial event set based on those used in Aspect/J [24]

The set of events that we currently provide include:

Figure 1. The CHET user interface



• CALL events triggered by a call to a particular method or
optionally any method that redefines it. This event can be
parameterized by a combination of the this object, an
argument of the method, or the this object of the calling
method. Call events can restricted to be FLAT, i.e. to
ignore anything that happens within the call.

• RETURN events triggered by a return from a particular
method. This can be parameterized by the this object of
the call or the value being returned.

• ENTRY events occurring when a method is entered,
parameterized by the this object or an argument.

• FIELD events occurring when a given field is assigned a
given value. The event can be parameterized by the object
containing the field. If the value is numeric, the check can
be equal or not-equal to an integer. If the value is an
object, the value can be null or non-null.

• ALLOC events triggered by an allocation of an object of a
particular class or subclass and parameterized by the
object being allocated.

• CATCH events triggered by the execution of a catch
clause. These are parameterized by the object that is the
parameter of the catch.

• THROW events triggered when a throw clause executes
and parameterized by the object being thrown.

• LOCK events triggered by the entry to either a
synchronized method or a synchronized region. These are
parameterized by the object being locked.

• UNLOCK events triggered by exiting a synchronized
method or synchronized region, parameterized by the
object being unlocked.

In each of these cases parameters can be used in two ways.
Either they can be used to restrict the event by forcing the
parameter to match existing values, or they can be used to
define new values for the parameter. In the latter, we distin-
guish the case where the new value is exclusive (i.e. this is the
defining instance of the parameter) and cases where the event
adds to the set of values for the parameter. Parameters can also
be restricted by the type of object, either explicitly or within
the class hierarchy. All the events can be optionally restricted
to only be considered in the project code rather than project
and library code.

2.2 Event Parameters
CHET assigns specific events to program locations statically.
This means that the parameters of the events are resolved
before the abstract program is generated and all that CHET
needs to consider in checking the abstract program are the
resultant event sequences.

Determining which program locations can generate which
events is done using a full interprocedural flow analysis of the
program. This analysis is based on sources. A source is a rep-
resentation of a value that has a specific creation point in the
program. For each source, our flow analysis computes all
points in the program to which the source can flow. We use
several types of sources. Local sources represent objects cre-
ated directly by the code; each new operator creates a new
local source of the corresponding type. Fixed sources are used
to represent values that are created implicitly either by the run
time system or by native code. Finally, model sources are
those that are developed from the specification events.

Each specification must include one event that is marked as a
trigger. This event must define at least one parameter and can-
not check any parameters. Each instance of this event in the
system identifies an occurrence of the corresponding property.
During flow analysis, a new model source is created to repre-
sent the new parameters of all trigger events. The flow of this
source then is used to determine what other events are relevant
to the property. For example, an ALLOC trigger event identi-
fies a new model source for each new statement for a particular
class and hence an occurrence of the property for each such
statement; the uses of the corresponding source would then
identify the CALL or FIELD events that were relevant to the
particular occurrence.

Specifications that define multiple parameters in separate
events require special handling. First, we assume that the trig-
ger event has to come first. Then if we locate a program loca-
tion that is a candidate for a second parameter-generating
event taking into account previously set parameter values, we
use these to identify additional sources. These will generally
be additional model sources created during flow analysis, but
might simply be the set of local sources that flow to the loca-
tion. These new source sets can then be used to identify addi-
tional events.

2.3 Automata
Each property specification defines the set of relevant events,
the set of event parameters, and an automaton over the events.
The automaton consists of uninterpreted but labeled states and
transitions. Each automaton has a unique starting state. Each
state can be tagged with a property indicating whether ending
in this state represents an error, success, ambiguous, or don’t
care. We assume that the automata is complete, i.e. that transi-
tions are defined for each event for each state.

Transitions between the states consist of an event, a condition,
and a set of actions. The condition and actions are based on
named automata variables which can range over bounded inte-
gral values. Each variable has an initial value. Operations
include SET, INCR, and DECR, and the set of tests includes
checking if a value equals or doesn’t equal a given value. This
extension to normal automata lets us specify limited instances
of what would otherwise be context-free properties. For exam-
ple, we have used them to specify that the number of entries
and exits match for the XML writer class, assuming that we
never nest the XML more than a finite amount.

A further extension using variables and conditions is to pro-
vide special values that represent the current (model) thread
during simulation. Here we provide a SETTHREAD operator to
set a variable to the representation for the current thread and a
TESTTHREAD operator to check if the value of a variable
matches that of the current thread. This extension lets us pro-
vide specifications where we can insure that two distinct paths
occur in separate threads.

2.4 Specification Properties
Finally, each specification can provide directions on how it
should be checked. In particular, it can specify information
about threads, fields, exceptions, and synchronization. These
properties are generally used to make the resultant tests more
efficient.

Normally CHET determines for each instance of a property
whether the events associated with the property can be guaran-
teed to all be generated within one thread. If so, it checks the



program with thread starts being viewed as procedure calls; if
not, it does a full multithreaded check. Since the programmer
isn’t worried about threaded dependencies for some properties,
CHET lets the programmer specify that a check should be
treated as nonthreaded.

Second, CHET normally determines the set of fields used in
checking each instance of a condition using a separate flow
analysis pass and a set of heuristics. It some cases, especially
for application-specific properties, the programmer might
know a priori which fields are relevant. CHET lets the program
both specify particular fields to be considered and to disable
the automatic detection of fields.

Third, one needs to consider what exceptions to consider in
doing the checks. One obviously wants to consider all excep-
tions which are either explicitly thrown or (for native or library
routines) explicitly declared to be thrown. The question that
comes up however, is whether you should consider other possi-
ble exceptions or errors that are caught by the code but never
explicitly thrown. This case arises more frequently than one
would think since each synchronized region internally catches
and then rethrows Throwable to ensure the corresponding
monitor exits cleanly. CHET lets the programmer specify
whether or not to consider such unusual exceptions while
checking.

Finally, CHET has the ability to model synchronized regions
during checking, insuring that two model threads don’t execute
synchronized code at the same time. This check is only done if
CHET determines that synchronization might be relevant to
the checking. CHET’s determination here is conservative and
the programmer might have a better understanding of the
issues. Since keeping track of synchronization information
during checking can be expensive, CHET lets the programmer
disable this check for a particular property.

3. EXAMPLES
In this section we look at a variety of specifications and use
them to illustrate the power and flexibility of CHET’s specifi-
cation language.

3.1 Iterators
We first consider checking the proper use of iterators. Here we
want to ensure for each use of an iterator in the program, that
we always call hasNext before we call next. Similar checks can
be made for enumerations, string tokenizers, and stream token-
izers.

The automaton for this check as shown in Figure 2 is fairly
simple. Here we show the automaton as it is displayed by our
interactive tool and the set of events that are associated with
the automaton. (In the tool, event and variable information are
shown through tool tips.) Self loops are not displayed for clar-
ity. Note that the parameter C1 is defined by the initial event
and then simply used by the remaining events.

The automaton starts with the trigger event E1 which repre-
sents a new instance of an iterator. We originally used an
ALLOC event here, but found, by looking at the resultant
reports, that this did not do the appropriate checking since all
iterators for each particular type of data structure (e.g. all Vec-
tor iterators) are allocated at one point in the code. Instead, we
identify an instance of the specification with a return from the
method Collection.iterator(). In this state if we get a call to
next (or nextElement) we go to the error state. If we get a call

to hasNext (or hasMoreElements) we go to the hasNextCalled
state. Here, we can get a call to next and go back to the Itera-
torAllocated state.

Since CHET does partial context-sensitive flow analysis, we
could have left the trigger event be the allocation and told the
system to view the various Collection methods as context sen-
sitive. This would have been closer to what we did, but would
have treated all iterators for a given collection object as a sin-
gle instance.

We also note that CHET, because it does full flow analysis,
checks iterators whether they are defined and used in a single
routine or a defined, passed around, and used over multiple
routines and multiple calls.

3.2 An XML Writer class
We next consider a slightly more complex example where we
are specifying the behavior of an XML writer class. This class
provides methods to begin and end the output of an XML ele-
ment. These methods can be nested to provide for subelements.
In addition, the class provides calls to set attributes of the cur-
rent element and to add text to the current element. Usage of
the class is restricted so that all attributes must be added before
either text or subelements are added and the begin and end
pairs must match up. The automaton and event table for the
corresponding specification are shown in Figure 3. Again self-
loops are elided from the diagram. In addition, the use of vari-
ables and conditions is not shown directly.

The trigger for this specification is the allocation of an Xml-
Writer element (E0). This puts the automaton into the Top
state. At this point we expect a call to begin (E1), which puts
the automaton into the Header state. Here attributes can be cre-
ated at will (using the field method, E3). A call to add text or
end a subelement puts the automaton into the Body state where
attempts to add additional attributes or text are errors. Starting
a new subelement puts the automaton back into the Header
state. Finally, ending the top-level element puts the automaton
into the Finish state. A call to close in the middle of writing an
element is an error. The Ignore state is there to trap additional
allocations that would indicate false paths in the program.

This automaton needs to keep track of the level of nesting of
elements to perform correctly. This is done by adding a vari-

Event Type Parameter

E1 (New) RETURN(iterator) C1 = result

E2 (HasNext) CALL(hasNext) this == C1

E3 (Next) CALL(next) this == C1

E4 (HasMore) CALL(hasMoreElem
ents)

this == C1

E5 (NextElt) CALL(nextElement) this == C1

Figure 2. The Iterator Specification



able, lvl, to the automaton. The variable initially is assigned
the value 0. A transition on E1 from the state Top, Header, or
Body increments lvl by 1 unless the value is already greater
than a preset limit (10), in which case the transition is to the
Ignore state. CHET will then check all paths through the code
which have a nesting level less than this limit. A transition for
E2 decrements the variable if it is greater than 0. A transition
from E2 with a level of 1 goes to state Finish.

3.3 Comodification
The above examples use one parameter to define the events.
Checking for potential instance of comodification in Java, i.e.
places where the code modifies a structure at the same time it
is iterating over the structure (which causes a Comodification-
Exception to be thrown), requires two parameters, one for the
original data structure and one for the iterator. The automaton
and event table for this check is shown in Figure 4.

Here the Start state represents the beginning of the program.
An allocation of a Vector is the trigger event E1; it causes us to
enter the Play state. We can modify the vector in this case but
if we try to iterate, we get an error. Calling the iterator method
on the vector yields an Iterator object, parameter C2, and puts
us in the Iterate state. Here we can call.next, but any attempt to
change the vector causes us to go back to the Play state. The
Ignore state handles cases where a new vector replaces the
original. An attempt to use the iterator in the Play state indi-
cates a potential comodification error and cause the automaton
to enter the Error state.

One complication that arises here is that there can be many
iterators created for a given Vector. CHET lets us check each

one separately or together. For this automaton, we set the
match type for the C2 parameter on event E5 so that new val-
ues are accumulated and all uses are checked with one specifi-
cation. To check each instance separately, we would create a
slightly different automaton. Here the trigger event would be
the creation of the iterator and it would define both parameters,
C1 from the this value and C2 from the return value. Similar
automata can be provided for checking comodification for
other data structures.

3.4 File Open and Close
The next specification checks that all files that are opened by
the user are explicitly closed. While this can be thought of as
an easy specification to write, the simplest form, i.e. that a call
that creates a new FileWriter must be followed by a call that
closes that file, is tricky to check and generally not true given
the current Java libraries. Doing an accurate and complete
check requires a more sophisticated automaton.

The reason the simple check doesn’t work is inherent in the
way files are used in Java. Typically the program will create an
instance of a FileWriter and will then use it to create an
instance of a BufferedWriter which will in turn be used to cre-
ate an instance of a PrintWriter. When the program is done, it
closes the PrintWriter. While CHET is powerful enough to
determine that closing the PrintWriter should eventually close
the FileWriter, these checks require knowledge of internal
variables and modeling the internals of the Java I/O libraries.
Moreover, if the PrintWriter gets an error flushing the file on
the close call, the underlying file is actually not closed — a
potential error in the library, but not the user’s code.

The actual automaton we check models the nested use of files
explicitly. It is shown in Figure 5. This automaton supports a
fixed level (3) of nesting that is sufficient for most programs.
It explicitly models the nested writers and checks for a close of
any of the nested elements. The trigger event is an allocation
of a FileWriter. The automaton first needs to check if the file is
successfully opened. This is done by checking for a successful

Event Type Parameter

E0(New) ALLOC(XmlWriter) C1 = new

E1(Begin) CALL(begin) this == C1

E2(End) CALL(end) this == C1

E3(Field) CALL(field) this == C1

E4(Cdata) CALL(cdata) this == C1

E5(Text) CALL(text) this == C1

E6(Xml) CALL(writeXml) this == C1

E7(Close) CALL(close) this == C1

Figure 3. Xml Writer Specification

Event Type Parameter

E1 (New) ALLOC(Vector) C1 = result

E2 (Add) CALL(add) this == C1

E3 (Add1) CALL(addElement) this == C1

E4 (Add2) CALL(addAll) this == C1

E5 (Iter) RETURN(iterator) this == C1
C2 = return

E6 (Next) CALL ( next) this == C2

E7 (Next1) CALL (nextElement) this == C2

Figure 4. Comodification Specification



return from the constructor (<init> denotes a constructor
here). After this, the automaton enters state open and checks
for a close. If a successful nested open of a subclass of Writer
with the given file as the first argument occurs, it enters the
corresponding open-nest state and checks for a close of either
the original or the nested writer. Note that by handling sub-
classes, we are also able to handle user-defined Writer classes.

To make the checking of this more efficient, we want to tell
CHET, as part of the specification, that it only needs to con-
sider the application program and not the underlying libraries.
This is done in two ways. First, the initial close event is
marked as GLOBAL indicating that it should only consider
calls in the user’s code. Second, the various nested close
events are marked as FLAT indicating that CHET should
ignore the internals of those calls when doing the checking.

Similar automaton can be created for objects of class FileOut-
putStream, FileInputStream, and FileReader.

3.5 Web Crawler Library
One of the our course assignments is to create a multithreaded
web crawler. The support code for the assignment includes a
library that stores information about the resultant pages and
determine whether pages have been previously scanned or not.
The library has to be used in a particular way. Once the user
code gets a URL to potentially scan, it needs to call a function,
beginProcessing, that checks if the URL has already been
scanned and, if not, ensures that this user has exclusive rights
to scan it. Then the user code needs to actually open the URL

connection. If the open fails, the code needs to call an routine
to flag an error; if the open succeeds but indicates redirection,
the code needs to call a redirection routine. Finally, if the open
succeeds, then the code should save the HTML either directly
or indirectly, and then as it parses the page, call a succession of
routines that indicate text fragments and text breaks and then,
when done, save the set of links on the page. In all cases the
endProcessing routine must be called when processing of the
URL is complete. Needless to say, many students do not ini-
tially use the library correctly.

A CHET specification that does much of the checking for cor-
rect usage is shown in Figure 6. This specification does not
check everything that is required however. In particular, it
does not take into account the status that is returned on open-
ing a connection and ensuring that the proper paths are taken
based on the status value. Because there are different ways for
a user to determine the error code and the code is actually
determined not in the application but from data that is read,
this is quite difficult to specify without looking at the applica-
tion code. However, the check that is here is still sufficient to
catch many of the student misuses of the library.

3.6 Checking thrown errors
CHET and its specifications are useful beyond just checking
for proper use of components. For example, exceptions in Java
are complicated because once they are declared for a method
they have to be caught by each caller. Programmers sometimes
avoid having to provide the extra code by throwing errors
rather than exceptions. While this is simpler for the program-

Event Type Parameter

E1(Create) ALLOC(FileWriter) C1 = new

E2(Open) RETURN(<init>) this == C1

E3(Close) CALL(close) this == C1

E4(Nest) CALL(<init> arg1 == C1
C2 = this

E5(CloseNest) CALL(close) this == C2

E6(Nest1) CALL(<init>) arg1 == C2
C3 = this

E7(CloseNest1) CALL(close) this == C3

E8(Nest2) CALL(<init>) arg1 == C3
C4 = this

E9(CloseNest2) CALL(close) this == C4

Event Type Parameter

Figure 5. Specification to check if files that are opened successfully are closed.



mer, it is a bad programming practice and should generally not
be done. A CHET specification that checks for this is shown in
Figure 7.

This specification is simple. The trigger event is any allocation
of an instance of java.lang.Error in the user’s application. If
the resultant object is then thrown, the automaton goes into the
Thrown state. The error must then be caught explicitly in the
user’s code to move the automaton to the Caught state. If the
program can exit with the automaton in the Thrown state, the
specification indicates an error.

3.7 Checking for Deadlock
Another example of language checks is checking for deadlock.
While CHET isn’t designed as a general mechanism for check-
ing for deadlock and while deadlock can occur in many forms,
it is possible to create specifications that check for particular
types of deadlock. For example, the specification of Figure 8
checks for two threads locking synchronized regions in differ-
ent orders, i.e. the first locks A and then B while the second
locks B and then A.

The set of events here is deceptively small since the automaton
actually needs to detect different locks in different threads.
The automaton specifies this internally using two automaton
variables, t1 and t2, that represent threads. The value of t1 is
set to the current thread when the first lock event (E1) occurs.
The second variable, t2, is set the first time the second lock is
set. The condition here requires that t1 be distinct from t2.
Finally, the remain transitions are restricted by conditions stat-
ing which thread they occur in. Note that the event E3 speci-
fies that the value for C2 must be distinct (unique) from other
parameters, i.e. the lock represented here must be different
from the lock represented by C1. This ensures that multiple
locks are being considered.

4. RELATED WORK
Checking properties of software systems has a long history
that includes original attempts at proving software correct,
extended compiler checking such as Lint [29], static condition
checking as in CCEL [11], and verification-based static check-
ing such as in LCLint [15]. More recently and more related to

Event Type Parameter

E1(Begin) CALL(beginProcessing) C1 = arg1

E2(Open) RETURN(openConnection) this == C1

E3(Save) CALL(saveHtml) this == C1

E4(File) CALL(getHtmlFile) this == C1

E5(Header) CALL(saveHeader) this == C1

E6(Links) CALL(saveLinks) this == C1

E7(Redirect) Call(setRedirectHtml) this == C1

E8(NoteErr) CALL(setError) this == C1

E9(Text) CALL(processText) this == C1

E10(TextBrk) CALL(processTextBreak) this == C1

E11(Finish) CALL(endProcessing) this == C1

Event Type Parameter

Figure 6. Specification to check for proper use of web crawler library.

Event Type Parameter

E1(Create) ALLOC(Error) C1 = new

E2(Throw) THROW throw == C1

E3(Catch) CATCH catch == C1

Figure 7. Catching Errors Specification



our work, there has been a significant body of work on soft-
ware model checking [21].

Software model checking typically starts with a software sys-
tem and a property to check. The software system is then
abstracted into a representation that is more amenable to model
checking by abstracting the original program into a much
smaller program and then converting that program into a finite
state representation. The various systems that have been devel-
oped differ in what they consider the software system to be
checked, in the way they define the property to be checked, in
the way they do abstraction, in how they map the program into
a finite state representation, and in how they actually do the
checking. CHET combines and extends aspects of a number of
other systems to meet the requirements outlined above.

Finite state automata are the principal representations used for
specifying properties. These are defined either directly or
using a language that can be mapped into a finite state repre-
sentation. The automata are triggered by program events and it
is the characterization of these program events that differenti-
ates the systems. Most of the systems including Bandera
[8,9,12] and Flavers [7] require that the user explicitly define
events or predicates in terms of the code for each item being
checked, although the Bandera Specification Language allows
parameterized specifications similar to what we can do. Other
systems such as Metal [14] and ESP [10] use simple parame-
terized source code patterns which let the programmers specify
all events of a given type with a single specification. SLIC [1]
achieves the same effect using an event-oriented language. The
MaC framework [25] takes a similar approach for specifying
dynamic instrumentation using an event definition language.
Patterns have also been used to simplify the definition of com-
monly occurring idioms in the specifications [13]. MAGIC
uses labeled transition systems (LTS) to model procedures
where the labels correspond to program statements [6]. Java
Pathfinder [17,18] uses linear temporal logic (LTL) which is a
more compact representation related to finite automata but
more removed from the programming language and the pro-

grammer. Java Pathfinder 2 [4,26,31] requires that the user
create the necessary conditions as Java code that is then ana-
lyzed with the application. Easl uses Java code fragments that
define behaviors [27]. The Alloy system has its own set-theo-
retic language for defining specifications [23]. Our approach
provides the automatic functionality of Metal or ESP using an
event-based specification similar to MaC or SLIC. This lets us
check the type of complex conditions that the latter tools can
handle while providing the ease of use of the former ones.

One key to successful software model checking is the genera-
tion of small abstractions that reflect the property being
checked without irrelevant details. The different approaches do
this in different ways. The C2BP package within SLAM [2,3]
and Java Pathfinder [30] convert the user’s code into a Bool-
ean program using predicate abstraction where each predicate
relevant to the specification being checked is replaced with a
Boolean variable. Bandera uses data abstraction to map the
program types into abstract predicates that can be finitely mod-
eled. Trailblazer looks only at control flow events and actions
and eliminates all data [22]. ESP does a combination of control
and data flow analysis to build a simplified version of the orig-
inal program. Flavers constructs a trace flow graph by inlining
control flow graphs of the various methods and adding arcs to
represent synchronization events. Java Pathfinder 2 uses static
analysis to reduce the state space by finding concurrent transi-
tions [5]. Bandera, ESP, Java Pathfinder, and Flavers all use
some type of slicing technology to restrict the abstraction to
those portions of the program that are relevant to the condi-
tions being checked. BLAST takes an additional step, using the
verification process to identify what needs to be refined in the
abstraction and building a new model based on this informa-
tion [19]. Later work on BLAST uses Craig interpolation and
proof techniques to better the abstraction [20]. MAGIC builds
finite data abstractions based on the predicates being checked
and uses these to augment a control flow graph. Our approach
to date is probably closest to that of ESP in that we use both
control and data flow analysis. However, we limit ourselves to

Event Type Parameter

E0 (Alloc) ALLOC(Object) C1 = new

E1 (Lock_X) LOCK lock == C1

E2 (Unlock_X) UNLOCK lock == C1

E3 (Lock_Y) LOCK C2 = new (U)

E4 (Unlock_Y) UNLOCK lock = C2

Event Type Parameter

Figure 8. A specification checking for potential deadlock based on lock order.



a small, heuristically chosen subset of the relevant variables,
which greatly simplifies the abstraction in exchange for a loss
of accuracy, and we achieve the effect of path-sensitive analy-
sis using automata simplification techniques.

The various systems also differ in their representation of an
abstract program for checking. Some of the systems actually
generate an automaton. For example, Flavers inlines routines
and adds synchronization arcs to build a single large automa-
ton that can be checked, while MAGIC uses its program analy-
sis to build a model representing the implementation that can
be compared to the model representing the specification using
model checking. Bandera and the first Java Pathfinder map the
program into Promela, the input language for the SPIN model
checker. Our approach is different. We generate an abstract
program with calls, synchronized blocks, and events. This lets
us handle complex and recursive programs easily and com-
pactly. In addition, we use a Flavers-like automaton (still with
calls, synchronized blocks and events) to represent the behav-
ior of each program thread other than the primary one.

Checking in Bandera is done using external model checkers
such as the SPIN model checker. SLAM and Java Pathfinder 2
use their own model checkers, SLAM’s is based on Boolean
programs, and Pathfinder’s is based on a modified JVM [4,26].
Our approach has been to develop our own checker to match
our program-like abstraction representation. The checker is
unique in the way it handles routines and synchronization, and
extends from a detailed single-threaded analysis to an approxi-
mate multithreaded analysis quite naturally.

5. EXPERIENCE
We have used CHET successfully for a variety of different
specifications and a variety of different systems.

In addition to the specifications outlined here, we have looked
at specifications that check whether Swing objects have the
appropriate callbacks registered, multiple checks to ensure that
a Java byte code library is used correctly, checks for proper
use of the JoGL library. and checks for several design patterns
including Singleton and Chain of Responsibility [16].

The table in Figure 9 summarizes some of our experience with
CHET. The first column indicates the system: Onsets is a

mathematical game based on sets, Crawler is a web crawler,
Pinball is a 3D pinball program, Freecs is a shareware chat
program, Taiga is a distributed programming system, Egothor
is an open source text search engine, Clime is our constraint
based programming environment which includes CHET,
Jalopy is an open source Java pretty printer, and Openjms is an
open source implementation of the Java message service.

The second through fourth columns indicate the size of the
systems, first in lines of code, then in the total number of byte
codes analyzed and the number of byte codes analyzed from
within the project (i.e. the user’s code). Discrepancies here are
generally due to uses of Java reflection that we did not detect
in the open source systems. The fifth column gives the time in
seconds for CHET’s interprocedural flow analysis. The next
two columns indicate the number of test instances that were
identified and the number of errors that were detected. Dis-
crepancies here are generally due to the fact that while we cor-
rectly identify and do flow analysis for specification instances
that occur during callbacks, we do not yet test such instances.
The next two columns indicate the average and maximum time
for a single test in milliseconds. The final column is the total
time taken by CHET to analyze the system.

For several of these cases, most notably those involving Clime,
we have gone through each individual test and checked manu-
ally whether the error reports were accurate. We have also
manually checked in all of our systems that all instances of
each of the particular tests were caught and analyzed by
CHET.

The table shows that the flow analysis essentially dominates
the performance of the system and the flow analysis is depen-
dent mainly on the complexity of the code and the number of
byte codes in the project. Instances of the various specifica-
tions are found readily and accurately. Most instances are
checked in around 10 milliseconds, with only a few outliers
taking on the order of seconds.

More notably, the table together with our manual checks show
that the technology in CHET can find and individually check
large numbers of instances of relatively complex software con-
ditions in real Java systems both quickly and accurately.

System LOC #BC
Proj
#BC

flow
time

# Tests # Warnings Avg Test
Max
Test

Total
Time

Onsets 2669 155645 6248 44.97 10 3 3.4 17.0 1:05.91

Crawler 3556 205514 5455 68.14 25 11 3.5 14.0 1:25.11

Pinball 11264 241264 54892 72.89 39 7 61.8 673.0 1:38.63

Freecs 20570 228163 50567 109.77 68 2 10.7 452.0 3:05.62

Taiga 51391 194923 15404 52.63 39 3 2.36 44.0 1:33.96

Egothor 54317 559898 268663 371.89 152 27 5.7 66.0 9:46.06

Clime 64998 421709 117575 255.85 571 20 14.0 2563.0 13:06.20

Jalopy 94636 639310 348843 1697.79 36 9 18.5 222.0 31:32.11

Openjms 95470 308198 30787 384.53 54 45 2.24 30 7:19.74

Figure 9. The results of running CHET on various systems.
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