
The Challenge of Helping the Programmer During
Debugging

Steven P. Reiss
Department of Computer Science

Brown University
Providence, RI. 02912

spr@cs.brown.edu

Abstract—Programmers spend considerable time debug-
ging their systems. They add logging statements and use
debuggers to run their systems in a controlled environment all
in an attempt to understand what is happening as their pro-
gram executes. Our hypothesis is that visualization tools can
significantly improve the debugging process.

A wide variety of tools have been developed for visualizing
and understanding the dynamics of program execution. These
tools can provide lots of information about executions. How-
ever, almost all of these tools are standalone; they are not
designed to be used in conjunction with a debugger.

What is needed are tools that can work while the program-
mer is debugging a system and that provide the information
the programmer needs to understand and assist the debugging
process.

We have started to develop such tools within the context of
the Code Bubbles development environment. However, there
is much room for improvement and we call upon the software
visualization community to think about and develop practical
tools that will improve the debugging process.

Keywords—Software visualization, dynamic visualization,
debugging.

I. INTRODUCTION

Debugging is one of the most difficult problems in soft-
ware development. It is also one area in which software
visualization can have the largest impact. The purpose of
this paper is to challenge the software visualization commu-
nity to develop practical tools that will actually be used by
programmers to significantly improve debugging.

Interactive debugging and debuggers have not changed
significantly over the last fifty years. They provide the pro-
grammer with the ability to set breakpoints, examine stor-
age, and control execution through commands such as step,
continue, and goto. The programmer then uses these com-
mands to examine the execution in detail, attempting to
determine where the program’s behavior deviates from the
expected behavior and what causes the deviation.

There are many reasons why debugging continues to be
a difficult problem. Bugs often are exhibited in locations
which are different both temporally and physically from
where the incorrect code. The amount of relevant data that
needs to be examined can be quite large and the differences
that cause problems can be quite subtle. Some problems,

such as data races, memory allocation issues, and iterations
over hash tables, can be non-deterministic and vary over
runs. Other problems, such as those involving performance
can involve analyzing substantial amounts of data in the
form of profiles and traces. Problems with graphics often
involve complex interactions in unavailable library code.

Moreover, as programs become more complex, debug-
ging is becoming more complex. Today’s programs are typ-
ically multi-threaded, and often involve multiple
communicating processes and multiple languages. Today’s
servers typically handle a range of transactions all at once,
and the interaction of these transactions can cause problems.
Programs that use graphic user interfaces are essentially
non-deterministic since the order of input events generated
by the operating system can vary from run to run.

In each of these cases, the difficulty in debugging can be
viewed as a data problem. The programmer can obtain a
large amount of data about the execution of their program,
but then has to sift through this data to determine what is
relevant and how the data relates to the program’s expected
and actual behaviors. Typically, programmers tend to mini-
mize the amount of data they collect both to make this task
feasible and practical. For example, programmers will set
breakpoints and examine variables only at key points of the
run, not on every statement; they will examine only those
data structures they deem immediately relevant, not all data
structures; and they will assume that parts of the program
are behaving as expected until they see otherwise. Because
of this minimization, complex debugging is generally an
incremental process, with the programmer using informa-
tion from one run to determine where to set breakpoints,
what data to examine, and what assumptions to question in
subsequent runs.

Ideally, the system should collect all the data the pro-
grammer might need during the debugging run and then
make that data available to the programmer when needed in
a way that makes the problems and issues apparent. The
programmer should rarely have to rerun the system in order
get the necessary understanding of what is happening.
Moreover, the programmer should be alerted to potential
problems that they might not know are occurring as they
happen.

Software Visualization involves using a variety of tech-
niques to effectively display large amounts of data about
software so that the data that is of the most interest is high-
lighted and readily available. For example, city-based views
of software systems make such problems as bloat, very
large classes, overused classes or methods, excessive
changes, etc. stand out as part of the visualization. Similarly,
memory visualizations try to make unusual memory pat-
terns such as memory leaks stand out.

Since much of debugging involves finding unusual or
unexpected values in large volumes of data and software
visualization is designed to handle just such problems, the
combination of the two seems a natural marriage.

II. PRIOR WORK

Many researchers (and a few companies) have attempted
to use software visualization to assist in understanding the
dynamics of program execution [1,6], generally as a stand-
alone tool either working off-line using traces such as with
Jinsight [4,5] or on-line using instrumentation as with
ExplorViz [2], but rarely within a debugger. The net result
of this can be seen in the wide variety of visualization tools
provided by the debuggers in modern development environ-
ments such as Eclipse — almost nothing.

Some of the tools that have been tried include:
• Visual data structure displays including displays that ani-
mate or show changes as they are made.

• Performance tools that show where the program is spend-
ing its time.

• Memory visualizations that show leaks or illegal memory
access.

• Lock monitoring tools that show the locking interactions
between threads.

• Stack visualization tools that show the call stack over
time.

• Execution visualization showing what is currently execut-
ing by highlighting code lines or higher level views.

Based on our own experiences, we hypothesize several
reasons that these tools have not been adapted by or are not
widely used in modern environments. First, they often are
too slow. Using the tools often slows down the program to
the point where it becomes unusable or where debugging
becomes painful. For example, attempting to use Eclipse
TPTP on an interactive program, makes the subsequent
interaction painful. (The slowdown is often a factor of 2-10
or more.) Memory and data structure views often have
similar behaviors.

A second reason is that most of the tools are standalone,
designed to monitor or provide information on programs
running outside of the debugger. They do not work well
when they are applied to a program being debugged. For
example, they don’t understand when the program is

stopped at a breakpoint, and the debugger can have diffi-
culty correlating instrumented code with the user’s source.

A third reason is that the visualizations do not do what
they need to, that is, they do not highlight or make obvious
the unexpected or relevant behavior. The primary reason for
this is that what is relevant varies with the problem being
debugged, which the tool typically doesn’t know. For exam-
ple, data structures in large systems, can be very complex,
and often the low level details, e.g. how a list or table is
actually implemented, are irrelevant, but not always. There
can be many locks in a program used many times, but which
are problematic can only be detected after a problem occurs.
A large number of calling sequences and interactions are
possible, but only a few are going to be apropos to a particu-
lar problem.

A fourth reason is that the tools are too complex to learn
and use in the throw-away environment that is debugging.
Programmers don’t like to invest time in tools with
unknown or limited benefits when they are concentrating on
finding a bug.

The value of using and providing additional, appropriate
information to the programmer can be seen in the Whyline
project [3]. This runs the program in a controlled environ-
ment to gather enough information to be able to help the
programmer pinpoint a potential problem by asking ques-
tions as to why certain things happened. A tool that gathered
similar information while debugging (rather than off-line),
and that could present the information to the programmer in
a meaningful way, could be of immense benefit.

III. OUR CURRENT WORK

We have been working on developing new visualization
tools to aid debugging within the framework of the Code
Bubbles development environment. This can be seen in
Figure 1. The tools make use of a common framework that
uses minimal instrumentation along with stack sampling to
gather the relevant information.

We started with the Code Bubbles interface for debug-
ging. This creates a new bubble for new routines at a break-
point, implicitly showing the call stack, with arrows
between the bubbles showing the call relationship; it pro-
vides stack bubbles that can be frozen so that the program-
mer can examine variables from prior program states and
compare them to current values; variables can be extracted
from the stack into their own bubbles to show more detailed
values; different threads are shown in different columns (or
rows) of bubbles; a compact bubble shows the different
threads and detailed state information.

In addition, we provide debugger bubbles (shown in
more detail in Figure 2) to:
• Show the debugging history as a UML sequence graph.
This is interactive in that the programmer can use it to view
the code and variable values at any prior point in the debug-
ging session.

• Show the execution history of the current thread when it
has stopped at a breakpoint. This shows an approximation
of what the thread was doing in the prior few seconds.

• Show information about a graphical user interface includ-
ing the widget hierarchy and what routines are doing draw-
ing at a chosen pixel.

• Detail where the program is spending its time executing
through a table showing the time spent at various lines and
methods.

• Detect and display detailed information about deadlocks
when they occur.

• Display the value of programmer defined expressions and
update at each breakpoint.

Figure 1. A view of debugging in code bubbles.

Figure 2. View of the various Code Bubbles debugging tools.

• Provide an interactive read-eval-print loop.

• Provide a high-level view of the history of execution in
terms of threads, tasks and transactions that is generated
automatically based on data collected during previous
debugging runs.

All these tools are designed to work within the context
of the debugger and to be continually active. The monitor-
ing and data collection needed imposes an overhead of 1-
2% (approximately 0.5 ms every 33 ms, but this varies by
program and execution). Most of this is done in a separate
thread in parallel with execution, and hence is almost invisi-
ble if extra cores are available on the machine. This allows
the various tools to provide information about the past on
demand, rather than requiring the programmer to proac-
tively specify what information they want. Moreover, the
tools that monitor execution, for example, the high-level
viewer and the profiler, take breakpoints and user interac-
tions with the debugger into account.

IV. THE CHALLENGE

Our work on Code Bubbles shows that it is possible to
provide viable tools for debugging that involve significant
amounts of information and that incorporate visualizations.
However, the current set of tools is only a small first step
and really doesn’t address many of the problems program-
mers face when debugging. In particular:
• The tools only gather detailed information at breakpoints,
not continually. This limits the questions the programmer
can ask, especially questions about the history of execution,
and restricts the usefulness of the tools.

• The information on prior history, thread states, etc. is
often too coarse to be of interest because it is gathered
mainly by stack sampling.

• Considerable information is available, but currently not
displayed. For example, the debugger has stack and thread-
based profiling data and the history of thread states over
time, but does not display either.

• Complex data structures, obvious candidates for software
visualization, are displayed textually and are often difficult
to delve into and view in detail.

• There are no tools to provide information about memory
and locking behavior other than at deadlocks.

The end result is that while the tools available in Code
Bubbles thus far are useful, they do not yet make a signifi-
cant difference in the way debugging is done or in the com-
plexity of the debugging process.

This leaves a prime opportunity for the software visual-
ization community. To this end, we pose a set of questions
to the community in the hopes of generating interest as well
as new and better debugging tools.

First, what information could the debugger provide that
would let you as a programmer debug faster or more effi-

ciently? Is this information about history, the current state or
about tentative future executions? Is the information cen-
tered on control flow, dataflow, memory, locking, or other
aspects of system behavior? Is the information very specific
or is it general, and if it is specific, how might you specify
what it is you are looking for?

Second, suppose we can provide tools with a reasonable
overhead budget, say 5% of execution time (which is still
small enough to not be noticed). Combining this with off-
line analysis (e.g. static analysis, information from prior
debugging runs, information from the programmer, etc.),
can we gather enough information so that when the pro-
grammer asks a question we can answer it? Based on previ-
ous experience, and the advances in both hardware and
software, I think this will be doable.

Then, when we can get this detailed information, some-
thing approaching a complete program history or the history
of a data structure, what visualizations can we provide that
would offer meaningful data to the programmer while high-
lighting issues that the programmer should be aware of or
that are relevant to the current debugging session? How can
we organize, analyze, and present this data in a meaningful
way without overwhelming the programmer?

Finally, can the software visualization community
provide a practical set of debugging tools that programmers
will actually use in their everyday work and that can be used
on real systems. Can we make using software visualization
for debugging the standard practice.

This is a chance for software visualization to prove its
value.

V. ACKNOWLEDGEMENT

This work was done with support from the National
Science Foundation through grants CCR1012056 and
support from Microsoft.

VI. REFERENCES

1. Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon Moonen,
and Rainer Koschke, “A systematic survey of program
comprehension through dynamic analysis.,” Technical Report TUD-
SERG-2008-033, Delft University of Technology, (2008).

2. Florian Fittkau, Jan Waller, Christian Wulf, and Wilhelm Hasselbring,
“Live trace visualization for comprehending large software
landscapes: the ExplorViz approach,” Proceedings of First IEEE
Working Conference of Software Visualization, (2013).

3. Andrew J. Ko and Brad A. Myers, “Debugging reinvented: asking and
answering why and why not questions about program behavior,”
International Conference on Software Engineering 2008, pp. 301-310
(May 2008).

4. Wim De Pauw, Doug Kimelman, and John Vlissides, “Visualizing
object-oriented software execution,” pp. 329-346 in Software
Visualization: Programming as a Multimedia Experience, ed. John
Stasko, John Domingue, Marc H. Brown, and Blaine A. Price, MIT
Press (1998).

5. Wim De Pauw, Nick Mitchell, Martin Robillard, Gary Sevitsky, and
Harini Srinivasan, “Drive-by analysis of running programs,”
Proceedings International Conference on Software Engineering
Workshop of Software Visualization, (May 2001).

6. Steven P. Reiss, “Visual representations of executing programs,”
Journal of Visual Languages and Computing 18(2) pp. 126-148
(2007).

	The Challenge of Helping the Programmer During Debugging
	Steven P. Reiss
	Department of Computer Science
	Brown University
	Providence, RI. 02912
	spr@cs.brown.edu
	Abstract
	Keywords
	I. Introduction
	II. Prior Work
	III. Our Current Work
	Figure 1. A view of debugging in code bubbles.
	Figure 2. View of the various Code Bubbles debugging tools.

	IV. The Challenge
	V. Acknowledgement
	VI. References

