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Abstract

We have built a software development tool, CLIME,
that uses constraints implemented as database queries
to ensure the consistency of the different artifacts of
software development. This approach makes the envi-
ronment responsible for detecting inconsistencies
between software design, specifications, documenta-
tion, source code, and test cases without requiring any
of these to be a primary representation. The tool works
incrementally as the software is written and evolves
without imposing a particular methodology or process.
It includes a front end that lets the user explore and fix
current inconsistencies. This paper describes the tech-
niques underlying the tool, concentrating on the user
interface and the incremental maintenance of con-
straints between these artifacts.

1.  Introduction

Software is multidimensional. Software systems
consist of a variety of artifacts such as specifications,
design documents, source code, test cases, and docu-
mentation. Each of these dimensions describes only a
limited part of the software — the actual system is their
composite.

Software evolution is the process whereby software
changes to meet changing requirements, systems, or
user needs. A major problem in software development
today occurs when the artifacts of a software system
evolve at different rates. In some cases the source code
will be updated for bug fixes or enhancements, but the
specifications and design documents will not be modi-
fied to reflect these changes. In other cases the design
will be changed to reflect a new feature before the code
is updated. Test cases may be thorough for the initial
system but, in the absence of a proper development
methodology, tend to get overlooked with the addition
of new features. Developers are familiar with the
manner in which implementation changes take a long
time to percolate to the documentation. Company docu-
mentation and coding standards often change, but old
code is not brought up to date. The result is that devel-
opers learn not to trust and thus not to use anything
other than the source code, making software less reli-
able and much more difficult to understand and evolve.

To support consistent software evolution, one
needs to ensure that all the artifacts remain consistent
with one another. Moreover, one needs to do this while
giving the programmer the freedom needed to develop
the software in the best possible way. Some changes are
best done at the source code level, for example perfor-
mance enhancements. Other changes, such as new fea-
tures, might best be done through design. Test cases can
be written first following agile methodology, or written
after the fact. Documentation is generally done when
the coding is complete, but many programmers find it
helpful to document the interface methods before the
code is ever written in order to understand its function-
ality and needs. Different companies and different
projects require different methodologies.

We have designed and built CLIME, a prototype
tool that addresses these issues using a constraint-based
mechanism for Java systems [24]. The tool is designed
to tell the developer when artifacts become unsynchro-
nized and to indicate what needs to be changed or
updated to achieve system-wide consistency. The tool is
methodology-independent. Our goal has been to assist
the developer by providing the information needed to
ensure consistency. We have been careful to ensure that
the tool does not restrict developers but instead
enhances development and evolution. Our hypothesis is
that providing such information will lead to consistent
and hence better software.

Our tool defines less rigid but still formal seman-
tics for each type of artifact. Rather than using a
common representation, we define the meaning of the
artifact in terms of the constraints it imposes on other
artifacts. This technique is surprisingly effective. For
example, constraints can ensure consistency between
UML class and interaction diagrams and the source,
source code and documentation, test cases and source
code, design patterns and either the design or the
source. Constraints can also be used in the same way to
check language or usage conventions and to check the
development process, for example ensuring that files
are tested before they are checked in.

The tool works in phases. It first extracts relevant
information from each software artifact and stores it in
a relational database. Next, it uses this stored informa-
tion along with a description of the constraints among
the artifacts to build the complete set of constraints for



the software system. Third, it uses the information in
the database to test the validity of each of these con-
straints by mapping each constraint into a database
query. Finally, it presents the results of these tests to
the developers so that they can resolve any inconsisten-
cies.

While [24] reports on the basic concepts behind
the tool, this paper concentrates on the implementation
aspects, particularly the user interface and incremental
update. Having a good user interface is essential to pro-
viding a usable tool. Moreover, the key to making this
approach practical is to ensure the information pre-
sented in the interface is accurate and timely. Even a
limited software project with a limited set of artifacts
such as CLIME itself (about 68,000 lines), involves
over 10,000 constraints and a database containing
140Mb of data. Since most of the information does not
change frequently, it is essential that the tool work
incrementally, i.e. that the database is maintained
incrementally and the set of constraints is updated and
checked incrementally.

2.  Related Work

Conceptually, the simplest approach to ensuring
the consistency of different aspects of software is to
combine them all within a single programming lan-
guage. Several environments such as Xerox Cedar
Mesa environment [31] and Common Lisp [30] have
combined documentation with code. These efforts led
to literate programming [3,17] and, more recently, the
use of javadoc and its corresponding conventions.
Environments like Visual Studio combine code and
user interface design. Proponents of UML propose
writing complete systems within its framework, thus
making it a programming language that combines
design with code. Batory [1] lifts this idea to the level
of modules that encapsulate code, documentation and
other dimensions; however, these must all compose
through the same mechanism. This it not only very
restrictive, it is unclear how, for instance, to compose
text the same way we compose code. Other recent
work looks at the impact of evolution of code but
ignores the other dimensions [27].

Current work in this area attempts to build the
program directly from the design using model-driven
development and model-driven architectures
[5,16,20,28]. Here the various UML views of the
system are augmented with enough details to have code
generate directly from the UML model. The system
evolves by evolving the model. While there are poten-
tial problems with this approach, if it can be made to
work it at least ensures that the code is consistent with
some aspects of the formal design. It does not, how-
ever, address the whole problem of consistent software
evolution in that it only addresses the UML design and
the code and does not address all the other software
artifacts, e.g. other design documents, documentation,

design patterns, requirements, etc. Moreover, it con-
strains the developer to particular methodologies.

Consistency checking has been widely done on
single software artifacts. Lint [26] and successors
CCEL [6] and LCLint [8] perform static checking of
programs. Style checkers such as Parasoft’s tool suite
or the checkstyle project perform style checking of pro-
grams. Systems such as ViewIntegra [7] and xlinkit
[13] have been used to check the consistency of UML
diagrams. There are also a broad range of tools for
doing test coverage, languages such as Eiffel that
include checkable specifications in the code, and
systems such as Flavors [4] do static checking of exter-
nal specifications. Other systems check for the exist-
ence of design patterns in the code [2,12,19,23]. The
Eclipse and NetBeans environments provided language
style and usage checking including checking documen-
tation against the source, most of which we have incor-
porated into our constraints. Ophelia attempts to
provide a common framework for multiple tools, with
integrators to translate between the representations and
a traceability mechanism for defining explicit depen-
dencies between artifacts [14,29]. Constraints have
also been used to express language properties as in
Minsky’s work [21] and to specify interactions in the
software process [15].

The closest work of these to ours is xlinkit [22]
applied to software engineering. Xlinkit provides the
general ability to check the consistency of multiple
XML documents. XML documents can either be speci-
fied directly or can be derived from other artifacts. The
constraints use a set-based XML query language based
on XPath and XLink. The current system is able to
handle very large documents using a disk-based repre-
sentation and is able to do limited incremental check-
ing of constraints by looking at what portions of the
XML tree have changed.

Our efforts differ in several respects. First, rather
than using XML and XPath, we use a relational frame-
work and SQL queries. This provides a more powerful
query language and eliminates the need to treat large
documents separate from small ones. Second, our
system does incremental update of both the internal
representation and the constraints and does incremental
constraint update at the constraint level rather than the
rule level and thus can be used continuously through-
out the development process. Xlinkit would require
that XML files be generated for any changes and does
incremental update of constraints at the rule level.
Third, our system handles a broader range or software
artifacts, both static and dynamic. For example, we
handle test cases and coverage, UML interaction dia-
grams, configuration management, and behavioral
specifications. Finally, our system works within exist-
ing programming environments, existing programming
tools, and existing methodologies, and does so without
requiring any action from the programmer.



3.  The User Interface

Our tool is designed to provide the user with the
information needed to maintain the consistency of dif-
ferent software artifacts. The objective here is to make
it easy for the developer to identify and then fix incon-
sistencies.

In order to remain methodology independent, we
have implemented the user interface for the tool as a
standalone system as seen in Figure 1. The user inter-
face provides the developer with the necessary facili-
ties.

First, it provides a series of dialogs to let the devel-
oper define and edit the set of artifacts that compose
the system, where to find them, and how to interpret
them. This is a necessary starting point for finding
inconsistencies.

Next, it provides facilities to update the consis-
tency checks as files change in the project. The updates
can either be done automatically in background or on

demand by the user. Because the updates are incremen-
tal and reasonably fast, we have found the latter to be
more useful since the developer generally knows when
the artifacts have reached a stable state and doesn’t
want to see consistency checks that reflect the interme-
diate states.

The principle portion of the interface is designed
to let the developer quickly browse over the various
consistency checks. The top pane of the interface in
Figure 1 lets the user select a set of relevant con-
straints. The constraints are arranged hierarchically.
The second pane lets the user select the relevant files.
The hierarchy here represents the directory hierarchy
with singletons automatically combined with their
parent. These two panes can be used in two ways. First,
they can be used to selectively disable particular con-
straint types or files. Second, they can be used to
quickly select a particular set of constraints or files that
should be displayed.

FIGURE 1. Textual constraint presentation interface of CLIME.



The third pane provides a tabular display of the
constraints selected by the upper two panes. This can
be sorted by constraint type, originating location, or
violating location. Moreover, the user can select a par-
ticular constraint in this pane and have the detailed
information concerning that constraint displayed in the
bottom pane. The user can also double click on a con-
straint to bring up an appropriate editor to fix a con-
straint violation. Tool tips are provided to give the user
additional, detailed information about the constraint or
its location.

An alternative, graphical view of the constraints
provided by the tool is shown in Figure 2. Here each
artifact or file is displayed as a box and consistency
violations relevant to that artifact are displayed as
colored rectangles indicating the relative position in the
file. The color coding indicates the type of violation
and is tied back to the constraint display in the main
window. Tool tips give the user information about the
displayed constraints. Rectangles are nested so multi-
ple constraints at the same position do not hide each
other. This view lets the developer see at a glance
which files have potential problems. Moreover, the two
views are tied together. The developer can click on a
displayed rectangle in the graphical view to get infor-
mation on the particular constraint in the textual view.
The constraints displayed in the graphical view are
those that are selected by the constraint and file panes
of the textual view. Finally, the currently selected con-
straint in the textual view is highlighted in the graphi-

cal view by making the corresponding rectangle
brighter.

4.  Overview of the Implementation

The overall tool is implemented using the compo-
nents shown in Figure 3. These can be divided into two
parts: the first part handles extracting the necessary
information from artifacts while the second part uses
this information to find, update, and display informa-
tion about the constraints.

The Project Manager keeps track of the artifacts
that compose the project and is able to detect, using the
Activity Monitor, which have changed since the previ-
ous update.

The Information Abstractors gather as much infor-
mation as possible from each of the artifacts that have
changed and format this information in terms of rela-
tional tables, with each abstractor generating its own
set of tables. Most of these are in two parts. The first
part takes the artifact, isolates the information relevant
to a particular dimension, and then generates an XML
file with that information. The second part reads this
XML file and then generates a second XML file con-
sisting of commands describing what should be
removed, inserted or updated.

The Database Manager is then responsible for
incrementally updating the artifact information,
attempting to minimize the changes to the database and
maintaining identifying information across updates. In
addition to updating the database, it generates an XML
file describing what has changed in the database.

The Constraint Manager that is in charge of
finding and updating constraints and storing the result-
ant constraint information in another database. It does
this using a set of metaconstraints that define generic
relationships, using these to find specific constraints,
and then checking the constraints as the underlying
data is changed. The Presentation Manager provides
the user interface.

5.  Extracting Information

Information is extracted from the various software
artifacts using an array of tools each oriented to a par-
ticular type of artifact. Changes are detected and
updated at the file level. That is, when the Activity
Monitor detects that a particular artifact has changed, it
causes all the information in that artifact to be updated
in the system. The file level seems to be the most
appropriate for updating for such information because
it is easy to detect when a file changes and because it is
easiest to write abstractors that work on a whole file at
once. While it is most common for only a small
amount of information in the file to actually change,
detecting and abstracting only that information while
maintaining consistency with the remainder of the
database would have made all the extractors much

FIGURE 2. Graphical view of violated con-
straints in CLIME.



more complex and slower. We opted instead to put the
burden of determining the actual incremental update in
the Database Manager and to keep the abstractors fast
and simple. This makes it easier to write abstractors
and lets us globally optimize incremental updates.

The current set of abstractors includes:
• Symbol table information. This includes information

about the symbol type, data type, access information,
and location of each definition, the location and defi-
nition associated with each reference, and informa-
tion about data types including the class hierarchy. It
is generated by running a slightly modified version
of IBM Jikes Java compiler that generates appropri-
ate descriptions from the abstract syntax tree.

• Documentation information. This includes informa-
tion about all Javadoc comments and the tags that
they contain. It is generated by our own doclet (a
applet-like plug-in for javadoc) which generates an
XML description of the available documentation-
related information.

• Semantic information. Language usage such as
assignments inside conditionals, unnecessary dupli-
cation of constant strings, or unterminated switch
cases are best detected from the abstract syntax trees.
This is done as part of our Jikes compiler extension.

• UML class diagrams. This includes information
about classes, attributes, operations, parameters,
associations, and generalizations. It is extracted
directly from the XMI (standard XML for UML)
representation which is either the native representa-
tion of the UML tool or, in the case of Rational Rose,
using a conversion package that generates XMI from
the native representation.

• Test cases. We assume that the developer is using
Junit [10], a common Java testing package. The
information extractor reads the compiled Java class
files using IBM’s JikesBT package [18]. It finds all

classes that are instances of test groupings and then
identifies those functions that are actual test cases. It
then patches the class files to capture flow informa-
tion and runs Junit using the instrumented class files.
The instrumentation calls routines that record each
basic block entry, each call, as well as the entry and
exit of the test cases. The result of running the instru-
mented code is an XML file for each test case that
includes a description of the test case, the date and
time it was run, whether it succeeded or failed, and
coverage information for blocks, branches, func-
tions, and calls.

• UML sequence diagrams. This includes information
about the signature and class of call points as well as
the method bodies and order in which they occur. As
in the case of UML class diagrams, this information
is extracted from an XMI representation.

• Configuration information. This includes informa-
tion about all the past versions of each version-man-
aged software artifact. The information that is
recorded includes version history, author, descrip-
tions, and change information. This information is
obtained by requesting complete CVS log informa-
tion [9] for each file.

• Static checks. We have a tool that does a full inter-
procedural flow analysis of a Java system and then
checks if various dynamic contracts (such as proper
use of Iterators or files) are maintained [25]. The tool
also generates information about dead code, possible
dereferencing of null pointers, and specification vio-
lations.

In addition to information that is abstracted
directly from source artifacts, we found the need for
additional data that was implicitly but not explicitly
part of the software. Some of this data was needed to
represent global information that is assumed by the
developers, such as rules describing naming and lan-

FIGURE 3. The architecture of the CLIME tool.
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guage usage conventions. Other information was
needed because the set of formal artifacts used today is
incomplete. Software development involves dimen-
sions such as design patterns that are not directly repre-
sented by existing design tools or representations. We
are able to define relations in the database that repre-
sent design patterns (and have done so for several of
the patterns in Gamma, et al. [11] in our previous work
[23]), but we need to manually specify the instances of
these patterns that occur in each particular software
system for the database. Because our constraint frame-
work is sufficient for checking that these patterns actu-
ally exist in the software, we see our manually entered
definitions as a placeholder for what will eventually be
a useful tool that would let developers specify and
maintain a design-pattern-based description of their
system.

Dealing with a variety of artifacts forced us to con-
front the problem of maintaining consistent global
names. Since we need to relate information in one arti-
fact with that in another, we need to appropriately link
equivalent references. In some cases, such as in UML
diagrams, the programmer may provide only partial
names, omitting the full package name and only pro-
viding the class name. However, in most cases, the
abstraction tools have enough information to construct
unique names for each package, class, method, field,
scope, etc. We adopted a naming convention similar to
that used in Java and required each abstraction tool to
generate a field with this name for each appropriate
entity. Our convention differs in that it includes scope
names and can thus use names down to the scope level
and is extended to include local variables and non-lan-
guage constructs such as UML links. In addition, we
added extra fields to various relations, such as source
types, that contain abbreviated names that can be used
for approximate matching.

The output of each of the abstractors is a set of
commands to the Database Manager. The commands
are of two forms. The first indicates that all data in a
given database table meeting a criterion are to be
deleted. This is used to remove all the old information
that is associated with a particular artifact when that
artifact changes. The second form indicates a new tuple
to be added to a particular table. By organizing the data
independently of the information source, this greatly
simplifies the actual database manager. Moreover,
identifying deleted and added information explicitly is
necessary for incremental database update.

6.  Storing and Updating Information

The Database Manager has four primary responsi-
bilities. It first processes the commands from the infor-
mation abstractors incrementally, adding and removing
tuples in the database. Second, it manages unique iden-
tifiers in order to maintain linkages among tables and
between the data and the constraints. Third, it main-

tains dynamic relations in the database. Lastly it gener-
ates a file describing what has changed in the database
so that constraint processing can also be done incre-
mentally.

The commands to the database manager describe
sets of tuples to be added and removed from each rela-
tion. Typically, they indicate that all tuples that came
from a particular artifact should be removed and then
provide the new tuples for that artifact. This is true
even if only a small change was made to the artifact.
This presents two basic problems for an incremental
framework. First, it means that the database manager
would have to report a relatively large number of
changes to the Constraint Manager even when only a
small amount of data actually changes. Second, it
makes tracking unique identifiers that relate informa-
tion between artifacts more difficult. By solving these
two problems, our database manager is able to handle
incremental file-based updates efficiently.

The database manager does an intelligent update
based on the information it is given. Instead of deleting
tuples outright, it reads all the tuples that would other-
wise be deleted. It then compares each tuple to be
added against those scheduled for deletion. If the new
tuple is already in the database, it ignores both the
request to remove and insert it. If the tuple exists in the
database but non-critical fields such as the line number
have changed, it simply updates the changed fields. If
the tuple is indeed new, it inserts it into the database.
Finally, it removes all tuples that were not otherwise
duplicated.

While maintaining the tuples in the relations, the
Database Manager needs to manage the assignment of
unique identifiers (UIDs). Here the database system
requires that any relation defining a UID field also
specify the set of fields that characterize the tuple and
hence essentially define the UID. This set of fields is
employed to ensure that the same UID is used to repre-
sent the same object through updates. For example, in
the relation describing source definitions, the UID is
characterized by the name, the scope, the data type, and
the type of symbol for the definition. When a tuple
with a UID field is to be added to the database, the
database manager checks if there is an existing UID
assigned to the set of characteristic fields. If so, it will
reuse this UID; if not a new UID will be created.

The abstractors generate local UIDs as placehold-
ers for the corresponding positions in the output tuples.
The Database Manager also takes responsibility for
replacing these local UIDs with the appropriate global
ones based on the above analysis. Here it builds a
mapping table as the queries are processed and then,
when actually updating the database, replaces all local
UIDs with the corresponding global ones. This lets the
abstractors use local UIDs to represent links within the
new data and to not have to worry about the global UID
name space.



Much of the information contained in software is
hierarchical in nature, for example the class structure
or scopes. Constraints based on such information often
are interested not in the local hierarchy, but rather in
the transitive closure of that hierarchy. Since transitive
closure is not a normal database operation, our data-
base manager automatically constructs and updates
transitive relations as the database changes. Here we
are able to define a closure relation for any particular
database relation and have the new relation automati-
cally recomputed when changes occur in the base rela-
tions. The manager currently maintains transitive
closure relations for the class hierarchy, the scope hier-
archy, and the static call graph. The database manager
also provides for traditional query-based views. Cur-
rently, we use these to provide mappings from classes
and methods to scopes in order to simplify constraint
definition.

The final task of the database manager is to gener-
ate an XML description of what has changed in the
database. The description identifies which tuples are
inserted, deleted, and updated for each table of the
database. For tables that have UIDs associated with
each tuple the information reported is the UIDs of
modified tuples. For tables without associated UIDs,
the tool reports that the table changed.

7.  Constraints and their Maintenance

Given data about the different dimensions of a
software system, the next portion of our tool defines,
manages, and presents the constraints that ensure the
different artifacts remain consistent as the software
evolves. The first step here involves defining what it
means for two software artifacts to be consistent with
one another. Typically, this will mean that a syntactic
or semantic detail defined in one of the artifacts is rep-
resented appropriately in the other artifact. Our tool
uses a constraint to reflect this association.

While it is not practical to have the developer
explicitly define all the constraints that are needed to
relate the various artifacts, it is possible to define rules
whereby such constraints can be generated. These rules
are what we call metaconstraints. Metaconstraints have
the form . Here S is a relation

in the database and represents a tuple of that rela-
tion. This tuple is the source of the constraint. We
require that any relation used as the source of the con-
straint have an associated UID field. This lets us easily
identify the source for a constraint and to detect, based
on the update file from the database manager, when we
might have to check for new constraint instances (if
new tuples are added to S), check the continued appro-
priateness of constraints (when tuples are updated in
S), or remove existing constraints (when the source
tuple for a constraint is removed from S).

The second part of the constraint definition, ϕ(x),
indicates the conditions under which the constraint is
applicable, while the third part, Θ(x), is a qualified
predicate that specifies the conditions the constraint
must meet. Both of these are arbitrary predicates
defined over tables in the database. Variables ranging
over the tables can be defined using FORALL,
EXISTS, NOTALL, NOTEXISTS, and UNIQUE,
operators. Each such variable is meant to represent a
tuple. The predicates can also include comparisons,
string matching, arithmetic and string operators, and
Boolean operations.

An example of a metaconstraint is shown in
Figure 4. This constraint specifies that any public inter-
face in the source code appear in the UML as an inter-
face. The actual check looks at all definitions that are
interfaces, not in system files, have public access, and
are defined in a package scope. For each such defini-
tion it creates a constraint to check if there is a class in
the UML diagram representing an interface with the
same name as the source definition. The metaconstraint
definitions for the actual system are coded as XML
files that can be defined either globally or for a particu-
lar project.

Note that this constraint has to deal with possibly
different naming conventions in UML and the source.
This can be handled in several ways. The simplest is to
define the matching criteria between names as part of
the metaconstraint, for example by defining a regular
expression that relates the name in the UML to the
name in the source. The alternative we use is less
general but more efficient. We have the information
abstractors generate additional fields that represent

x S∈( )ϕ x( )Θ x( )∀

x

FIGURE 4. Sample metaconstraint definition.

CONSTRAINT: source_uml_interface_correspondence
DESCRIPTION: Public interfaces in the source must appear in the UML

FORALL x IN SrcDefinition
WHERE

x.SymbolType == INTERFACE AND NOT x.System AND x.access == PUBLIC AND
EXISTS z IN SrcScope

WHERE
z.id == x.Scope AND z.ScopeType == PACKAGE

CHECK
EXISTS y IN in UmlClass

WHERE
y.ClassType == INTERFACE AND x.Name == y.TypeName



simplified names for appropriate items, for example the
TypeName for the UML class and MatchName for
source types. The query then only checks for matching
of the simplified names.

The tool takes these metaconstraint definitions and
uses them to generate the set of actual constraints for
the software system and maintain this set as the soft-
ware evolves. The actual constraints represent
instances of the metaconstraints referring to particular
items. For example,. the metaconstraint of Figure 4
would be mapped into a set of actual constraints, one
for each public interface in the source. The tool needs
to maintain the set of such constraint instances and
their validity as the system evolves.

The tool also keeps track of the various metacon-
straints, detects when they change, and then updates
the corresponding constraints. This lets the program-
mer add new constraints or modify existing ones and
still do incremental updates of the overall system. This
is especially useful for project-specific constraints
which tend to change periodically and generally for
debugging constraint definitions.

Constraint maintenance is accomplished by
mapping the metaconstraint formulas into SQL que-
ries. In particular, the constraint manager is able to
generate three types of queries from each formula. The
first is designed to generate the set of UIDs that corre-
spond to particular instances of a metaconstraint along
with a Boolean value indicating whether the constraint
holds or not. This query can be issued over the whole
database or only for a particular set of UIDs. The query
is issued over the whole database when the constraint
set is initially created or when the metaconstraint defi-
nition has changed. Otherwise, the query is restricted
to the set of modified UIDs since these are the potential
candidates for new constraints. This provides for fast,
incremental update of the set of constraints that are
affected by a change.

The second type of query built by the constraint
manager is used to generate the dependencies for the
constraint. If the Θ expression uses an EXISTS opera-
tor, then the UID for the corresponding tuples that
satisfy the expression are the elements that demon-
strate the validity of the constraint. Similarly, if the Θ
expression uses a FORALL operator, then the UID of
any tuple that does not satisfy serves as a counterexam-
ple that demonstrates the failure of the constraint
instance. The constraint manager will generate a set of
queries for each actual constraint, one for each nested
EXISTS or FORALL operator that is used in this way,
to get the full set of UIDs upon which each particular
constraint depends. These queries are generated for any
constraint that has changed and are specific to a partic-
ular constraint instance.

These dependencies are used in two ways. First,
they are used to report information to the developer
about why a constraint may or may not hold. Second,

they are used by the constraint manager to determine
when a particular constraint instance needs to be
rechecked after an update to a set of software artifacts.
One complication that arises is that some constraints
are dependent on all tuples in a table. For example, if a
constraint uses a FORALL operator in the Θ expres-
sion, then any change to the corresponding database
table will require that the constraint be rechecked. To
accommodate this, the constraint manager also keeps
track of which tables each constraint is dependent
upon. This information is determined statically by ana-
lyzing the metaconstraint formula.

The third type of generated query is used to update
the status of constraints that might have changed. The
set of all constraints that need to be checked is com-
puted for each metaconstraint based on the update
information passed from the database manager. Then
individual queries are constructed to recheck the valid-
ity of each element of this set.

The translation of a metaconstraint into a query is
relatively straightforward since the expressions used in
the metaconstraint definitions parallel those in SQL.
For example, the metaconstraint of Figure 4 generates
the test query shown in Figure 5. While the queries that
are generated look relatively complex, the database
system is generally able to handle them efficiently
using appropriate indices within the relations. For all
the constraints we have defined, the generation query is
evaluated using a single table scan so that the complex-
ity of the checks is at worst linear. The update query is
then done using indexed lookup on the relevant UIDs
and runs in time that should only scale as the log of the
size of the database.

The constraint manager keeps track of the set of
constraint instances using a separate set of relations in
the overall database. For each constraint instance, it
keeps track of the metaconstraint, the UID of the
source tuple for that constraint, the set of UIDs for each
tuple that serves as positive or negative evidence for the
constraint, the set of tables the constraint is dependent
upon, and a flag indicating whether the constraint is
currently valid or not. This information is updated
incrementally based on the update files from the data-
base manager and is done automatically whenever the
database manager updates the database.

Our tool currently uses these predicate-based con-
straints to express sixty-eight global relationships
among software artifacts as well as a number of
project-specific relationships.

8.  Experience and Future Work

We have used our constraint-based tool for its own
development, for student projects, for developing
support code for classes, for an Internet-scale comput-
ing project, for a software visualization system, and for
a small set of development projects, mainly to validate



the system and the approach. We have also run the
system on a variety of open source projects to show
that the system scales and generates meaningful
checks. These include Freecs (a shareware chat
program with 20,000 lines of code), Egothor (text
search engine, 54,000 lines), Jalopy (Java pretty
printer, 95,000), Openjms (implementation of the Java
Messaging framework, 95,000), and Ant (170,000).

The system is used in its own development
(68,000 lines of Java plus about 250,000 lines of exter-
nal Java libraries). This system involves about 17,500
different constraints over 176 artifacts. While a full
rebuild of the database takes around twenty minutes
and involves over 9,000 queries, incremental updates
when fewer than 20 files have changed typically take
one to three minutes with a high degree of variance
depending on exactly what changes. About one third of
this time is spent updating the database by finding and
analyzing changed files and then doing the incremental
update, with about a third of this time being spent on
recomputing the various transitive relationships that
are stored in the database. The remainder is spent
updating the constraints where the bulk of the time
involves evaluating the SQL queries associated with
the metaconstraints. A typical update at this level
involves about 500 database queries, most of which are
evaluated due to table updates rather than item updates.

This level of incremental performance is adequate
and significantly better than non-incremental, but not
exceptional. If we enable automatic updating, the
updates occur in background and are not noticeable.
However, if we want to update the front end immedi-
ately after changing files, there is a noticeable delay
with large systems. We feel that much of this delay
could be eliminated by being more intelligent about
which constraints need to be rechecked when a table
changes by associating a checking query with the table
to detect if the changes are actually relevant and by
minor modifications of some of the metaconstraint def-

initions to make the corresponding queries more effi-
cient.

Our experience in using the system has shown it to
be very helpful in identifying potential problems and
inconsistencies. We have found and corrected numer-
ous language and documentation problems in all the
tested systems, problems that reflected inconsistencies
between the code and either the language conventions
or the documentation. It was particularly useful in
ensuring the quality of course software before it was
released to the class. For those systems where we have
UML, we have been able to keep the UML synchro-
nized with the source without having to completely
regenerate it and hence lose the particular formatting
and conventions we used in creating it initially. For
systems where we used junit, it was helpful in identify-
ing both coverage and what test cases needed to be
rerun. Students found that it provided quick detection
of careless errors, especially those dealing with lan-
guage usage.

The current system was engineered for Java, but
the techniques used and the overall approach should
work for arbitrary languages and development environ-
ments. Adding additional artifacts to the framework
involves writing an appropriate information extractor, a
task that can generally be done by building on existing
tools. For example, we use the Jikes compiler for
extracting Java information, but in the past have
extracted similar information for C and C++ using
Sun’s source browser database, the EGC compiler front
ends, and minor modifications to gcc. One interesting
future direction is applying the overall techniques to
build a unified design model for a system by relating a
variety of different design artifacts such as contracts,
UML, user interface models, design patterns, architec-
ture design languages, typestates, abstract state
machines, and ownership types.

The system is available in buildable source form
through our web site (www.cs.brown.edu/people/spr).

SELECT T_1.Id, 0
FROM SrcDefinition T_1
WHERE (T_1.Id IN ( ‘_50’ ) AND

  ((T_1.SymbolType = 4) AND (NOT T_1.System) AND (T_1.Access = 1) AND
      EXISTS ( SELECT T_2.Id FROM SrcScope T_2 WHERE

  (((T_2.Id = T_1.Scope) AND (T_2.ScopeType = 6)) ) ) )
  AND NOT ( EXISTS (

       SELECT T_2.Id FROM UmlClass T_2 WHERE
  (((T_2.ClassType = 1) AND (T_1.Name = T_2.TypeName)) ) )  ) )

UNION
SELECT T_1.Id, 1
FROM SrcDefinition T_1
WHERE (T_1.Id IN ( ‘_50’ ) AND

  ((T_1.SymbolType = 4) AND (NOT T_1.System) AND (T_1.Access = 1) AND
      EXISTS ( SELECT T_2.Id FROM SrcScope T_2 WHERE

  (((T_2.Id = T_1.Scope) AND (T_2.ScopeType = 6)) ) ) )
  AND EXISTS (
      SELECT T_2.Id FROM UmlClass T_2

 WHERE (((T_2.ClassType = 1) AND (T_1.Name = T_2.TypeName)) ) )  )

FIGURE 5. Example of an test-update query generated for the specification in Figure 4



Overall, the system demonstrates that using an
indirect mechanism based on simple, one-way con-
straints can be very effective way to integrate a variety
of diverse software artifacts in a meaningful way. The
techniques are extensible and powerful; they can
handle a variety of different types of artifacts and
provide a broad range of meaningful information to the
developer.
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