
INTEGRATED ENVIRONMENTS

Working in the Garden
Environment for

Conceptual Programming

Steven P. Reiss, Brown University

Program designers use ne important problem in Rather than force the programmer to

a variety of techniques EU automating the software develop- conform to particular design methods, anment process is providing an envi- automated design system should providewhen creating their ronment for designing software systems. an environment that conforms to the pro-
systems. This Most of the approaches for automated grammer. Such an environment must pro-

automated design design environments provide one or two vide many design paradigms. These rangedesign methods and force the program- from traditional dataflow diagrams, pseu-system conforms to the mers to design with only these methods. docode, and finite-state automata to log-
programmer. Examples of such approaches include ical specifications, object-oriented

automated versions of SADT,' SREM,2 programming, or whatever language the
and dataflow-based design. designer developed to best describe the
Most program designers, however, nat- problem approach. These paradigms must

urally use a variety of techniques when be presented to the programmer in their
designing their systems.3 They draw pic- most natural form. This form can be tex-
tures of their data structures, describe a tual for pseudocode or logical specifica-
control-oriented module with an automa- tions, a standard type of diagram for
ton or a decision table, and illustrate the dataflow or automata, or something
system structure with a module- designed by the developer (textual or
interconnection diagram and a dataflow graphical or some combination of the
diagram. These techniques are selected to two).
closely fit the system being designed. As well as providing a multiparadigm
Moreover, designers modify the tech- environment for program design, a good
niques to fit the problem better and design-automation system should provide
develop new strategies or languages to sim- a framework for evaluating the resulting
plify the description of an otherwise com- design. The simplest approach is to allow
plex design. design-level prototyping. The system

16 0740-7459/87/i100/0016/$01.00 (Ci987 IEEE IEEE Software

should let the design itself act as the pro- Requirements environment should support this (by
totype program and let the developer A system that supports conceptual pro- allowing multiple views of the design lan-
evaluate the design by running it. The gramming must be both flexible and guages) to give programmers different per-
eventual goal is to make the design itself be prf Th uire o suc a spectives on the underlying design. For
the program, thus allowing system debug- pem .d ed bewementtors rtin example, one view of a design diagram
ging and especially maintenance to be done

tm ar d might show only the dataflow informaton
directly in terms of the design. This goal is multiple paradigms and those providing an while another might show both the
not realistic with current technology, but * . dataflow and the control flow. Such views
faster machines and better compilers could A conceptual programmmg envron-can provide different levels of abstraction
make it a reality in the future. ment must simplify the definition and use an aoodat lght ariatn ifor-

Finally, an automated design system of new languages. These languages can be matting (especially graphical formatting)
should provide more than just a variety of .i.a. that different users might want.
design languages that can be consistently new or derived from an existing language. t* Facilties to simpihfy language defin-

combnedItmustgiv th desgne a Th-e requirements here include: tion. The environment must provide a rich

plete environment, including facilities for s oset of support functions so the semantics
creating, modifying, recalling, and dis- environment's framework must let lan- of newlanguagescanbedefinedwithmini-
playing designs. The system must also sup- guages be freely mixed to form the proper mal effort. Thers bedefa rich set ofsu-conceptual model. This mixing willfotgener-ldbea ih eto
port browsing and automated analysis of ally follow a hierarchy, for example, either built-in data types and corresponding

a team of designers. with dataflow actions referenced by the operations. There should also be special-

a___team___of___designers.______ ized support for common but difficult-to-
Garden is such a programming system. implement design-language features, such

It is designed to support the concurrent use A system that supports as dataflow, concurrency, and constraints.
of a variety of languages that represent conceptual programming Finally, it should be easy to reuse and
different programming paradigms. It tries must be both flexible modify existing language definitions.
to provide equal support to both textual As well as providing a usable framework
and graphical languages and to support a andpowerful. for incorporating multiple languages, a
wide spectrum of programming para- conceptual programming environment
digms. In Garden, you define a conceptual nodes of a control-flow graph or with must provide substantial environmental
language by giving its visual and textual control-flow actions assigned to the arcs of support for design. In particular, it should
syntax and its semantics in terms of an a finite-state automaton. More sophisti- provide:
object basis. The language is then used cated mixing would not be restricted to * Prototype evaluation. One key idea of
through views of the objects that represent such a hierarchy. For example, a single conceptual programming is that the design
its programs. framework would let a piece of a program should be an executable prototype so

Designers developing systems typically be viewed and edited as both a data dia- designers can experiment directly with
build system models in their heads. These gram and a control-flow diagram. designs as they work on it. The environ-
models consist of the languages or * Equal support for visual and textual ment must support this by providing a
paradigms used in the design. This is the languages. Many languages used for general interpreter that can evaluate pro-
conceptual system model that the design are visual languages. The environ- grams in any language that can be defined
programmers must understand and work ment should offer visual languages all the in the system. Additional support can be
with while implementing, debugging, and facilities normally offered to textual lan- provided by letting these languages be
maintaining the system. The type of auto- guages, including syntax definition, edit- compiled to yield a more efficient
mated design system outlined above lets ing, file-based storage, program sharing, evaluation.
designers work directly with the model. and browsing. This prevents worthwhile * An experimental framework. Design
Moreover, it turns the model into the pro- languages from being ignored because of prototyping should be encouraged by
gram. A system that supports this type of inadequate support. providing an interactive environment with
effort - called conceptual programming * Multiple views of a single language immediate feedback. The advantages of
- with an automated environment is a form. The system should let programmers such an environment are shown by the suc-
conceptual programming environment. view a complex design many ways. The cess of such systems as Lisp and Smalltalk.

November 1987 17

The environment should have facilities parents. Experience with Smalltalk5 has Garden provides an interpreter and a cor-
that let designers understand the program shown that object-oriented systems are responding compiler to yield efficient exe-
as it executes. These facilities might good for prototyping because they provide cution of object-based programs.
include various execution views, profiling a high degree of reusability and encourage Because objects represent programs,
tools, debugging aids, and dynamic dis- the use of data abstraction. Garden has no bias toward any syntactic
play of the program's data structures. Garden uses objects to represent pro- form; it lets the syntax of an object-based

* A multiwindow, user-oriented front grams as well as data. The result is a sys- language be defined textually or graphi-
end. Thevionensouduno tem that is good for prototyping and cally, or both ways. The current imple-end. The environment should run on a

workstation where different views and encourages the use of both data and con- mentation allows wide latitude in the
different languages can be displayed with trol abstraction. You build programs by selection of graphical displays for such

multiple windows. These views should putting together collections of objects, languages. While Garden's goal is to let the
provide the functionality needed to do the define new languages by defining new system provide a natural representation
design: They should be editors for the types of objects that represent programs, using the underlying objects of most lan-
underlying design that support browsing and use the class hierarchy to reuse exist- guages, the system now provides only a
Ind documentation as it is written. Mul- ing languages when defining new ones. single textual, Lisp-like representation that

tiple windows should also give program- _________________________________ is not suitable for all languages, particu-
mers system-control functions such as the larly those with cyclic underlying
ability to execute and interact with the pro- The object-oriented structures.

designs. Garden Garden supports the definition of
ty * systmr god semantics for object-based languages by*enr envronmenta support.t e for prototyping and providing a rich underlying set of pro-

eneeded for software design in a moderate- encourages the use of gramming primitives, including strings,
sized project, including design storage and both dab and control lists, and tables (indexed relations in the
retrieval with version control. This lets new abstraction, database sense) with a full range of oper-
ideas be tried without modifying a stable ations. It provides primitives for concur-
system. There should be support for rent processing using lightweight
cooperative design so a group of program- Objects form a consistent basis for sup- processes, including monitors and sema-
mers sharing a common design can safely porting multiple languages - any lan- phores.
work on different pieces of it. While the guage can be defined in terms of its A general dependency mechanism can
system should provide a good interactive underlying constructs. In Garden, the handlenstrintbaed proging as
environment, it should also be able to pro- differing constructs are represented by well as event-triggered demons. It gives full
duce a readable printout of the resulting different classes of objects; the relation- access to the system's underlying namings

design. ship among the cnstructs arerepresented typing, and evaluation mechanisms. Thesedesign. ships among the constructs are represented
facilities can be used with any defined lan-as other objects referred to by the objects.

Garden overview For example, an automaton is represented guages to define the semantics of a new
Garden is an attempt to meet many of as an object of class Fsa and includes language.

these-requirements for a conceptual pro- -objects of class State for each state of the
gramming environment. It consists of a automaton and each object of class Arc Multiwindow environment. Garden's
programming system designed to support for each arc. programming environment lets you create
multiple languages, a set of tools that pro- Garden uses these object constructs as and modify the objects that represent their
vide a multiwindow user interface, and an the actual program. One operation it pro- programs and data. Objects can be viewed
underlying database system to provide vides for an object class defines what it or modified in any of three editors. One
environmental support. means to evaluate an object of that class, editor displays the textual form of the

For example, evaluating an Fsa object with object and allows normal text editing. The
Object-oriented framework. Garden a value causes the automaton to move to second provides an object-based browser

uses an object-oriented programming sys- the next state using that value. Since this on the object, letting you select, view, and
tem to provide the necessary control operation is defined for all program modify an object's contents or one of its
abstraction.4 Object-oriented systems objects, different program abstractions component objects on a field-by-field
view all their data in terms of objects: data and hence different languages can be freely basis. The third displays a visual represen-
blocks that are instances of a particular mixed hierarchically. Garden lets you tation of the objects and lets you interact
class or type. Associated witheach class is define an operation for any object by directly with this form.
a set of operations that can be applied to providing another object that describes the The system coordinates these different
the object. The classes are arranged in a operation. Thus you can use any currently editors with a multiwindow display on a
hierarchy so subclasses can inherit the defined language when describing the Unix-based workstation. Each editor runs
properties, data, and operations of their evaluation semantics of a new language. in a window on the display; you can set up

18 IEEE Software

these windows with a window manager or put up views of the data structures the pro- tion, windows can be defined for both
nest them in another editor or tool. Gar- gram is working on. Garden automatically graphical and textual program input and
den lets multiple instances of each editor updates such views as the program changes output.
be active simultaneously. It also lets you the underlying objects at a user-control- Figure I shows a sample of a complete
put up multiple editors, of the same or lable granularity. Garden screen. The sequence of Gothic
different types, on the same objects simul- The multiwindow display provides letters and icons at the bottom represents
taneously. In this multiple view, the system other programming tools. One or more the windows available. The windows dis-
keeps the various windows consistent: interactive windows can provide a read- played include a type editor in the upper
When you change the underlying object eval-print loop with the textual language left, a browser editor in the upper right, a
with any editor, all the other views update interface. A variety of system browsers can read-eval-print loop window in the lower
automatically. be defined that let you select an object with left, and a graphical editor in the lower
The object editors can view data as well a variety of criteria such as the scope in right. Each window contains a title bar,

as enter and work on programs. The vari- which it is defined, its class, its name, and move and resize icons in the corners, and
ous editors can be brought up under pro- its fields. A documentation editor lets you a blank bar at the bottom to move the win-
gram control as sophisticated input quickly find and create textual documen- dow. Hidden beneath the title bars are but-
mechanisms or output displays. You can tation for any object in the system. In addi- tons to remove the window and to pop

Ao:_ FildIdit letTlop1I1 Evil

X nne _pAr qW4 Valuat1| End

RESIZE I IW EIELETE F US PCP ICONI IUflCCY SRWE IJINKII SR9E SERF INffRT gEFVEA ilp IfoPjtT

Fi,gure 1. Garden screen.

November 1987 19

Petn net example
The example in Figure A is specified in the textual language names can be defined with the separators {* and }* containing

currently provided by Garden. The language is defined to look a list of names and one or more evaluatable objects. The result
and feel like Lisp so first-time users have a degree of familiar- is either a Block object or an appropriate type of Lambda object
ity when they start using Garden. However, it is only a Lisp-like with the initial list of names as local variables defined in a new
syntax that Garden uses to define objects. The basic form of a scope and a Seq object containing the sequence of actions as
Lisp S-expression serves several purposes. If the first compo- the body.
nent is a type name, it is a definition of an object of that type Thefirst partof theexample in FigureAdefinesthetypestruc-
where the latter components contain the field values for the ture used for Petri nets. Each type isdefined asastring contain-
object. If the first component is a field access object (identified ts n en achtypeis fiedns acs conthe
by an initial open single quote [']), it is an invocation of the ing Its name and then a list of its fields inside braces ({ }) The
corresponding message applied to the second component- if fields are defined with a name, a separator, and a type. The sepa-rator can be a colon (:) indicating a data field, a vertical bar (I)the field object refers to a data field, the corresponding message indrcangasclfield,ond careta-findiaticadynamic

justretrnsthefiel s alu. I thefirt cmpoent s nithr a Indicating a structural field, or a caret (") indicating a dynamic-just returns the field's value.If the first component is neither a field. In general, data fields are descriptive; structural fields
type or a field access object, the S-expression is translated into ield In other componentsare language; al fields
a Call object where the first component is the object to evalu- include the other components of the language; and dynamic
ate and the latter components are composed into an argument
list. The second portion contains the definition of the Lambda
The language provides other extensions to simplify textual objects associated with the messages used in evaluating the

Garden programming. Objects can be defined with a named rep- objects composing a Petri net. The function De takes three argu-
resentation rather than the positional representation inherent ments: a name, a list of parameters, and a body. It creates a
in S-expressions. Quoting occurs as in Lisp, with a quotation Lambda object with the list of parameters and the body and
mark (") followed by an expression actually yielding a Quote binds this to the given name. The parameters are defined in a
object containing that expression. Local scopes and local local scope for this particular definition.

Type definitions (LISTLOOP ('input ptrans)'Release)
(COND ok (SEQ

(TYPEDEFIN E "pNet{ name:Name,transitionsl#pTrans,placesl#- (FIELDSET True ptrans 'active)
pPlace} ") (SEMA_ ('sema ptrans))))
(TYPEDEFINE 'pTrans{name:String,eval:Any,input:#pPlace,out-
put:#pPlace, "&

"active- Boolean,sema^Semaphore } ")
(TYPE_DEFINE "pPlace{ name:String,init:lnteger,output:#pTrans, "& (DE pTrans_EVAL < ptrans:pTrans > (EVAL ('eval ptrans)))

"count^lnteger,sema:Sernaphore})
(DE pTrans_INIT <ptrans:pTrans>

{* <>
(FIELD-SET False ptrans 'active)

-- Evaluation definitions (FIELD-SET (SEMAPHORE 0) ptrans 'sema)

(DE pNet_EVAL < pnet:pNet >
{* < > (DE pPlace_INIT <pplace:pPlace>
(LISTLOOP ('places pnet) 'Initialize) {* < >
(LISTLOOP ('transitions pnet) 'Initialize) (FIELD-SET (SEMAPHORE 1) pplace 'sema)
(LISTLOOP ('transitions pnet) 'NewThread) (FIELD-SET ('init pplace) pplace 'count)
(LISTLOOP ('transitions pnet) 'Check)
(THREAD_WAIT_FOR_CHILD)

(DE pPlace_CHECK <pplace:pPlace>

(DE pTransJTHREAD <ptrans:pTrans> {* <>
(THREAD_NEW_CHILD (BUILD CALL "Work (LIST-NEW (QQUOTE (SEMA_P ('sema pplace))

ptrans))) 0 0)) (INTGTR ('count pplace) 0)

(DE pTrans_WORK < ptrans:pTrans >
{* <>
(LOOP True True (SEQ
(SEMA_P ('sema ptrans)) (DE pPlace_USE <pplace:pPlace>
(EVAL ptrans) (FIELD-SET (INT_SUB ('count pplace) 1) pplace 'count))
(LISTLOOP (LIST-PERM ('output ptrans)) 'Add)
(FIELD-SET False ptrans 'active) (DE pPlace_ADD < pplace:pPlace >
('Check ptrans))) {* <>

(SEMA_P ('sema pplace))
(FIELD-SET (INTLADD ('count pplace) 1) pplace 'count)
(SEMA_V ('sema pplace))

(DE pTrans_CHECK <ptrans:pTrans (LISTLOOP (LISIPERM ('output pplace)) 'Check)
{* <ok:Boolean>*
(COND ('active ptrans) (RETURN Null)))
(SETQ ok (LISTLOOP ('input ptrans) 'Check BOOL_AND True))
(COND ok (LISTLOOP ('input ptrans) 'Use)) (DE pPIace_RELEASE <pplace:pPlace> (SEMA_V ('sema pplace)))

| Figure A. Example of a Petri net in the Garden language.l

20 IEEE Software

(uncover) and push (cover) it on the dis- - this facility saves your complete envi- additional environmental support, includ-
play. General window-management com- ronment. ing background garbage collection over all
mands and a prompt window are at the You can use the external database objects not known to the database system
very bottom of the screen. several ways. In its pure form, Garden in an effort to eliminate as many tem-
Garden provides a consistent menu and provides a persistent environment where porary objects as possible. It also provides

mouse-oriented interface to most win- everything you do is stored in the database. a nested transaction mechanism with both
dows. Apple Macintosh-style pull-down Because the underlying database system is fast and abortable transactions. This
menus provide editing and control- a real database system, many program- mechanism provides the basis for the
oriented options in the editors. Complex mers can share the same object space with general dependency mechanism that Gar-
parameters are entered in each window via appropriate consistency checking and den offers; it could also be used as the basis
dialogue boxes. A base editor with a com- access control. The database system also for an undo facility because it lets you set
mon set of editing operations is used for all provides version control, letting you cre- marks in a transaction and partially abort
textual displays and editing. It can cut and ate and restore versions of your whole the current transaction back to a previ-
paste text among displays. All these facil- environment. ously defined mark.
ities are available for user programs from You can access the database as if it were
within the Garden system. They are imple- a workspace facility- taking an APL-like
mented using the tools of the Brown or Lisp-like approach to development, Defining languages
Workstation Environment.6 independent of whether it is done on one' The first problem in building a concep-
Garden also provides a consistent set of or several databases. You can open a data- tual programming environment is to

mouse utilities to select and define objects. develop a workable underlying model that
A common routine provides a series of dia- can support a wide variety of languages.
logue boxes that prompt you to define an A This variety must include textual lan-
object of a given type. This dialogue is A conceptual environment guages, visual languages, nonexecutable
modified on the basis of the expected type first requires a workable design languages, and languages that are
to simplify your task as much as possible. underlying model that now only a figment of someone's imagina-
For example, when a string object is cansupporta wide varety tion. The key to solving this problem is the
required, you must type only the contents of languages. choice of an underlying representation
of a string. In general, this dialogue through which languages can be defined.
prompts you for access to an object or for
the type of a new object; in the latter case, Objects as a basis. Today's languages
it prompts you for the various fields. You base as read-only to access a set of lan- are usually defined formally in terms of
can control the dialogue on newly created guages, an environment, and the current their abstract syntax. This abstract syntax
objects of your own types by identifying system state. Then, as new facilities are is represented as a tree where the internal
the expected field types and noting which added to this workspace, they can be saved nodes represent constructs such as state-
fields should not be prompted for. in the workspace in a separate database ments and subprograms and where the leaf

In addition, Garden provides a common that can in turn be used as the starting nodes represent semantically relevant ter-
facility for selecting objects and reusing point for a later run. minals such as names and constants. A
them anywhere on the display. All editors Partitioning the system this way uses the mapping from the concrete syntax (the tex-
let an object be selected by pressing the inherent similarities between environmen- tual form of the language) to the abstract
right mouse button. The selected object is tal support and database technology, syntax is provided either formally (by
stored in a common buffer as the current providing such features as version and using a context-free grammar) or infor-
object. All dialogue boxes let you choose access control consistently across systems mally (by stating what the concrete form
this current object as an alternative to and among users. However, it does place of each abstract construct is). The seman-
entering all the box's fields with generic an efficiency burden on both Garden and tics of such languages are defined as map-
types for the object. the database system since an environment pings from the abstract syntax trees to

will consist of many (typically 20,000 to some semantic form. This can be a pro-
Environmental support. Garden's 100,000) relatively small (40-byte average) gram for operational semantics, a set of

object-oriented database system provides objects that must be rapidly accessed when mathematical functions that show how the
many environment facilities.7 The data- evaluating the program and displaying state changes for denotational semantics,
base system isdesigned to store all objects object structures. or a set of logical rules for axiomatic
in use. Because objects are used to repre- Garden attacks this problem by provid- semantics.
sent programs and data -as well as the ing an in-core database system to interface While abstract syntax trees work well
semantics for evaluating object-based pro- to theexternal database and by having the for hierarchical, textual languages, they
grams and the syntax rules for drawing in-core system cache as many objects as are not a natural representation for the
and editing objects textually and visually possible. The in-core system provides nonhierarchical languages that arise in

November 1987 21

conceptual programming. In particular, program objects in the new language. This indicating that the transition is currently
two-dimensional languages such as finite- requires that you understand and charac- active and a semaphore associated with the
state automata and dataflow diagrams terize the language's components. You transition.
have a natural representation that is a should create a type for each component. A pPlace object contains fields with the
general cyclic graph rather than a simple The type should have fields to contain both identifying name and the number of mar-
tree. Using an unnatural representation the structural information needed to kers that should initially be at the place. It
here would complicate language definition describe the corresponding program struc- also contains a field with the list of transi-
beyond what is desirable in conceptual ture and any state information needed to tions it is connected to, a field for the cur-
programming. evaluate this object. rent count of the number of markers
Garden addresses this problem by For example, suppose you wanted to stored at the place, and a field containing

generalizing the abstract syntax tree model develop a language based on Petri nets.8 the semaphore controlling access to the
of semantics into an object-based model. A Petri net is composed of places that can place.
Objects represent programs directly. The store markers and transitions that use mar-
instance data (fields) associated with an kers and generate new ones. Typically, the
object are used three ways in specifying a markers are used for concurrency control Defining the semantics. The second step
program: (1) Some fields are structural, while actions are associated with the tran- in defining a Garden language is to define

specifying an underlying graph of objects sitions. Figure 2 shows an example Petri the semantics of the types. You do this by
that replaces the abstract syntax tree. (2) net. The object basis for Petri nets con- associating evaluation functions with the
Other fields are static attributes, contain- tains three types of objects: pNet objects types. Sometimes an evaluation function
ing data about the program instance rele- represent complete Petri nets, pTrans is defined only for the top-level type (for
vant to the static semantics and objects represent transitions, and pPlace example a flowchart or an autatmdfon)e In

corresponding to the attributes that would objects represent places. other cases, it is convenient to define the

be attached to the abstract syntax tree to A pNet object contains three fields, one evaluation of an object of this type with

store the static semantics. (3) Still other holding the name of the Petri net and the the evaluation of its component objectss
fields are dynamic values, those that reflect others lists of transitions and places. and it is thus necessary to define semantics

the execution semantics, since Garden A pTrans object contains six fields. The for the component types.
actually runs object-based programs. first holds an identifying string that names Evaluation of a Petri net occurs when

Defining a language in Garden is a the transition. The second field holds the associated with evaluatin a Net obect
three-step process: (1) The type structure associated action, an arbitrary object that ast iatesth etgansats contr
that serves as the object basis is developed. Garden will evaluate when the transition thread for each transition. It then tries to
(2) The semantics for these types is is triggered so this Petri-net language can te each transitionby sendtrieach
defined. (3) The syntax, both textual and be associated naturally with any other Gar- execute each transition by sending each
visual, is specified. den language. The next two fields contain one a Check message. After this, the Petri

the list of input places and the list of out- net will contiue executing on its own until
Defining the object basis. The first step put places for the transition. The remain- Each transition evaluates in its own con-

is to define the set of types that describe ing fields hold a flag during execution trol thread. The message NewThread

starts the control thread and sends a Work
message to the transition. The code
associated with this message is a simple
loop that waits for the transition to be acti-

Flur 2. P nvated by doing a P operation on the tran-
sition's semaphore; it then evaluates the
transition object itself to evaluate the
associated action. When the action com-

* ~~~~~~~~~pletes,an Add message is sent to each out-
put place and the transition sends itself a

~~~~ ~ ~ ~ ~ ~ Check message to see ff it should fire
again.
When a transition gets a Check message,

it must check ifit should fire and, ifso, en-
K able its semaphore. It first checks if the

transition is active and, if so, returns
immediately. It then loops through the
input places, sending each a Check mes-

Figure 2. Petri net example. sage. This message does a P operation on

22 IEEE Software



_______________ Visual programming environments
The Garden effort draws on past research in several areas. Garden is a general-

purpose visual programming system, providing many of the capabilities of visual
programming languages. At the same time, Garden is an interactive programming
environment in the flavor of the many versions of Lisp. Garden, being an object-
oriented system, is closely related to previous work in this area, in particular to
interactive systems such as Smalltalk and Lisp with types. And Garden is a pro-

the corresponding place's semaphore and gramming environment designed for use with multiple windows on a powerful per-
sonal workstation and shares features of other such environments.

returns a Boolean value indicating whether A multilanguage approach to conceptual programming such as Garden's differs
there is a marker at the place. If all mar- considerably from the extensive body of work in visual languages.' Much of this
kers are present, each input place is sent a work uses a single visual representation as a programming language. This work
Use message to decrement its marker extends from flowchart programming to simulating finite-state automata, graphi-
count. Next, each input place is sent a cal dataflow representations, graphical data-structure representations, graphi-
Release message to do a V operation on its cal programming-by-demonstration, and functional programming. Other work has
semaphore. Finally, if the transition concentrated on using visual representations to support design languages such
should fire, it does so by setting its active as SADT, SREM, and the Yourdon method, or to provide machine-checkable
flag and doing a V operation on its sema- documentation as a design aid. All these efforts are single-view systems. They
phore. (This example is simplified so that do not support the wide range of views necessary for conceptual programming
multiple connections from a place to a

to be a practical approach to large-scale programming.
utransitconnections from

a morepra While Garden has a lot in common with interactive object-oriented environments
transition are not handled. In a more prac- such as Smalltalk, there are significant differences. Some of these are apparent
tical framework, a link object would rep- at a finer level of detail than is presented in the main article, notably in the under-
resent the connection between a place and lying model of objects. The basic difference, however, is the use of objects through-
a transition.) out the system to represent both programs and data. This, along with the lack of

any preferred programming language or methodology, makes Garden an ideal
pPlace objects must respond to five testbed for working with several paradigms concurrently. Moreover, the heavy

messages: (1) Initialize, (2) Check to lock emphasis on the graphical display of objects provides a visual component that
and check if there is a marker, (3) Use to would have to programmed explicitly for each structure in other systems.
remove a marker, (4) Add to add a marker, Garden's approach to producing a complete programming environment also
and (5) Release to unlock their semaphore. differs from the multiview program-development systems for workstations devel-
The only complexity here involves adding oped over the past 10 years. These include the Cedar Mesa environment from Xerox
a marker to a place when all transitions PARC, the Magpie system from Tektronics, and the Pecan program-development
connected to the place must be sent a system at Brown University. These systems are based on a single textual program-
Check message. ming language. The Pecan system and PV try to provide alternative graphical

representations to the textual programming language, but the experience with
Pecan has shown that such graphical views have limited power and usefulness
when they are tied to syntax. The syntactic basis forces you to treat these two-

Defining the language syntax. The final dimensional representations one-dimensionally, and the graphics provide no sig-
step in developing a conceptual language nificant advantage over text. Because the wide range of graphical views that peo-
in Garden is providingasyntax for the lan- ple use do not conveniently fall in the confines of a single language, it seems
guage. Garden offers several syntactic unlikely that a system based on a single programming language can effectively
forms that can be defined for the new lan- support them all.
guage. These reflect the different ways that
the language can be displayed and input. Reference
Garden provides a textual interface to 1. G. Raeder, "A Survey of Current Graphical Programming Techniques," Computer, Aug.

objects (this interface is a Lisp-like lan- 1985, pp. 11-25.
guage). In the language, objects are

defined by putting the object type and
values for the fields in braces ({ }). The
field values can be named or be provided
positionally, where the first value is the must build an initial instance with no nents of another object, a facility that pro-
first field. Omitted fields are initialized to defined fields. videsreadable displays of cyclic structures.
a default value. In addition, parentheses You have some control over the textual In this case, all fields are displayed at the
can be used instead of braces when only output form used to display the object. top level, but only identifying fields are
positional fields are given. You can control the basic display form displayed at lower levels.

Currently, you can make only small var- (whether to use the braced form with Finally, if you need more control over
iations in the textual forms allowed for an explicit field names or the parenthesized the object's textual display, you can pro-
object. For input, you can define reason- form). vide a message handler that is invoked
able default values for fields and can deter- Garden also gives you control over when the object is to be displayed that will
mine the fields' order. If you want more which fields are normally displayed. You display a substitute object. This message
complex manipulations, you can define an can indicate fields that should not be dis- handler can differ for objects displayed at
explicit Build or Instance operator for the played when showing a particular object the top level and those displayed inside
type. The Build operator takes the type type textually. Different fields can be indi- other objects.
and the set of initial field values and builds cated for objects that are displayed In addition to a textual syntax, Garden
the correct instance; the Instance operator explicitly versus objects that are compo- provides a general facility for interactively

November 1987 23



requesting an object definition. This facil- provides a simple interface for designing Visual languages in Garden are charac-
ity builds an instance of an object of the the graphical representation for the struc- terized by mappings from the Garden
designated type and then uses a sequence ture and can lay out arbitrarily complex object types of the language to Gelo
of dialogue boxes to get field values for the structures without programming the objects. These mapping are defined
component fields. You can customize this layouts. through a set of stylized examples of the
process to some extent for each object type Gelo's layouts are based on a hierarchy display for the types and are used to build
you define. For example, you can order of graphical objects that are loosely related the hierarchy of Gelo objects that cor-
the fields so values are requested in a given to the various components of the original respond to a particular Garden structure.
order and abort the sequence of dialogue data structure. Initially, four different You can display and edit this hierarchy.
boxes to use default values for the remain- types of objects are provided: Figure 3 shows the stylized mappings for
ing fields, or you can designate fields for * Basic objects. These display simple the Petri-net language. ApNet object, the
which the system will not request values user data, fields of more complex user top level of the net, is drawn as a simple til-
(these fields thus will hold the default data, and constants such as the name of ing with two tiles, one on top to hold the
value). the data type. They contain a text string name and one below to hold the Petri net's

Additional control is provided through representing their value. This string can be picture. The layout used in the editor for
the typing of the fields, since values of enclosed inside a rectangle, circle, or other this mapping is shown in Figure 3a.
different types are prompted for differ- figure, which can be filled and colored as Two mappings are shown for pTrans
ently. For example, if a string is expected, desired. object
you can enter the string without having to * Tiled objects. These display fixed The first is used when the object is
type quotes around it; if a type is expected, composites and recursive structures. They drawn inside a layout. This is the form
you are given dialogue-box buttons for the used in the picture of the Petri net; it is a
most common types. vertical line labeled with the identifying
You can also provide a message handler identin.g

for the type to be invoked when you fin- Defining the visual strlng of the transition. The mapping
ofth ne itself, shown in Figure 3b, specifies thatish providing the fields. This function is sYtaX 0 e new both the input and output fields should be

then responsible for cleaning up the initial languages is the final used, with arcs drawn from the objects
object and maintaining consistency of the part of the language denoted by the input fields and arcs drawn
data structures. Such functions are nor- specification. to the objects denoted by the output fields.
mally used to set up complex structural Tescn apn,tedfutmpThe second mapping, the default map-
fields of objects with minimal user infor- ping for pTrans objects shown in Figure
mation. For a doubly linked list, for exam- 3c, is used when the object occurs outsideple,~~thisfucto could when the objecpropseutidpIe, this function could set up the proper consist of a rectangle split into tiled a layout. This is a tiling containing the type
back

links.
once you defined the forward regions. Each region contains another type name on top, an indentation bar on the

links. of object to be drawn. You can impose left, and then the fields in the order in

some constraints on the regions' sizes and which they occur in the type definition.
Defining the visual syntax. Defining the have some control on the tiles' sizes. The mapping for pPlace objects in the pic-

visual syntax of the new language is the * Layout objects. These display more ture of a Petri net (Figure 3d) is a basictype
final part of the language specification. complex or variable structures. They con- shaped as a circle with the identifying
This process has two parts: defining the sist of a rectangular region into which string displayed.
visual display of the language's objects nodes and arcs are placed. Gelo uses The result of these mappings is the Petri
and defining the interpretation of graphi- heuristics to automatically lay out the net example of Figure 2 displayed by Gar-
cal editing operations on this display. Gar- resulting graph. It chooses the amount of den in Figure 4. Garden lets you use this
den tries to make this complex process as space between the nodes, the method for visual form to create and edit objects as
simple as possible by using a graphics laying out the nodes, and the method for well as for simple display. The editor uses
package explicitly designed for drawing routing the arcs between the nodes. Gelo to put up a display and then lets you
data structures. This package includes an * Arc objects. These represent arcs in apply graphical editing operations to
editor that lets you interactively describe layouts. They allow a characterization of modify it. Each graphical editing opera-
different ways to draw objects of a given how the arc is drawn and of the labels that tion must map to a change of the underly-
type and a graphical editor that lets you can be placed on the arc. ing object. This change is made and the
modify the objects being displayed.9 This simple framework is powerful display is then updated for the modified

Garden's general layout package, Gelo, enough to handle a wide variety of data- object.
is designed to be a flexible and powerful structure displays. Moreover, the system To support consistent graphical editing
interface for drawing pictures of data supports a general mechanism for these for a variety of structures, the graphical
structures or, in Garden, structures of blocks, letting new block types be added structure editor translates your editing
objects representing programs and data. It as needed. request into requests to change values or

24 ~~~~~~~~~~~~~~~~~~~~~IEEESoftware



pF| pTrans File Top Edi t Props

_ 01 ¢ ~~~~~~~~~~~~<eF.ed Data Fild <FoS:Felf>

pN at a Fieldsoplace <From Self> nameSrig,

:lcsI*Sequrnce_O_P
0

transitions input vSeqencflf.pPla inpu

tl

0.g semia: Sembphore ..se..

va IT Fiel r Initialize Tim LRWR }

.ViolietUpdate m t LRHBDR } Evaluae *t LRHBDR

x
VioletInsert

* t LiRHBD }Iitr eotet}.s =_=S

Plecture = {CeloOtJect } l i _ _ 0 ...."=

plran File Top Ediit Props *0 pPlace File Top EOdt Props 0
<none>a pfr~ ~ pTrpes .||EptN <none> p esA <Enpt_>

||||<eval> |,~ |i ZI_/_\_ <From Soiree ;

Data Fields i > l<From Self> t; Data Fields l/...<Fro Self>niialze *t LRh'BDR } (ou >! %me ;: Che:tri* { LRMBDR }nm\ /p Copue

t:Evalut <atie e{a LRWD }Integer se LRBD } lilil i t

Finpu 3Stylzed mapping inpPetcts: ( outfot Set<uec ,OF )pTn outpw

otputi rSequencaema.pPouput by ~ Gadeinteoe a _0

ity can:r^Um n: .hrc U:itrnsition cr <Fo SoL ceactiveaDooean a Falsu active seded Seaparel

Cnsdta tFields Constant Fiels S
strductudrestif~~~~~~~~~~~~~~~~~~<Fo Self namedetobjet cotrirnWg

initiaie dawigsch asB dobInitializes8 m1I

Evaluate81L~~~~~~~~~~~~~~~~~~~~~~lDI~~~~ ~ ~evlIn
trrictions I $Sewoience-ORoRida as JI

inhandlayouttha derfalthpTrrectobjectrmapping,-anes pP otcuobet mappi

these requstsparicumappedat bypGarden into re 4. Garden's Peti-e Boolay.

Gardenmsbdefault facility for2handling5Edit L Disp1a~ Inset Evci

CutoneistanFeld whereitaisinsuficien

Vitycnolt detera(LMine whereuatndeLorBar
canbeadded or should bs itredeletd. I alsct UseP 6=ipt >uput

strctures ifoOethGadn[ betscnti.

redundant informa~~tio tha was not usedl o Eit rp

In these cases, youmust provide message ~ ~ ~~prvi <mptv
handlesthatperfor the crretnpea

tion on the particular data types. FIgure Garmputden' <Cto-neudislay
November 1987 25<name



For the Petri net example, you would automatically animate the Petri-net pro- not only to get experience with the system
have to provide several message handlers grams. The editor highlights each object but also to improve its interfaces and to
to ensure that the editor worked correctly. that it displays when that object is evalu- make it into a real environment.
In particular, handlers must be defined for ated. Because Petri nets evaluate by evalu- The graphical interface is weak in two
inserting and deleting both nodes and arcs. ating their transition objects, a graphical respects. First, the layouts are produced
These are necessary both because the view of the pNet object being evaluated completely automatically and often are
underlying objects contain redundant will show the evaluation by successively not aesthetically pleasing. We are looking
information (the transitions point to their highlighting each transition as it fires. into using better heuristics for layouts and
input places and the places point to the finding ways of letting programmers con-
transitions in which they are used) and trol the layout to some extent. Second, the
because adding nodes is ambiguous since graphical editor is essentially a structured
a layout node can be a place or a transition. editor for the underlying object. We would
The definition of these editing functions prefer, in many cases, that this editor be a

completes the introduction of a Petri-net simple drawing package to let users simply
language into Garden. The work involved draw the program and then parse the
is quite small: It takes a day or two for here is nothing special about the result.
someone familiar with the Garden system. f Petri net example discussed here. The textual interface also needs

U Garden can and has been success- improvement. Currently, you must map
Using the new language. Once the Petri- fully used to define a wide variety of lan- your conceptual language into Garden's

net language is defined in Garden, you can guages, including functional dataflow Lisp-like notation. While this isn't as
use it as one of the basic conceptual lan- languages, finite automata, flowcharts, detrimental in the textual case as it is in the
guages in your repertoire. Petri nets can be dataflow design languages, a CSP-like graphical one, it is a drawback we want to
used to define the asynchronous control ports language, a programming-by- eliminate. A more serious disadvantage is
aspects of a more complex system. Petri demonstration language, and language that the current language is not suitable for
net examples can be created and used eas- facilities provided by Paisley, Linda, and defining complex object structures, espe-
ily. Moreover, programs using Petri nets Multilisp. cially those that are not trees.
can be freely mixed with all other Garden The Garden prototype currently runs on Although Garden is designed and imple-
languages. Digital Equipment Corp. VAX worksta- mented to sit on top of an object-oriented
The conceptual programmer would cre- tions and on Sun workstations. It is being database system, we have had little expe-

ate Petri-net objects with the graphical edi- used both for general experimentation and rience with the actual use of the system,
tor described above. The Petri net would as the basis for several research projects at primarily because its initial implementa-
be created and modified by adding places Brown University. The implementation tions has not had the performance needed
and transitions to the drawing of the net. runs at about the speed of a Lisp inter- for an interactive system. The perform-
When a new object is to be inserted, the preter and includes a compiler that ance problem is being addressed and may
system uses dialogue boxes to prompt for produces C code to give a tenfold improve- be resolved in the next year.
the object type and then for the fields of ment in performance over interpreted We are also looking at the very difficult
this new object. Places and transitions can code. problem of semantics that the current
be connected in the editor by dragging arcs The work on the Garden system is only implementation of Garden tries to avoid.
from one to the other. The various values half done, and the system is just now Ideally, a multiparadigm system should
- labels, initial settings, and evaluation becoming really usable. As the system have a consistent internal semantics. Such
routines - can be changed using this or becomes more stable and as my colleagues a semantics provides a basis for compila-
other editors. at Brown University and I get more expe- tion, for consistency checking between

Evaluation of the Petri net begins with rience with it, we hope to test out the views, and for view mapping. View map-
the top-level pNet object. Garden's promises of conceptual programming and ping is important if the several program-
general debugging and monitoring facili- see if this is a viable approach to design ming paradigms are to be applied to the
ties are available for the new language, that improves programmer productivity as same portion of the program, a situation
and, if there is an error during evaluation, we hope it will. Such experiments will at that arises when you want to see and use
you would be placed in a read-eval-print first be informal, based on the experience both a dataflow and a control-flow view
loop at the point of the error so the vari- of the initial users, but we hope be more of the same module. In this case, the sys-
ables can be queried and execution can be rigorous later when the system can handle tem must be able to map changes in either
continued if requested. Similarly, you a controlled experiment, view to appropriate changes in the other.
could trace and suspend execution of any We are working in several areas related With a broad spectrum of views, the sim-
object composing the Petri net. to this system and its concepts because plest way of allowing such mappings is to

In addition to these standard debugging Garden is by no means perfect or com- have a common semantic basis and to
facilities, the Garden graphical editor can plete. Significant work remains to be done generate the views from this basis. -6.

26 IEEE Software



Acknowledgments 4. S.P. Reiss, "An Object-Oriented Frame-
This research was supported in part by the work for Graphical Programming," SIG-

Office of Naval Research and the Defense Plan Notices, Oct. 1986, pp. 49-57.
Dept.'s Advanced Research Projects Agency 5. A. Goldberg and D. Robson, Smalltalk-80: a
under contract N00014-83-K-0146 and ARPA The Language and Its Implementation,
Order No. 4786, by National Science Founda- Addison-Wesley, Reading, Mass., 1983.
tion grant SER80-04974, by a contract with 6. J.N. Pato, S.P. Reiss, and M.H. Brown,
IBM, by a grant from AT&T Foundation, and "An Environment for Workstations,"
by a grant from Digital Equipment Corp. Par- Proc. IEEE Conf. Software Tools, CS
tial equipment support was provided by Apollo Press, Los Alamitos, Calif., 1985, pp. See .Rissa soit rfso fcm
Computer, Inc. 112-117. StevenP.Reissisanassociateprofessorofcom-

puter science at Brown University. His research
RefeD encs ,7. A.H. Skarra, S.B. Zdonik, and S.P. Reiss, interests include programming environments,Referenell>;s "An Object Server for an Object-Oriented graphical programming, database implementa-

1. D.T. Ross, "Applications and Extensions Database System," Proc. Workshop tion, statistical database security, and computa-
of SADT," Computer, April 1985, pp. Object-Oriented Database Systems, CS tional geometry. Before working on Garden, he
25-35. Press, Los Alamitos, Calif., 1986, pp. developed the Pecan program-development

2. M. Alford, "SREM at the Age of Eight: 196-204. system.
The Distributed Computing Design Sys- 8. J.L. Peterson, "Petri Nets," Computing Reiss received a BA in mathematics from
tem," Computer, April 1985, pp. 36-46. Surveys, Sept. 1977, pp. 223-252. Dartmouth College and a PhD in computer

3. F.P. Brooks, Jr., "No Silver Bullet: 9. S.P.ReissandJ.N.Pato,"DisplayingPro- science from Yale University.
Essence and Accidents of Software grams and Data Structures," Proc. 20th Address questions about this article to Reiss
Engineering," Computer, April 1987, pp. Hawaii Int'l Conf. System Sciences, CS at Computer Science Dept., Brown University,
10-19. Press, Los Alamitos, Calif., 1987 Providence, RI 02912.

Effective Resources For Software Professionals
From Prentice Hall

New for 19881
SOFTWARE METRICS: ESTABLISHING A

CREATING EFFECTIVE SOFTWARE: COMPUTER PROGRAM DESIGN COMPANY-WIDE PROGRAM. Robert Grady
N ~~~~USING THE JACKSON METHODOLOGY: David King-Citicorp and Deborah Caswell-Hewlett - Packard

(013-189242-8) $35.00 Cmay 03814-)$53
Looking for a quick, effective way of designing programs? Comnpany, (013-821844-7) S35.33
Here's your book. Based on the easily understood Jackson metrics program. This introduction to soft-
Program Design Method (JSP), this presentation facili- ware metrics is based on work done at
tates program design. Includes JSP's use with database Hewlett-Packard. The guide's many practical
software, fourth generation languages, and other aspects of features provide information on what data to
today's data processing environment. collect, how to start collecting, how to effec-

tively use the data collected and what
problems to expect.

STRUCTURED DESIGN: FUNDAMENTALS OF CURRENT PRACTICES IN SOFTWARE
A DISCIPLINE OF COMPUTER PROGRAM- DEVELOPMENT: A GUIDE TO SUCCESSFUL SOFTWARE MAINTENANCE: THE PROBLEM
MING AND SYSTEMS DESIGN. Edward Your- SYSTEMS. David King-Citicorp. AND ITS SOLUTIONS. James Martin and
don and Larry L. Constantine. Yourdon, Inc. (013-195678-7) $33.33 Carma L. Mc Clure-Northwestern Univer-
(013-854471-9) $4800 The software tools and techniques available sity. (013-822361-0) $5333
The classic introduction to the architecture of for use-in the systems development life cycle This complete description of proven tech-
programs and systems. Lays foundations for of today are effectively presented in this niques for updating, revising, and correcting
structured design techniques. Examines top- essential, new guide. The seven stages of the computer programs emphasizes designing
down design and heuristics commonly used life cycle are explored. programs with an eye toward reducing and
by the program designer. controlling maintenance needs and

SOFTWARE VERIFICATION AND VALIDATION: procedures.
CONTROLLING SOFTWARE PROJECTS: REALISTIC PROJECT APPROACHES. Michael
MANAGEMENT, MEASUREMENT, & S. Deutsch-Hughes Airtraft Company Available at better boekstores er
ESTIMATES. Tom DeMarco-Atlantlc Systems Space and Communications Gmup. directfrm Prentice Hall at (201)
Guild, Inc (013-171711-1) $3633 (013-822072-7) $467$4557t tr quantityHall call
This prescription for accurate time, cost, and This comprehensive treatment of practical 767-5937. Fer quantity rders call
risk projections details the how-to's of effec- approaches explores state-of-the-art (201) 592-2498.
tive, objectively measurable, software projects methodologies and describes verification and - PRENTICEHALL
and provides a strong framework of methods validations techniques that have been used

S ch
on which to gather and analyze data. successfully on contemporary, large-scale Simon& Schuster

software projects. Abundant, real-world - Hlgher Education Groupo
examples are provided.

Reader Service Number 2


