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ABSTRACT 

The advent of smart devices and sensors (the Internet of Things
or IoT) will create increasing demands for the automation of
devices based on sensor, time, and other inputs. This is
essentially a programming task with all the problems and
difficulties that programming entails, for example, modularity,
feature interaction, debugging, and understanding. Moreover,
much of the programming for smart devices is going to be done
not by professional programmers but by end users, often end
users without any programming experience or computational
literacy. Our research is aimed at exploring the programming
space and the associated issues using a case study of a smart sign
that can be controlled using a variety of sensors. We have
developed a general system for programming smart devices and,
in this paper, explore a variety of different user interfaces for
programming this system for our smart sign.

CCS CONCEPTS

Software and its engineering → Software creation and
management; Software development techniques
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1 INTRODUCTION
Imagine a “smart house” where everything is driven by soft-

ware. Lights are not directly wired to switches; thermostats are
advisory and not directly connect to the furnace; buttons exist to
request open windows or skylights; doors may be unlocked by
RFID keys (as in today’s automobiles); etc. The owners of such a
house would need to program it and keep the program up-to-date
as new devices are added or as their needs change. Moreover, the
owners are generally not going to be software engineers and will
not necessarily understand programming or programming con-
cepts. 

Programming for such a smart house raises several issues.
The first is what form a program for such a smart house should
take. We lean toward a rule-based system since rules are gener-
ally easy to specify and can map directly to user interactions.
However, the conditions and rules that are needed can be com-
plex and involved. 

The second issue is handling conflicts when creating rules
and when attempting to understand what will happen based on
the current set of rules. Any programming system for smart
devices needs to have a scheme for addressing conflicts and needs

to make such conflicts explicit and understandable to the end
user. 

A third issue is that the users will not create the perfect pro-
gram initially. This means that the user interface for program-
ming needs to handle debugging, particularly debugging with
respect to potential conflicts.

The fourth issue is one of scale. While our simple case study
only involves twenty-some rules, a smart house with tens of
devices might require hundreds of rules. Can an interface be
designed that can handle this large a set? Will end users be able
to understand a “program” at this scale? What techniques will
help in such understanding? 

This paper describes our initial explorations of how to pro-
gram smart devices on the scale needed for a smart house. We
start by describing some of the related work in Section 2. Then
we describe a case study, our smart sign, in Section 3. Next we
describe what we see as a practical programming framework for
smart devices based on a rule-based model in Section 4. Next we
provide a set of four exploratory solutions we developed using
our smart sign as an example in Section 5. We conclude by
describing our experiences. 

2 RELATED WORK
Pervasive computing has been touted for a long time. In the

past few years, this technology has become more evident in the
“Internet of Things”. Here everyday devices are web-enabled so
they can talk and potentially control one another. Individual
smart devices, e.g. windows that close themselves when it rains,
coffee makers that turn on in the morning, thermostats that pro-
gram themselves, are become more common. Internet-based con-
trol of individual devices in the home is becoming common with
major companies such as Verizon producing practical control
systems. Smart houses were first popularized in science fiction
(e.g. the television series The Jetsons), but have now become a
reality. This has opened many new research questions and direc-
tions [32]. 

The trends we see here are moving from physical controls
(such as switches and locks) to virtual controls (such as a phone
app); moving from user-programmed devices to learning-based
programming; and moving from explicit control to automated
control. We see the trend in terms of the Internet of Things mov-
ing to devices which essentially control themselves according to
the user’s wishes.

Most of the techniques for programming devices and home
automation are based on production systems. Production system
have been widely studied over the years, are well understood, and
have been used in a wide variety of applications [22]. The most
widely used rule-based model for programming devices is trig-



ger-based. This is exemplified by IFTTT (“IF This Then That”)
[17]. It is both widely used and has been extensively studied. For
example, [47] show that it is easy to learn and to program. Our
rule-based approach builds on this. However, purely trigger-
based approaches do not really cover all aspects and in many
cases are not natural ways of specifying interactions [47,48]. This
led us to develop our more general framework. 

Moving from individual web-enabled devices to a larger set of
interacting devices, for example, in a smart house, is non-trivial.
Different sensors might trigger the device in different ways at the
same time; different device settings might conflict with each
other; there can be implicit constraints (e.g. do not heat and cool
at the same time; do not turn on both the coffee maker and the
microwave since that will blow a fuse) that should be enforced.
This problem, the complexity involved in interacting devices and
conflicts, has been noted by several others [3,20,24]. Others have
noted that it is important in the user interface to deal with
unusual situations (i.e. deviations from the routine) [12,31,50].
Our interfaces attempt to make such conflicts and interactions
explicit. 

The DeLorean system takes another approach to handling
conflicts [9]. It assumes a rule-based language with trigger-based
rules with arbitrary conditions and actions. Based on this lan-
guage, they use timed-automata to let the user fast-forward their
system in order to understand conflicting behaviors. This, and
other model-checking based approaches are aimed more at the
problem of predicting unusual behaviors while we are more
interested in letting do their own exploration. Our interfaces
attempt to take a more practical approach to showing conflicts,
but do not preclude the use of formal checking. 

Explanations of the behavior of rule-based systems are com-
mon [4,13,14]. Lim, Dey, and Avrahami [30] provide the user
with explanations of the behavior of complex systems that are
rule or machine-learning based and note that it can be useful to
both show why an action was taken and to show why an action
was not taken. Explanations for procedural program debugging
are explored in WhyLine [23]. Explanations can also be used for
debugging machine learning approaches [25]. Many explana-
tions, especially for debugging, involve reachability questions
[27]. Our interfaces include the ability to show what will happen
and can easily be extended to show full explanations.

Learning interfaces for IoT devices are becoming more com-
mon as in the Nest thermometer [26]. The utility and practicality
of such interfaces has been studied where it was shown that they
should be combined with other interactive technologies for han-
dling exceptions, providing descriptions, and user engagement
[50]. Rule recommendation systems work along similar lines [49].
Our approach includes the ability to learn new rules based on
user requests. 

End-user programming [7,8,19,35,37,38] has a long history.
Spreadsheets are the prime example of a very successful end-user
programming system, employing a metaphor that is easily under-
stood and enabling a wide range of programs. There has been sig-
nificant work on debugging spreadsheets from this perspective
[1,5,6,25]. Teaching programming concepts, especially to chil-
dren, has been one theme for end-user programming. This started
with Logo and has progressed to languages such as Alice [11],
Scratch [41], Squeak [18], and similar systems [21]. A recent
example is Toque [46], which uses cooking as a basis. These sys-

tems attempt to make complex constructs intuitive to the user.
End-user debugging is also used for web applications [16]. Natu-
ral programming languages and end-user oriented environments
are another approach [34,36]. Our approach draws inspiration
from all of these.

Another theme of end user programming has been program-
ming-by-example [2,15,29,45] or programming-by-demonstration
[10,33,42-44]. This has been used for IoT devices to a limited
extent [28,40] Our learning interface provides a basic implemen-
tation of programming-by-demonstration for IoT devices.

3 SMARTSIGN: A CASE STUDY
I have a sign outside my office. Actually its not a sign but a

inexpensive 10” Android tablet running a kiosk application. (It
was originally a Bluetooth digital picture frame.) The sign dis-
plays my current status, indicating whether I am available,
whether I’m with someone, whether I’m on the phone, or, if I’m
out of the office, when I’m likely to be back. It does this all auto-
matically. The sign can be seen in Fig. 1. The sign has been run-
ning continually for about 3 years at this point and serves as an
interesting, well-tested, case study.

The sign software detects whether I’m in my office by seeing
if it can see my phone via Bluetooth. It determines if I have a vis-
itor by using a motion detector aimed at my seating area. It deter-
mines if I’m on the phone using an off-the-hook circuit attached
to my phone line. It accesses my Google calendar to determine if
I’m at a meeting or out for the day and when I’ll be back. It
accesses the web to determine the current weather conditions
and temperature. 

The sign works off a set of about twenty-five rules. The rules
have a relatively simple form, for example, 

IF <in_office> AND <time between 8:30am and 5pm, Mon-
day thru Friday> THEN <I’m available>

IF <visitor> THEN <With visitor>
IF <in_office> THEN <I’m hiding>

This form consists of a set of conditions and then the action
to perform when the conditions hold. In the case of the sign, the
action is simply to display an image (created as an SVG diagram)
which is done by updating an image for a web page. The condi-
tions include the basic ones determined by sensors (e.g. in_office),
time-based conditions, Google-calendar based conditions,
weather-based conditions, and some artificial conditions that

FIGURE 1. The automated sign outside my office.



were created to simplify the rules. Examples of the latter include
a condition which is true if I’ve been out of the office for less than
five minutes (likely stepped out to use the facilities or get a soda),
and one that is true if I’ve been in at all during the day.

The rules are given in priority order, so that the first rule
whose conditions are satisfied is applied. Thus, with the above
three rules, the last one is applied if I’m in the office and it is not
during what I consider work hours. 

In addition to displaying my current status on the sign dis-
play, the system also provides my current status on my personal
web site (http://www.cs.brown.edu/people/spr/status.html). 

4 PROGRAMMING CONSIDERATIONS
There are many different alternatives for control languages

for embedded or smart-house applications. One could start with
an actual programming language, for example Python, and add
basic methods that check conditions and implement controls.
This is what is done, for example, in Sikuli [51] for user interface
testing. However, given the difficulties involved in understanding
and teaching computation, this does not seem to be a feasible
approach for the average homeowner who knows nothing about
programming. Alternatively, one could work in terms of finite
state machines, which are a natural model for many devices.
However, these again present a not-easily-understood formalism
that could be confusing to non-programmers and would require
extensions to handle time-based conditions.

A simpler alternative is a rule-based approach, essentially a
production system. Here there are a set of rules that are checked
in some order. The rules consist of a condition and action. Rules
are evaluated by checking the condition, and then, if it holds, tak-
ing the corresponding action. Even with this constrained frame-
work, there are several design alternatives that need to be
considered.

The first alternative is whether rules are considered as trig-
gers or as conditions that are (in theory at least) continuously
checked. An common implementation of a rule-based approach
for devices or home automation is IFTTT (“IF This Then That”)
[17]. This consists of conditions that are triggers and an action
that should be taken when the trigger conditions occur. This type
of rule will be helpful in a smart house (e.g. send me a text mes-
sage if the burglar alarm goes off), but is not sufficient. Most rules
for our sign (and eventually for a smart house) are designed to be
evaluated continuously. Consider, for example, “If I’m in the
office then display ‘I’m available’. This is more natural than say-
ing “When I enter the office, display ‘I’m available’ since the con-
dition is designed to hold whenever I’m in the office, not just
when I enter it. Moreover, other displays are possible while I’m in
the office (e.g. On the Phone, With a Visitor, Hiding) and defining
trigger-based transitions for all such events would be tedious and
error-prone. Moreover, such events also need to consider time
(the actual rule includes normal office hours), which make a trig-
ger-based approach even more complex. In addition, one can eas-
ily create conditions where the number of trigger-only rules
could grow quite large. For example, consider N light switches
and N lights where each switch turns on a different subset the
lights (e.g. each light is based on OR conditions over a subset of
the switches).

Given that both trigger-based and continuous rules are
needed, a second design alternative involves how to handle mul-

tiple triggers and how to distinguish between trigger and contin-
uous rules. It is not uncommon for users to try to create rules of
the form “If the doorbell rings at 3:00pm then do X” [48]. Such
rules will almost never be triggered since it is unlikely that some-
one will ring the door at precisely 3:00pm. Similarly, using trig-
ger-like actions (e.g. send an email) under continuous conditions
could result in unexpected or unwanted results. 

To avoid these situations, our approach distinguishes both
conditions and actions as either continuous or trigger-based. A
rule can either include zero or one trigger-based conditions. If it
has none, then the action has to be continuous. If it has one, then
the action has to be trigger-based. The front end is also aware of
these constraints and enforces them as the user creates rules.

The third design alternative is what types of conditions are
allowed. It is easy to code the system to allow arbitrary logical
conditions, i.e. combinations of AND, OR, and NOT. However,
this quickly becomes confusing without parenthesis even to the
experienced programmer since there is no implicit priority order-
ing for these operators as there is for addition and multiplication.
Moreover, creating a easy-to-use interface that supports all three
is difficult. Based on our initial experiences attempting to develop
interfaces for our sign, we determined that a more viable alterna-
tive was just to allow AND rules. This makes the rules easier to
comprehend and the interface more tractable.

A problem with only allowing AND rules is that there are
conditions that are naturally OR conditions, for example turn on
light 2 if either switch A is on OR switch B is on. Simple OR con-
ditions like this can easily be handled by using multiple rules. To
handle more complex situations, our experience has shown that it
is often easier to create new basic conditions (effectively pseudo-
sensors) than to create more complex rules. For example, we have
both an On-Phone condition and a Not-On-Phone condition. For
the switch, one could create a new sensor which was “Either A or
B is on”.

New sensors have other uses as well. For example, we have
defined sensors that combine other sensor states with time for
use with our sign. One is whether we have stepped out of the
office for less than five minutes; another is whether we have
come in at all during the day. Such sensors will also be useful
within a smart house (i.e. for turning off lights when there is
nobody around for some time or automatically setting the alarm
to external-doors only if someone is in the house at night). Such
new sensors can also be used to turn a trigger-condition into a
continuous condition when needed. 

The current front end allows new sensors to be defined inter-
actively for durations (some event occurring for either more than
or less than a given interval); for latches (some event occurring at
all with a given timeout or reset time); and for combinations (ORs
of events). Other sensors, for example those based on RSS feeds
and web pages are implemented, but the front end for defining
them is still missing since we have not found them particularly
useful for our smart sign. The implementation also includes a
generic sequence sensor that detects and ordered sequence of
events and maintains a corresponding internal state (essentially a
finite state machine), although again, we have not implemented
the corresponding interfaces for building such sensors. More
complex new sensors can be defined programmatically as needed. 

A fourth design alternative involves determining what rules
(assuming a priority order) should be applied as conditions



change. With the sign, it is rather simple. The first rule (in prior-
ity order) whose condition is true will affect the sign and hence it
is applied, and any subsequent rules are ignored since they would
also affect the sign. However, in a smart house multiple rules
affecting different, independent devices might be triggered by a
single condition. For example, if it starts to rain each of the sky-
lights should be closed. In this case, it seems logical to allow mul-
tiple active rules while still maintaining rule priorities for each
device. One needs to make it explicit to the user, however, what
rules preclude or do not preclude others as it might not be imme-
diately obvious (for example if both close-window and close-cur-
tain are triggered by different rules for the same window, would
both occur or only one; similarly if a rule has multiple actions
associated with it and one of those actions conflicts with a prior
rule, should the other actions be taken or ignored).

A smart house will require a large rule set. It is essential for
understandability that this rule set be organized in a meaningful
way. The common notion in programming languages is to modu-
larize the rules. This seems a logical approach. However, there
are multiple ways that such modularization can be done. For
example, one could show all rules that affect a given device, or
one could show all rules that are affected by a given sensor, or all
the rules that are might be in effect at a given time, or some com-
bination of these. The fifth design alternative involves how to do
this modularization, whether it should be done statically (i.e.
rules are defined in modules), or dynamically (where the user
specifies a device or condition or time and the system creates an
implicit module for corresponding rules). 

Modularization of the rules has other uses as well. It can, for
example, make the implicit finite state machines embodied by
some devices explicit. This is done by viewing each state in the
machine as a “module” and letting the user define the rule set for
just that state. This requires a flexible modularization approach
and artificial sensors to reflect the implicit state of the device. 

A sixth design alternative involves handling complex sensors.
With the sign we needed special sensors to handle time and
access to ones Google calendar. Time was modeled by how events
(and repeated events) are typically defined in modern calendar
systems. This provides an interface that people might be accus-
tomed to, but still might be overly complex for simple conditions.
Events derived from a Google Calendar were a bit more complex
since we had no example to build against. Our current implemen-
tation lets the user choose specific fields of the calendar event
(e.g.Where, Who, State, Visibility, Title, Which Calendar) and
define strings that should or should not occur in those fields.
Again, for simplicity and understandability, the calendar event
matches if all specified fields are matched. For example, we can
create rules for meetings that are not in my office by looking for
events where the WHERE field does not contain “403” (my office
number). We expect that for a smart house there will be other
sensors of similar complexity that will have to be defined and
handled, for example using a camera to detect motion or the pres-
ence of specific people in a room.

We also have implemented sensors for accessing RSS feeds
and web pages. The RSS feed sensor is triggered on each new feed
item and makes the title and description available to rules. The
web page sensor takes a URL, a check frequency, and a CSS-style
selector for the text of interest. It is used to check weather condi-
tions and temperatures.

5 SAMPLE PROGRAMMING INTERFACES
The programming considerations cited above need to be con-

solidated into a user interface or programming system that can be
used to effectively control our sign or a smart house. As a first
step toward exploring what is needed and what might work here,
we prototyped a control system and four different web-based
interfaces for programming the smart sign. These interfaces are
designed to be automatically generated based on a description of
the underlying conditions and available actions and hence should
be able to be used for a smart house, provided they scale appro-
priately. 

5.1 The Control System
To experiment with the different end-user programming

interfaces we developed an underlying control system that sup-
ports a wide variety of rule types and thus can accommodate
many of the alternatives described above. The rules supported by
the system are based on the notion of input sensors and output
actuators. While it is simple to state that the smart house consists
of separate sets of sensors and actuators, this by itself is not a
realistic model. Many devices are actually both sensors and actu-
ators. Even a simple light bulb can provide input information as
to whether it is burned out or not. A dimmer light switch might
include a display showing the current light setting. An alarm
panel will display the current state of its sensors and the alarm
state as well as letting the user change state, bypass sensors, etc.
For this reason, the control system is based on devices, with each
device having 0 or more sensors which are externally viewable
parameters, 0 or more internal parameters (hidden state), and 0 or
more actions. 

The control system supports a web-callable (RESTful) API
that lets us define web-based front ends that can create arbitrary
rules and get information about the system. To facilitate more
complex interfaces, it includes the notion of a hypothetical world.
Such a world can be created by cloning the current (real) world or
an existing hypothetical world. Within a hypothetical world, con-
ditions and time can be set arbitrarily, and actions can be taken
without actually changing the real world. This lets external tools
(and hence the user) explore the effect of the rule set without
actually changing any devices. This can be used, for example, to
provide an interface that would show the user what happens
under different conditions, something that is very useful for both
debugging and understanding the potential effect of new rules. 

The control system is designed to handle more than the smart
sign. It includes authentication to provide limited or selective
access to the rule set. It includes sensor and rule types that are
not used for the smart sign, notably trigger rules (one-shot) and
sensors that act as finite state automata and maintain an internal
state. It can handle multiple output devices. New devices and sen-
sors can be added dynamically. We have implemented interfaces
between our system and both the OpenHAB (https://www.open-
hab.org) and SmartThings (https://www.smarthings.com) frame-
works that automatically discover the available devices (both
sensors and outputs), determine their properties, and add them to
the system. Such interfaces are relatively simple (both are well
under 2K LOS). 

Using this control system we have built four potential inter-
faces to explore different user programming models that might be
used in coding a smart house. These are a programmer-oriented



interface, and interface specialized to rule creation, an interface
for learning rules, and an interface to explore modularity. While
the interfaces have been explored for the smart sign application,
they are all generated automatically from a description of the
devices and sensors and not specialized to the smart sign. We
note that these are experimental prototypes and not profession-
ally designed.

5.2 The Programmer Interface

The first interface, shown in Fig. 2, is what we call the pro-
grammer interface. It is designed for those who understand pro-
duction systems and want complete control over the system. It
consists of the list of all rules in priority order (using labels pro-
vided by the user when the rules were defined) where the user
can drag rules around to change priorities. In addition, one can
select a rule to edit, can delete a rule, and can define a new rule.
Selecting “New Rule” or “Edit Rule” brings up a dynamic display
seen on the right of the figure where the user can provide one or
more conditions and then use an SVG editor to define the image
for the sign. 

This is the interface that we personally use when program-
ming the sign (we are programmers after all). The rule listing part
is relatively simple, and with twenty-some rules. The rules fit on
one web page and it is relatively easy to find the rule one is look-
ing for. The interface is not particularly good, however, if one is
not already familiar with the existing rules since it provides no
hints as to placement of a new rule. This has led to several occa-
sions where we had to debug new rules because they didn’t oper-
ate as intended in unusual situations. Moreover, this interface
will not scale easily to systems with larger sets of rules.

5.3 The New-Rule Interface
The second interface, shown in Fig. 3, we call the new-rule

interface since it emphasizes defining new rules and understand-
ing their impact. It consists of the interface for creating a rule
used in the programmer interface at the top and below that a dis-
play of all the rules that this potential new rule would conflict
with and, by default, would be overridden if the rule were created
as specified. The idea is that the user starts by specifying some
basic trigger or condition for the new rule. As conditions are
added, the set of conflicting rules is narrowed down. If the user

FIGURE 2. Programmer Interface to the smart sign. The image on the left shows the current rules and lets the user drag and drop rules to 
change priorities. The image on the right shows the interface for defining a new rule or editing an existing one. 



decides that this rule should not override all of the conflicts that
are shown, they can add additional conditions to specify when
this rule should be applied or can select where the new rule
should go in the listed hierarchy. When the user is satisfied that
the new rule is appropriate (i.e. that all the conflicting rules
should indeed be overridden by this rule), they can click on the
Create Rule button. Selecting an old rule before clicking this but-
ton causes the new rule to be added after that rule rather than
before all the listed rules.

This interface scales somewhat better than the programmer
interface. For the smart sign, it does reasonably well, because all
the listed rules are essentially relevant to the sign and can quickly
narrow the set of rules to understand conflicts. For a smart house,
there might still be a large set of rules, many of which were irrel-
evant to what the user was intending. Another aspect of the
interface is that the placement of the new rule is relative to the
given rules, not absolute. This means that the actual priority of
the new rule is not obvious to the user. 

5.4 The Learning Interface

The third interface, shown in Fig. 4, we call the learning
interface. It is loosely based on devices such as the Nest thermo-
stat [26]. It starts with a display where the user can specify the
time and a set of conditions. (Google calendar conditions are
actually read from the user’s calendar based on the time specifi-
cation.) The time can be in the past or future and defaults to the
current time. Based on the condition settings, the system com-
putes what would be displayed and shows that to the user. (This
uses the hypothetical worlds feature of the controller.) The user
can then edit the displayed state and hit “New Rule”. (“Edit Rule”
changes the output for the rule that caused the display.) This
causes the system to remember the conditions under which this
rule should be applied. The system then builds a decision tree
based on these conditions, any prior conditions that were defined
using this interface, and the current set of rules defined using the
other interfaces. 

Creating a decision tree is done using the C4.5 algorithm [39].
The system uses the resultant decision tree to determine appro-
priate conditions for triggering all the rules created using this

FIGURE 3 New-Rule interface to the smart sign. This interface 
lets the user start defining a new rule by specifying its conditions. 
As they do so, the set of conflicting rules is displayed at the bot-

tom.

FIGURE 4The learning interface. The display shows a set of con-
ditions (by default the current ones), and then shows what the cur-

rent rules would result in under those conditions. The user can 
then change the display to indicate what the state should be. The 

system will deduce new rules based on the user specification.



interface and then creates the corresponding rules with appropri-
ate priorities. The decision tree approach is relatively straightfor-
ward, but there are unsolved problems. 

The main problem is that the interface has the user specify a
particular instance in time. This makes sense when exploring the
rule set and for handling time-based external sensors such as cal-
endar events. However, the rules are based on time intervals, not
time instances. This leads to the difficult problem of converting
the time instant from the specification into an appropriate time
interval. This is currently done by keeping a history of sensor
changes over time and using this history to determine what a rea-
sonable interval should be for this rule and whether there are any
repeats. Our experience to date is that this method is not particu-
larly effective, possibly because our schedule is somewhat erratic. 

Because many rules are time-based and the problem of infer-
ring time is difficult, this interface has not been used extensively
for creating rules. However, it has proven effective for under-
standing what this system is doing and hence for debugging pur-
poses. One can use it to easily explore what will happen under
different conditions, to see if the rules are correct, and to deter-
mine if new rules might be needed. It would be better for such
exploration if it also showed which rule(s) were being triggered
(although this is generally obvious for the sign from the display),
and provided a means for checking why a particular rule was not
triggered.

5.5 The Modular Interface
The fourth interface, shown in Fig. 5, we call the modular

interface. It supports dynamic modularization of the rules sets. It
starts by letting the user choose how to modularize, either by
device, by sensor, or by condition, or some combination of these.
(It currently does not support modularization by time.) Once the
user chooses the modular condition, the rule set relevant to that
condition is displayed as it was in the programmer interface. Now
the user can rearrange the rules for this modularization, can edit
one of these rules, or can create a new rule that is appropriate to
the modularization. 

This interface provides a convenient means for scaling the
simple programmer interface to large sets of rules. However, it
still requires understanding priorities and does not provide feed-
back on what will happen under different conditions or what
rules conflict with each other. Another aspect of this interface
that might be confusing to the user is what happens to the prior-
ity of a modular rule with respect to rules not displayed when the
priority is changed. 

A similar modular interface could be created for new rule and
learning interfaces. Modularization in these cases would be most
useful for particular devices.

6 EXPERIENCE
Our smart sign has been running for several years at this

point, providing us with enough experience to understand many
of the design issues and to realize potential next steps.

The current rule set is relatively stable. We edit the rules
about once a month, generally to take into account travel, vaca-
tion, and recurrent events that change each semester, and then
generally to reset the times associated with the affected rules.
This usually involves editing existing (or previously used) rules,
not creating new ones from scratch. 

The underlying control system is stable and robust. The web
front ends, a little less so. This is particularly true for the plug-in
SVG editor, which is a bit quirky, and can create SVG that can not
be converted to an image correctly. The interfaces are still a bit
primitive and could use a good redesign. The main continuing
issues we have found are in the connectivity with the tablet dis-
play and the Bluetooth on our phone. 

We see several directions for extending these efforts. One is
to define meta-rules that can generate low-level rules automati-
cally (e.g. in a room with a ceiling light and a wall switch, the
switch should control the light). Another is to be able to specify
properties and validate that the rule set enforces those properties.
A third involves determining how to do learning effectively, par-

FIGURE 5 The modular interface. Here the user chooses a device, sensor or condition and the system displays the rules relevant to that 
object. The user can then change the relative priority of the given rules, can edit one of the relevant rules, or can create a new rule rele-

vant to the context.



ticularly learning of time slots. A final one is to derive a single
user interface that combines the best of the four prototypes.

The source code is available from GitHub (https://StevenRe-
iss/upod).
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