
Dynamic Analysis of Java Locks
Steven P. Reiss and Alexander Tarvo

Department of Computer Science
Brown University

Providence, RI. 02912
{spr,alexta}@cs.brown.edu

Abstract

Java provides synchronization primitives in the form
of synchronized regions with wait and notify method.
Programmers use these regions to implement a variety
of higher-level synchronization constructs. Under-
standing the locking behavior of a Java program
requires understanding the high-level locking seman-
tics the programmer intends. We have developed a sys-
tem that uses dynamic analysis to determine the high-
level meaning of different program locks, provides the
programmer with information about how locks are
used, and visualizes the locks in real time.

1. Introduction
“What is my program doing?” Programmers often

ask that question and spend significant amounts of time
attempting to answer it using a variety of tools gener-
ally not suited to the purpose. The overall goal of our
research is to provide appropriate tools that help the
programmer address this question effectively and effi-
ciently.

The problem of understanding the program’s
behavior becomes especially challenging in case of the
long-running multithreaded applications. Multithreaded
programs result in increased performance on modern
multicore and multiprocessor systems. However in
order to function correctly, the execution of multiple
threads must be carefully synchronized. If the thread
synchronization is done improperly, such programs
become a source of problems including deadlocks, race
conditions, and performance issues. These problems are
often hard to detect and reproduce.

Modern programming languages provide a set of
primitives for synchronization in multithreaded pro-
grams. The basic synchronization primitive in Java is a
monitor [12], implemented by every Java object using
synchronized regions and wait and notify calls. The
monitor maintains a queue of threads waiting on it.
When a thread calls the object’s wait() method, execu-
tion of that thread is suspended and it is added to the
object’s queue. Correspondingly, the notify() method
fetches one of the waiting threads from the object’s
queue and resumes its execution when possible; while
the notifyAll() method resumes execution of all waiting

threads. Java also allows wait() calls to time out and to
return spuriously.

Although monitors and synchronization regions are
useful in some simple tasks, more complex program-
ming scenarios require for more sophisticated synchro-
nization mechanisms. Thus programmers use basic
synchronization primitives to implement higher-level
synchronization mechanisms such as atomic regions,
condition variables, semaphores, read-write locks, and
barriers. In this paper we call these higher-level abstrac-
tions logical lock types. While programmers typically
write Java code in terms of synchronized regions and
wait() and notify() calls, they design, think about, and
maintain their systems in terms of these higher-level
logical lock types.

Unfortunately, current tools for understanding and
debugging of multithreaded programs provide informa-
tion in terms of the low-level synchronization primi-
tives rather than the higher-level logical locks that the
programmer thinks in. This limits the utility of such
tools and makes them difficult to use for analyzing real-
world scenarios.

To address this problem, we developed a tool that
understands the behavior of the program in terms of
high-level synchronization mechanisms and presents
this information to the programmer. This tool works in
stages.

During the first stage we record all interactions of
synchronization primitives in the user program using
the standard Java monitoring tool, JVMTI [18]. JVMTI
does not report all the information we need, so we infer
missing data and create a complete facsimile log of syn-
chronization operations in the user program.

During the second stage, we identify logical lock
classes, multiple objects in the program that are used as
locks and represent different instances of the same
logical lock from a design perspective. For example,
every Swing document has its own read/write lock.
These multiple read/write locks are logically the same
in that they share a common behavior and should have
the same logical lock type. The second stage of our
system finds and groups such logical lock instances.

During the third stage we analyze the complete fac-
simile log and identify how each logical lock class iden-
tified in stage two is used, essentially assigning it to one
or more lock types. The lock types we currently identify

include mutexes, barriers, semaphores, read-write
locks, producer-consumer locks, general condition
variables, and latches. For each type, we identify the
relevant synchronization regions appropriate to the
type. For example, for a semaphore, we will identify
which regions do acquire operations and which regions
do release operations. This analysis is flexible enough
to detect when a particular lock is used for multiple
purposes.

In the fourth stage we present the information on
logical locks to the user. This includes a presentation of
the logical lock types as well as associated information
on lock performance, wait times, and lock nesting.
Lock nesting behavior is shown as a graph that can be
used to identify potential deadlocks.

The final stage of the system allows the user to
select one or more logical locks and then run the
program again to visualize the exact behavior of the
selected locks. In this case, we instrument the running
program by dynamically modifying the Java binary
code and provide time-based visualizations of thread
and locking behavior. These can be used to identify
performance and other lock-related problems in the
user program and to get either a high-level overview or
a detailed picture of locking behavior in the program.

The tool has been used to analyze and visualize the
locking behavior of various Java programs, from the n-
body gravitational simulator to a new generation IDE.

The remaining of the paper will be organized as
following. After reviewing related work in the next
section, we describe stages of our tool in detail. In
Section 3. we describe how we reconstruct locking
sequences from the information provided by Java’s
low-overhead lock monitoring. In Section 4. we
describe how we identify logical locks. Section 5. then
describes how we use the lock sequences to categorize
locks by how they are used. The various visualizations
and presentations are described in Section 6. We con-
clude with an analysis of our experience and directions
for future work.

2. Related Work
A number of tools exist for finding and describing

deadlocks for Java programs. These include JConsole
[5], IBM’s Multi-Thread Run-time Analysis Tool for
Java [6], FindBugs [13], GoodLock [11] and its exten-
sions [1], Jade [19], RacerX [8], and work on library
deadlock detection [25]. While these tools are quite
effective at what they do, they don’t do the right thing.
They look only at Java synchronized regions. However,
complex, multithreaded systems, even Java systems,
typically use a much wider variety of locks. Our expe-
rience in writing concurrent systems over the past
fifteen years is that only a fraction, less than 50%, of
the deadlocks are due to different locking orders of
synchronized regions. However, this is all that existing
tools check for.

Other tools have concentrated on detecting race
conditions. Examples of such tools include FastTrack
[10], Goldilocks [7], DataCollider [9], DJIT+ [14], and
Eraser [23], and its further development in MultiRace
[20]. They find data items that are read by multiple
threads and ensure that access to these items is con-
trolled by a lock. These tools again assume that the
program controls access to these items through simple
locks, for example within synchronized regions. More
complex locking schemes such as user-implemented
read-write locks are difficult or impossible to detect
statically.

Several performance analysis tools such as Paje
[15], JaVis [17], Threadscope [24], and our JIVE
[21] and DYVISE [22] look at locking behavior and try
to visualize where and why threads are blocking. They
represent interaction of the multiple threads as graphs
[3,16,24] or as extended UML diagrams [2,17]. These
tools again are dependent on the programmer’s use of
simple synchronization. For complex locks, they might
tell what thread is blocking but it might be difficult to
deduce what caused the block and hence what needs to
be done to fix the performance problem. For example,
the Swing Document class provides read/write locks
that allow multiple readers and a single writer. The
code tracks the current writer thread, but only note the
number of readers, not who they are. When such locks
are involved in a deadlock with one of the locked
threads holding a read lock or when there are perfor-
mance issues surrounding such locks, it is difficult to
use such tools to determine both what thread is respon-
sible for the errant read lock and where and when that
lock was acquired.

3. Collecting Lock Traces
In order to determine types and locations of logical

locks in the Java program, we must first record the
behavior of synchronization primitives in that program.
To do this we run the program in a typical configura-
tion, and record all operations performed by the syn-
chronization primitives for further analysis. In
particular we need to know when the thread enters the
synchronized region, when it exits that region, when it
waits on the monitor and when it does not need to wait,
and when the thread notifies other threads. From an
engineering prospective, this requires identifying entry
and exit points for all the synchronized regions; identi-
fying calls to wait() and notify() and associating them
with each other; and distinguishing wait() calls used
for synchronization from those used for timing.

Recorded traces must be long and detailed to allow
an accurate analysis of the locking behavior of the pro-
gram. But since we are collecting this information on a
running system, overhead of the data collection must
be minimal.

Locking can occur very often in a program and full
monitoring of all synchronized regions would slow the

program down significantly. For performance reasons,
Java virtual machines treat locks which are being used
by multiple threads (contended locks) differently from
locks that are being used by a single thread (uncon-
tended). The Java JVMTI monitoring tool follows up
on this behavior and emits lock trace events only when
a synchronized region is contended by multiple
threads. Since these events are typically costly in the
JVM, tracing them with the JVMTI does not signifi-
cantly degrade the program’s performance.

Using JVMTI allows reducing data collection
overhead. However, raw JVMTI data do not contain a
complete sequence of synchronization operations in
the user program. Restoring this data requires some
post-processing.

The first problem is that JVMTI reports all the
locks in the application, including locks that occur in
standard Java libraries and thus known to be safe. For
example, Swing and AWT user interface libraries
maintain the event queue guarded by the locks. These
locks are constantly being used both by the Swing
thread processing the queue and the Swing thread
reading input events. These locks are known to be safe
and thus are really not of interest to the programmer.
To address this problem we maintain a table of “safe”
locks. The tracing code ignores safe locks and does not
generate output for them.

A more serious problem with the JVMTI traces is
that they are incomplete and sometimes inaccurate.
JVMTI traces are incomplete since they only include
events for attempting to enter a synchronized region,
entering a synchronized region, executing a wait, and
finishing a wait either by time-out or by notification.
They do not include events for exiting a synchronized
region or for doing a notify() or notifyAll() operation.
Moreover, JVMTI events do not indicate whether an
attempted entry resulted in blocking the thread or not.

JVMTI traces may be inaccurate in cases when a
lock that wasn’t initially contended becomes contended
because another thread attempted to enter it before the
first thread could release the lock. In this case events
corresponding to entering the lock might be missing:
the trace for the lock will start with a wait or waited
event with no prior enter event. Correspondingly, if the
lock that was initially contended suddenly becomes
uncontended, the trace might include a spurious enter
and entered events, but events corresponding to the
exiting from the prior wait might be missing.

All these cases are problematic for analysis of
logical (high-level) locks. When a Java lock first
becomes contended the state of the lock is essentially
unknown. For example, for a read-write lock, the
number and depth of readers and writers is not known.
Similarly for a semaphore, the semaphore count is not
known. When a lock becomes uncontended, the
sequence of lock events might be incomplete and hence
inaccurate.

We address these problems by reconstructing a
facsimile complete lock sequence from the raw trace
data. Reconstruction involves several steps:

First, we determine when in the trace threads exit a
synchronized region and introduce corresponding
events into the trace sequence. This is done by tracking
what thread currently holds the lock and noting when
the region is then entered by another thread. To handle
nested locks by the same thread, our tracing code uses
JVMTI calls to compute the nesting level of the current
lock for the thread and includes that as part of the trace.
We insert exit events into the trace in the appropriate
temporal location.

Second, we need to introduce notify events. We do
this by first doing a static analysis of the code to iden-
tify calls to Object.notify() and Object.notifyAll() and
determining which synchronized regions in the
program may make such calls. This involves looking at
the synchronized regions themselves as well as the
transitive closure of the routines called from those
regions. Because this can result in false positives, we
limit the depth of the exploration and don’t assume
every such call does a notify. Instead, we only insert
notify events in the trace if a synchronized region could
call notify() or notifyAll() and subsequently a call to
wait() woke up on the same lock. We do a similar anal-
ysis to find routines that might call Object.wait().

Third, we determine the scenarios for which we
cannot obtain reliable information about the state of a
certain lock. As mentioned earlier, the JVMTI moni-
tors the state of the lock only when it is contended.
When the lock becomes not contended, JVMTI stops
monitoring it. Both of these result in missing or inaccu-
rate data in the trace. To avoid confusion during the
future analysis of the trace data, we introduce a notion
of a reset event. Reset events do not correspond to a
synchronization event in the program; they only signal
that the exact state of the lock is unknown at this point.

Reset events are generated when we notice an
inconsistent trace (for example one containing a wait
event without a corresponding enter event), or when
the time between events for a given lock is greater than
a fixed threshold (currently 0.25 second). The latter is
needed because lock sequences might look valid but, if
the JVM marked the lock as not contended during that
interval and then it later became contended, the overall
lock state might not be correct. The time threshold here
was determined experimentally and might need to be
changed for other JVM implementations. Since reset
events only affect latter analysis, this does not invali-
date the trace.

Once all the post-processing steps are defined, the
overall data collection process is simple. The event
trace generated by the JVMTI is saved into the csv file
and then split into individual sequences according to
the lock identifiers. As a result, events related to differ-
ent locks form separate sequences. Then each sequence

is sorted by the time of the event, and the post-process-
ing steps, described above, are applied to it.

The final result is a sequence of events for each
lock that includes the event type, the time (which is
order-correct but might not be otherwise accurate for
inserted events), the thread id, and the lock id. Example
of such sequence is depicted in the Figure 1 where the
top set shows the events reported by the JVMTI and the
bottom set shows the events as we reconstructed them.
This new sequence is what we use for the analysis of
logical lock types.

4. Identifying Lock Classes
In terms of the Java program the logical lock can

be seen as an object and the synchronized regions asso-
ciated with that object. However, the program can
create multiple instances of such objects and use them
in exactly the same fashion to provide a uniform
locking behavior. In this case we can think of creating
multiple instances of the same logical lock.

For example, consider the read-write lock imple-
mented by the Java Document class. This class along

with methods that are using it constitute a single
logical lock, and individual instances of that Document
class are just instances of that logical lock. Providing
the parallel to the object-oriented programming, one
can think of this logical lock as of a “lock class” that
can have many instances.

For the purpose of lock type analysis we want to
study these logical lock classes, not the individual lock
instances. Unfortunately, the lock trace we collected
contains data on instances of the logical lock, where
every such instance is represented by a separate set of
records in the trace. Thus in order to do lock type anal-
ysis we first need to identify lock classes from the
trace, before we can analyze the logical locks.

To identify a particular lock class we use the class
name of the object being locked and the set of locations
in the program’s code (method name and byte offset)
comprising the synchronized regions used by that
object for locking.

Neither the class of the object nor the set of syn-
chronized regions alone are sufficient to uniquely iden-
tify lock classes. A class might extend Hashtable (a

Event Thread Time Synchronized Region
ENTER 11 96803438443 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
ENTERED 11 96803571761 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
WAIT 11 96804810391 Ljava/awt/MediaTracker;@waitForID(IJ)Z@76
ENTER 25 96810704083 Ljava/awt/MediaTracker;@setDone()V@0
ENTERED 25 96810819386 Ljava/awt/MediaTracker;@setDone()V@0
WAITED 11 96810860111 Ljava/awt/MediaTracker;@waitForID(IJ)Z@76
ENTER 11 96811028249 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
ENTERED 11 96811186800 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
ENTER 11 96811326567 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
ENTERED 11 96811464982 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
ENTER 11 96811603310 Ljava/awt/MediaTracker;@removeImage(Ljava/awt/Image;I)V@0
ENTERED 11 96811740357 Ljava/awt/MediaTracker;@removeImage(Ljava/awt/Image;I)V@0
ENTER 11 98704830638 Ljavax/swing/ImageIcon;@loadImage(Ljava/awt/Image;)V@8
ENTERED 11 98704949691 Ljavax/swing/ImageIcon;@loadImage(Ljava/awt/Image;)V@8

ENTER 11 96803438443 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
ENTERED 11 96803571761 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
UNLOCK 11 0 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
WAIT 11 96804810391 Ljava/awt/MediaTracker;@waitForID(IJ)Z@76
ENTER 25 96810704083 Ljava/awt/MediaTracker;@setDone()V@0
ENTERED 25 96810819386 Ljava/awt/MediaTracker;@setDone()V@0
NOTIFY 25 0 Ljava/awt/MediaTracker;@setDone()V@0
UNLOCK 25 0 Ljava/awt/MediaTracker;@setDone()V@0
WAITED 11 96810860111 Ljava/awt/MediaTracker;@waitForID(IJ)Z@76
ENTER 11 96811028249 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
ENTERED 11 96811186800 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
UNLOCK 11 0 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
UNLOCK 11 0 Ljava/awt/MediaTracker;@waitForID(IJ)Z@0
ENTER 11 96811326567 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
ENTERED 11 96811464982 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
UNLOCK 11 0 Ljava/awt/MediaTracker;@statusID(IZZ)I@0
ENTER 11 96811603310 Ljava/awt/MediaTracker;@removeImage(Ljava/awt/Image;I)V@0
ENTERED 11 96811740357 Ljava/awt/MediaTracker;@removeImage(Ljava/awt/Image;I)V@0
RESET 11 0 Ljavax/swing/ImageIcon;@loadImage(Ljava/awt/Image;)V@8
ENTER 11 98704830638 Ljavax/swing/ImageIcon;@loadImage(Ljava/awt/Image;)V@8
ENTERED 11 98704949691 Ljavax/swing/ImageIcon;@loadImage(Ljava/awt/Image;)V@8

FIGURE 1. Lock trace events before and after initial processing.

class that does its own locking) and implement its own
higher-level lock on top of it. In this case, lock loca-
tions of this new class will overlap with those that
belong to the Hashtable class. Inheritance can also be
irrelevant. If the program defines its own subclass of
Hashtable and does not do any additional locking, the
new object should be treated as a Hashtable for locking
purposes. It is also relatively common to create objects
of the Object class to be used as locks for different pur-
poses. Here the class of the lock provides no useful
information.

We rely on simple heuristics to identify logical
locks in the trace. Two instances of the lock are consid-
ered to belong to the same logical lock if:
• Their objects have the same class and they share at

least one code location; or
• Their objects have different classes and they share

75% or more of their code locations.
This cut off was determined experimentally by

looking at how locks were used in a suite of sample
applications.

Once lock instances are merged, the resultant lock
classes are viewed as having the combined set of asso-
ciated locations and classes. We iterate the process
attempting to merge locks into the new classes. In this
case of comparing lock classes with individual locks or
other lock classes, we consider to locks to be of the
same class if one contains all the classes used by the
other.

5. Identifying Logical Lock Types
The next step in our lock analysis is identifying the

logical lock type of each lock class. Our approach is to
define the set of lock types that can be identified in the
program. For each type we implemented a checker
algorithm, which takes a lock trace as an input and
attempts to match it to the expected behavior of the
corresponding lock type.

Our current set of checkers includes mutexes,
delays, barriers, semaphores, producer-consumer
locks, read-write locks, latches, and conditional locks.

The trace for every logical lock in the program is
passed to all the checkers. The checker assigns the lock
to the given type (“validates” it) if two conditions are
met:
• The sequence of events for that lock is consistent

with the behavior of a lock of the given type
(absence of negative evidence); and

• The sequence of events shows positive evidence of
being a lock of the given type.

The consistency check is obviously necessary, but is
not sufficient to identify lock types accurately. Any
simple mutex that never does a wait would be consis-
tent with most lock types. Similarly, a mutex that waits
at some point could be viewed as a read-write lock that
never does a read.

To further improve accuracy of lock identification,
checkers analyze traces separately for each instance of
the lock class. If any of these traces contradicts the
expected behavior, the checker invalidates the assign-
ment of the lock to a given type. However, positive evi-
dence only has to come from one of the considered
traces. Figure 2 shows the internal checking algorithm
for semaphores.

Although the high level view of our approach
looks simple, implementation of both the checkers and
the supporting code is complicated by a set of chal-
lenges.

Tracking Lock States. Most locks maintain some
internal state that determines their behavior. For exam-
ple, the state of the semaphore is determined by the
semaphore count, while the state of the read-write lock
is determined by the number of reader and writer
threads.

Knowing the state of the lock is essential to recog-
nize the positive evidence for that lock. Consider an
example when the thread trying to acquire the sema-
phore enters the wait state, and then is released by the
next unlock on the semaphore. The corresponding
sequence of events would be a positive evidence for the
semaphore whose count is zero, but it will be inconsis-
tent with the semaphore whose count is different.

Unfortunately, upon beginning of the trace and
after each reset event the initial state of the lock may be
unknown and the checker must deduce it from the
trace. Until the state of the lock becomes known again,
the checker cannot reliably find positive evidence for

have_wait = false // wait has been seen
have_notify = false // notify has been seen
initial_count = -1 // initial value of the semaphore
count = 0 // current semaphore count

foreach Event<type,location>
if type is RESET then

count = 0
else if location is a P-location then// lock

switch (type)
case WAIT :

have_wait = true;
if (initial_count < 0) initial_count = -count;
if (initial_count + count > 0) MARK INVALID

case UNLOCK :
--count;
if (initial_count >= 0 && initial_count + count < 0)

MARK INVALID
case NOTIFY :

MARK INVALID
else if location is a V-location then// unlock

switch (type)
case ENTERED :

++count;
case WAIT or WAITED

MARK INVALID
case NOTIFY :

have_nofify = true;

Valid if not marked invalid && have_wait && have_notify &&
initial_count >= 0

FIGURE 2. Semaphore checking algorithm

the given lock type. Moreover, when the lock is in an
unknown state, the set of consistent event sequences is
broader.

Tracking Locking Regions. To validate certain types
of the locks, e.g. semaphores and read-write locks, the
checker needs to establish the purpose of the various
code locations that operate that lock, namely – what
locking operation they perform. For example, a sema-
phore will have one set of code regions that are locking
the semaphore and another set that are unlocking. Sim-
ilarly a read-write lock will have different regions for
doing a read-lock, a write-lock, a read-unlock, and a
write-unlock operations. Generally these sets should be
disjoint (although we let the read and write unlock sets
overlap).

To determine what operations different regions
perform, checkers evaluate all possible assignments of
different lock operations to code regions. We some-
what reduce the number of possible assignments by
knowing which regions actually do wait and notify
operations and then applying appropriate heuristics.

In some cases there can be multiple overlapping
valid assignments for the lock. This generally occurs
when there is insufficient information on the lock
because either the event trace was too short or the lock
state could not be reliably deduced for all locations and
regions that are superfluous to the lock are not explic-
itly excluded. In this case we prefer the assignment
which involves the smallest number of locking regions
for the lock.

Merging Checker Outputs. Since the sequence of
events for the lock is passed to all the checkers, multi-
ple checkers can “validate” the sequence. This can

occur in two ways. First, the same logical lock can be
used in different roles in the program. For example,
one set of code locations use the read-write lock of a
Document object for its designated purpose, while
other routines synchronize on the same object to affect
simple mutual exclusion. In another example, we use
the same object for two control two separate queues.
Second, the functionality of certain lock types can
overlap. For example, a semaphore is a special instance
of a general conditional lock.

To generate the final lock type we call the checkers
in such an order that more specific checkers are looked
at first. Moreover, each checker analyzes the set of syn-
chronized regions for the lock and marks those regions
that are consistent with the given lock type. We relate
the lock to the corresponding type if:
• The checker validates the trace for the lock; and
• The checker only uses synchronized regions of the

lock that were not used by previous checkers.

6. Displaying the Result
Once we have analyzed the locks, the next step is

to present this information to the programmer. We
visualize collected information in two phases. During
the first phase a list of logical locks and their types is
displayed at a high level. For the second phase, the pro-
grammer can select a subset of these locks to be visual-
ized in more detail in later runs of the system.

High-Level Lock Visualization. Results of the lock
analysis are shown in Figure 3. This and the latter
figures depict results of the analysis of Code Bubbles,
an interactive front end for programming [4]. Code

FIGURE 3. Table showing the result of lock analysis.

Bubbles uses synchronization extensively to control
access to editors, to handle messages, and to provide
background computations where appropriate.

Results are organized as a table. The first column
identifies the lock, and the second column identifies the
logical type of the lock. A plus at the end of the type
indicates that multiple types were found for this lock.
Details of all the lock types associated with this lock,
for example, which synchronized regions comprised
the lock, are provided through tool tips as seen in
Figure 4.

The third and fourth columns of the table identify
the lock more precisely by providing the set of syn-
chronized regions (locations) and the classes of the
objects that are locked for this logical lock. Cases
where there are multiple locations or classes are also
indicated by a plus sign. Again, tool tips provide
details, giving the full method name, the full set of
locations, and the full class name for all associated
classes.

The next four columns provide information about
how the lock was used in the sample run, helping the
programmer identify which locks might be interesting
to analyze further or might be problematic. The first
two of these columns show the number of times the
lock was used and the total delay encountered on enter-
ing the lock’s synchronized regions. The next two
columns show the number of times wait was called for
the lock and the total amount of time the lock actually
waited for notification.

The final column lets the user select locks to be
monitored in a future run. Below the table are buttons
to help with this selection, to save it, and to start a
detailed analysis of selected locks (see below).

The Dependencies button on the bottom pops up
another window showing how locks were nested

during the sample run as seen in Figure 4. The boxes
correspond to the different logical locks, identified by
the ID from the initial table. An arc from one node to
another indicates that a synchronized region for the
second node was entered from within a synchronized
region of the first. This information can be useful in
identifying potential deadlocks caused by lock order-
ing conflicts, which will result in a cycle in the graph.

Detailed Lock Visualization. High-level visualiza-
tion shows summary information on locks, but it does
not provide all the details of locking behavior. In par-
ticular, users are often interested in the timeline of
interactions between certain locks and the program’s
threads and between locks and other program objects.
Unfortunately, the trace collected using the JVMTI is
not sufficiently accurate and informative for collecting
correct timeline information. Instead, we must instru-
ment the program’s code to closely monitor the
selected locks.

To instrument and re-run the program, the user can
select one or more locks for more detailed analysis and
press the “Visualize” button. The instrumentation, gen-
erated using the ASM byte code package, generates a
call at the pre-enter, enter, and exit of each synchro-
nized region for the particular type of lock as well as
for all calls to wait(), notify(), and notifyAll() associ-
ated with each lock of that type.

While instrumentation might seem more involved
than the simpler tracing using the JVMTI, the fact that
it is only being used on a selected set of locks and that
the instrumentation is in Java and is relatively light-
weight let us run the instrumented program with
minimal overhead. (JVMTI instrumentation is rela-
tively expensive.) However, there are several other
problems related to instrumentation that require solu-
tion.

The first problem is that synchronized methods are
handled by the JVM rather in the Java byte code. As
such, it is difficult to instrument either the pre-enter
(which can occur on any call of the method, even those
that involve virtual calls or reflection), or the exit
(which might occur because of an exception). To
handle these situations, we rewrite synchronized
methods as unsynchronized methods with a synchro-
nized region containing their body. This region is syn-
chronized either on this or on the class object as
appropriate.

The second problem is that calls to wait() and
notify() or notifyAll() related to the selected locks are
not always obvious. While they generally occur inside
the relevant synchronized region, they also can occur in
methods called from within that synchronized region.
One solution here would be to instrument all calls to
these methods in the program, but this would result in
the unreasonable overhead. Instead, we instrument all
wait(), notify() and notifyAll() calls originating from
classes that manipulate the lock of the given type

FIGURE 4. Tool tip showing lock types and the
lock nesting display.

which we determine from our previous analysis. How-
ever, even in this case some of these calls can be still
irrelevant to the lock. Filtering these irrelevant calls is
done during the further analysis of the resulting trace.

The instrumentation generates a series of events
that are parameterized by the thread, event type, and a
unique id for the lock object. In addition, events that
mark the attempted entry into a synchronized region
include a unique identifier for the region and the class
name of the lock object. Each thread maintains its own
set of events.

The instrumentation monitor periodically (cur-
rently every 10 milliseconds) wakes up and sends
recorded events to the analyzer. To minimize impact on
the running program this is done in a separate thread.
Moreover, each of the per-thread event sets is triple
buffered, with one buffer is the current target for new
events, one that might be the target for events that were
in progress when the buffer switch occurred, and one
from which events are sent to the analyzer.

The trace analyzer first takes the instrumentation
output and generates the series of relevant events for
the selected threads. It sorts the set of events by time,
discards events that don’t correspond to locks selected
by the user (for example extraneous waits and notifies),
and adds the region id and class name for the lock to
each event.

This sequence of events is then passed to several
processors that generate visualizations for lock and
thread behavior using tools developed in [22]. In par-
ticular, two types of visualization are produced.

The first type of visualization is a thread-centric
diagram that shows the timeline of interactions
between threads and locks. Rows of the diagram corre-
spond to threads, while horizontal axis represents time.
Note that even if the trace data is accurate within one
microsecond, each pixel in the diagram corresponds to
a much larger time interval because of effects of scale.
For example in the diagram depicting results of five
minute run each pixel corresponds to the time interval
of about 0.5 milliseconds.

Each thread in the diagram is depicted as a pipe.
The inside of the pipe is colored to represent the thread
state (one of Locked, Blocked, or Waiting), with the fill
being proportional to the time that the thread spent in
that state during the particular interval. The outside of
the pipe is colored to reflect the lock object the thread
interacts with. Notify-wait calls are shown as lines
going from the source thread to the target thread,
colored from red (notify end) to green (wait end).
Detailed information about the diagram is given
through tool tips.

This display is maintained dynamically as the
program runs. The scroll bar on the bottom lets the user
zoom in to any particularly time during the execution,
while the bar on the right lets the user to traverse across
a set of threads.

A thread-centric visualization of the Code Bubbles
IDE is shown at the top of Figure 5. The three threads
toward the bottom represent a dual producer-consumer
subsystem that operates two message queues (requests
and replies) with a single reader. The tubes with purple
insides are the consumer threads for the request and
reply queues. These spend almost all of their time wait-
ing. The thread in between is the reader thread. When a
message or reply arrives, the producer puts it on the
appropriate queue and wakes up the consumer threads.
The threads at the top of the diagram represent read-
write locks for editor regions that are being created by
the program. The top thread is the Swing thread that
handles the UI work. The other two threads are back-
ground processing threads that are charged with setting
up the formatting for the various editors.

The second visualization is a lock-centric diagram
that shows the timeline of locking activities for each
lock. It can be seen at the bottom of Figure 5. Rows of
the diagram correspond to locks, while horizontal axis
represents time. Currently the diagram supports visual-
izing only two lock types: producer-consumer and
read-write locks.

Each row of the diagram is divided by a gray line
into top and bottom regions. In the moments when the

FIGURE 5. Visualization of locks by thread
over time (top view) and view of individual
lock behavior over time (bottom view).

lock is in use, bars are drawn in these regions. The
bottom bar represents threads waiting on the lock. The
color of the bar denotes the thread waiting on the lock,
while the texture of the bar represents the type of the
lock (read-write or producer-consumer). The top bar
displays lock-specific information. For the producer-
consumer locks the top bar represents queued tasks,
and for the read-write lock it shows if the lock was held
for reading or writing.

Thread-centric and lock-centric visualizations are
kept synchronized in time. The user can use the hori-
zontal (time) scroll bar in either window to control
both diagrams. This feature allows him to easily corre-
late thread and lock behavior by comparing diagrams.

7. Conclusion and Future Work
To assess the practical value of our tool we will

have to make it more robust and widely available so
others can use it on a wide variety of their own sys-
tems. In the meantime we have used it to analyze
several of our own complex Java systems. Our experi-
ments have shown the practicality and utility of the tool
but also have pointed out a number of weaknesses and
concerns. Addressing these concerns remains our main
direction for the future work discussed below.

Reducing overhead. One particular concern was the
amount of slowdown caused by the analysis and instru-
mentation of the user program. To determine the slow
down, we experimented with the multithreaded
program performing n-body gravity simulation with
10,000 objects. As it can be seen from the trace shown
in Figure 6, the program does extensive locking: there
are 24,000 contended locks in the program (groups of
object are also considered to be a special type of
object). Considering the large number and high fre-
quency of locking, this program can be seen as a partic-
ularly bad scenario for the purpose of lock analysis.

Without the instrumentation, the running time of
the program is 355 +/- 5 seconds (averaged over 5
runs). JVMTI monitoring of all contended locks
increased the running time by about 69% to 600 +/- 10
seconds (averaged over 5 runs). The slowdown of the
detailed trace, concentrating on the locks of interest

(again 24,000 locks) to get the above figure was hardly
noticeable, with the total time begin about 360 +/- 4
seconds (averaged over 5 runs). The lower overhead
here shows the efficiency of our instrumentation code.

While some of these slowdowns are significant,
we feel that improvements could be made by making
the tracing more efficient. Currently the JVMTI uses
text format for tracing and the trace size for the above
run is about 55M. It could be significantly reduced by
using a more efficient binary format for trace storage.

Accuracy of lock analysis. To evaluate the accuracy
of lock analysis, we examined the lock types reported
for a variety of systems we have implemented and
matched the known lock types to the reported types.
The result was that, for a long enough initial run, the
program was able to correctly identify the logical types
of all the locks in the systems. The analysis accuracy is
heavily dependent on having a long enough initial run
to ensure that all relevant locks are exercised. Locks
that were not used or that were rarely used during the
initial run are not reported or reported improperly. For
example, complex locks that were not used extensively
were sometimes reported as mutexes.

To some extent this problem is alleviated by
merging of lock instances. Merging provides more
examples of the lock usage and hence more opportuni-
ties to find both positive and negative examples of a
particular logical lock type. But using a longer initial
run remains our mainstay to ensure accuracy.

Improving visualizations. Current graphical visual-
izations provide either a high-level overview of the sys-
tem’s locking behavior, or a low-level analysis, but not
both. The principle problem is one of scale. Locking
typically occurs at the microsecond intervals, and even
a relatively short run of a long-running system, say 10
minutes, produces tremendous amount of information
to be visualized.

When all this data is visualized in the single
window, each row of pixel can represents up to 10,000
events. Such visualization provides high-level view of
the system’s behavior, but finer details might be lost.
As a result, potential problems and interesting patterns
that occur on the scale of individual events are hidden
from the user. The scroll bars let one zoom in, but once
the user observes results at the ten-millisecond scale,
he tends to lose a high-level context.

One solution would be a multiscale display, possi-
bly one that does some type of fish-eye display
showing details while still providing the overview.
Another alternative is automatic detection of relevant
events and highlighting them in visualization.

The large amount of data also tends to restrict the
responsiveness of the displays. The system is still quite
usable displaying 10 minutes worth of data. However,
attempting to display 10 hours or 10 days is currently
infeasible. This can be addressed by retooling our data
store to use precomputed groupings.

FIGURE 6. Thread-based visualization of n-
body simulation

Supporting different lock types. Our tool analyzes
Java code at the level of synchronization primitives.
However, there exist other ways to implement locks in
Java and we are working on detecting those. First,
newer versions of Java include built-in implementa-
tions of several types of logical locks in java.util.con-
current. These are not reported through JVMTI and
would have to be detected using other techniques such
as code instrumentation. Second, we are looking at
identifying the use of files as locks, where the Java
program attempts to create a unique file or directory
and waits or sleeps if the create fails. Third, we hope to
identify message send/receive pairs where the receive
might be delayed.

Finally, we want to extend our tool to provide a
better analysis of potential deadlocks, using techniques
such as [1] where static dependencies and dynamic
information are used to show actual and potential prob-
lems.

The code for our system is available as the dylock
in ftp://ftp.cs.brown.edu/u/spr/dyvise.tar.gz.

Acknowledgements. This work was done with
support from the National Science Foundation through
grants CCR-1012056 and support from Microsoft.

8. References
1. Rahul Agarwal and Scott D. Stoller, “Run-time detection
of potential deadlocks for programs with locks, semaphores,
and condition variables,” PADTAD-IV, pp. 51-59 (July 2006).

2. Cyrille Artho, Klaus Havelund, and Shinichi Honiden,
“Visualization of concurrent program executions,”
COMPSAC 2007, pp. 541-546 (2007).

3. Isabelle Attali, Denis Caromel, and Marjorie Russo,
“Graphical visualization of Java objects, threads, and locks,”
IEEE Distributed Systems online Vol. 2(1) pp. 1-35 (2001).

4. Andrew Bragdon, Steven P. Reiss, Robert Zeleznik,
Suman Karumuri, William Cheung, Joshua Kaplan,
Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola, Jr., “Code bubbles: rethinking the user interface
paradigm of integrated development environments,” ICSE
2010, pp. 455-464 (2010).

5. Mandy Chung, “Using JConsole to monitor
appliocations,” Sun Microsystems, http://java.sun.com/
developer/techicalArticals/j2se/jconsole.html, (December
2004).

6. Raja Das, Zhi Gan, Yao Qi, and Zhi Da Luo, “Multi-
thread run-time analysis tool for Java,” http://
www.alphaworks.ibm.com/tech/mtrat, (2009).

7. Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran,
“Goldilocks: a race and transaction-aware Java runtime,”
PLDI 2007, pp. 245-255 (2007).

8. Dawson Engler and Ken Ashcraft, “RacerX: effective,
static detection of race conditions and deadlocks,” SOSP
2003, pp. 237-252 (October 2003).

9. John Erickson, Madanlal Musuvathi, Sebastian
Burckhardt, and Kirk Olynyk, “Effective data-race detection
for the kernel,” OSDI 2010, (2010).

10. Cormac Flanagan and Stephen Freund, “FastTrack:
efficient and precise dynamic race detection,” PLDI 2009,
(2009).

11. Klaus Havelund, “Using runtime analysis to guide model
checking of Java programs,” kuragmcjp, pp. 245-264
(August 2000).

12. C. A. R. Hoare, “Monitors: an operating system
structuring concept,” CACM Vol. 17(10) pp. 549-557 ().

13. David Hovemeyer and William Pugh, “Finding bugs is
easy,” OOPSLA 2004 Companion, pp. 132-136 (2004).

14. Ayal Itzkovitz, Assaaf Schuster, and Oren Zeev-Ben-
Mordechai, “Towards integration of data race detection in
DSM systems,” Journal of Parallel and Distributed
Computing Vol. 59(2) pp. 180-203 (1999).

15. Jacques Chassin de Kergommeaux and Benhur de
Oliveira Stein, “Paje: an extensible environment for
visualizing multi-threaded program executions,” Proc. of 6th
International Euro-Par Conference, Lecture Notes in
Computer Science Vol. 1900 pp. 133-140 Springer-Verlag,
(2000).

16. Byung-Chul Kim, Sang-Woo Jun, Dae Joon Hwang, and
Yong-Kee Jun, “Visualizing potential deadlocks in
multithreaded programs,” ICPCT 2009, pp. 321-330 (2009).

17. Katharina Mehner, “JaVis: a UML-based visualization
and debugging environment for concurrent Java programs,”
Software Visualization: Lecture Notes in Computer Science
Vol. 2269 pp. 643-64 (2002).

18. Sun Microsystems, “JVM Tool Interface,” http://
java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html, (2004).

19. Mayur Naik, Chang-Seo Park, Koushik Sen, and David
Gay, “Effective static deadlock detection,” ICSE 2009, pp.
386-396 (May 2009).

20. Eli Pozniansky and Assaf Schuster, “MultiRace: efficient
on-the-fly data race detection in multithreaded C++
programs,” Concurrency and Computation: Practice and
Experience Vol. 19(3) pp. 327-340 (2007).

21. Steven P. Reiss, “JIVE: visualizing Java in action,” Proc.
ICSE 2003, pp. 820-821 (May 2003).

22. Steven P. Reiss, “Controlled dynamic performance
analysis,” Proc. 2nd Intl. Workshop on Software and
Performance, (June 2008).

23. Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson, “Eraser: a dynamic data
race detector for multithreaded programs,” ACM Trans. on
Computer Systems Vol. 15(4) pp. 391-411 (November 1997).

24. Kyle Wheeler and Douglas Thain, Journal of
Concurrency and Computation: Practice and Experience
Vol. 22(1) pp. 45-67 (2009).

25. Amy Williams, William Thies, and Michael D. Ernst,
“Static deadlock detection for Java libraries,” ECOOP 2005,
pp. 602-629 (2005).

	Dynamic Analysis of Java Locks
	Steven P. Reiss and Alexander Tarvo
	Department of Computer Science
	Brown University
	Providence, RI. 02912
	{spr,alexta}@cs.brown.edu
	Abstract
	1. Introduction
	2. Related Work
	3. Collecting Lock Traces
	FIGURE 1. Lock trace events before and after initial processing.

	4. Identifying Lock Classes
	5. Identifying Logical Lock Types
	FIGURE 2. Semaphore checking algorithm
	Tracking Lock States.
	Tracking Locking Regions.
	Merging Checker Outputs.

	6. Displaying the Result
	High-Level Lock Visualization
	FIGURE 3. Table showing the result of lock analysis.
	FIGURE 4. Tool tip showing lock types and the lock nesting display.

	Detailed Lock Visualization
	FIGURE 5. Visualization of locks by thread over time (top view) and view of individual lock behavior over time (bottom view).

	7. Conclusion and Future Work
	Reducing overhead.
	FIGURE 6. Thread-based visualization of n- body simulation

	Accuracy of lock analysis.
	Improving visualizations.
	Supporting different lock types.

	8. References

