INTEGRATED

ENVIRONMENTS

Working in the Garden
Environment for
onceptual Programming

Program designers use
a variety of techniques
when creating their
systems. This
automated design
system conforms to the
programmer.

16

Steven P. Reiss, Brown University

ne important problem in

automating the software develop-

ment process is providing an envi-
ronment for designing software systems.
Most of the approaches for automated
design environments provide one or two
design methods and force the program-
mers to design with only these methods.
Examples of such approaches include
automated versions of SADT,' SREM,?
and dataflow-based design.

Most program designers, however, nat-
urally use a variety of techniques when
designing their systems.? They draw pic-
tures of their data structures, describe a
control-oriented module with an automa-
ton or a decision table, and illustrate the
system structure with a module-
interconnection diagram and a dataflow
diagram. These techniques are selected to
closely fit the system being designed.
Moreover, designers modify the tech-
niques to fit the problem better and
develop new strategies or languages to sim-
plify the description of an otherwise com-
plex design.

0740-7459/87/1100/0016/$01.00 ©1987 IEEE

Rather than force the programmer to
conform to particular design methods, an
automated design system should provide
an environment that conforms to the pro-
grammer. Such an environment must pro-
vide many design paradigms. These range
from traditional dataflow diagrams, pseu-
docode, and finite-state automata to log-
ical specifications, object-oriented
programming, or whatever language the
designer developed to best describe the
problem approach. These paradigms must
be presented to the programmer in their
most natural form. This form can be tex-
tual for pseudocode or logical specifica-
tions, a standard type of diagram for
dataflow or automata, or something
designed by the developer (textual or
graphical or some combination of the
two).

As well as providing a multiparadigm
environment for program design, a good
design-automation system should provide
a framework for evaluating the resulting
design. The simplest approach is to allow
design-level prototyping. The system

|IEEE Software

should let the design itself act as the pro-
totype program and let the developer
evaluate the design by running it. The
eventual goal is to make the design itself be
the program, thus allowing system debug-
ging and especially maintenance to be done
directly in terms of the design. This goal is
not realistic with current technology, but
faster machines and better compilers could
make it a reality in the future.

Finally, an automated design system
should provide more than just a variety of
design languages that can be consistently
combined. It must give the designer a com-
plete environment, including facilities for
creating, modifying, recalling, and dis-
playing designs. The system must also sup-
port browsing and automated analysis of
the designs, plus cooperative design within
a team of designers.

Garden is such a programming system.
It is designed to support the concurrent use
of a variety of languages that represent
different programming paradigms. It tries
to provide equal support to both textual
and graphical languages and to support a
wide spectrum of programming para-
digms. In Garden, you define a conceptual
language by giving its visual and textual
syntax and its semantics in terms of an
object basis. The language is then used
through views of the objects that represent
its programs.

Designers developing systems typically
build system models in their heads. These
models consist of the languages or
paradigms used in the design. This is the
conceptual system model that the
programmers must understand and work
with while implementing, debugging, and
maintaining the system. The type of auto-
mated design system outlined above lets
designers work directly with the model.
Moreover, it turns the model into the pro-
gram. A system that supports this type of
effort — called conceptual programming
— with an automated environment is a
conceptual programming environment.

November 1987

Requirements

A system that supports conceptual pro-
gramming must be both flexible and
powerful. The requirements for such a sys-
tem are divided between those supporting
multiple paradigms and those providing an
appropriate environment.

A conceptual programming environ-
ment must simplify the definition and use
of new languages. These languages can be
visual or textual and can be completely
new or derived from an existing language.
The requirements here include:

® A consistent support framework. The
environment’s framework must let lan-
guages be freely mixed to form the proper
conceptual model. This mixing will gener-
ally follow a hierarchy, for example, either
with dataflow actions referenced by the

A system that supports
conceptual programming
must be both flexible
and powerful.

nodes of a control-flow graph or with
control-flow actions assigned to the arcs of
a finite-state automaton. More sophisti-
cated mixing would not be restricted to
such a hierarchy. For example, a single
framework would let a piece of a program
be viewed and edited as both a data dia-
gram and a control-flow diagram.

e Equal support for visual and textual
languages. Many languages used for
design are visual languages. The environ-
ment should offer visual languages all the
facilities normally offered to textual lan-
guages, including syntax definition, edit-
ing, file-based storage, program sharing,
and browsing. This prevents worthwhile
languages from being ignored because of
inadequate support.

e Multiple views of a single language
form. The system should let programmers
view a complex design many ways. The

environment should support this (by
allowing multiple views of the design lan-
guages) to give programmers different per-
spectives on the underlying design. For
example, one view of a design diagram
might show only the dataflow information
while another might show both the
dataflow and the control flow. Such views
can provide different levels of abstraction
and accommodate slight variations in for-
matting (especially graphical formatting)
that different users might want.

e Facilities to simplify language defini-
tion. The environment must provide a rich
set of support functions so the semantics
of new languages can be defined with mini-
mal effort. There should be a rich set of
built-in data types and corresponding
operations. There should also be special-
ized support for common but difficult-to-
implement design-language features, such
as dataflow, concurrency, and constraints.
Finally, it should be easy to reuse and
modify existing language definitions.

As well as providing a usable framework
for incorporating multiple languages, a
conceptual programming environment
must provide substantial environmental
support for design. In particular, it should
provide:

¢ Prototype evaluation. One key idea of
conceptual programming is that the design
should be an executable prototype so
designers can experiment directly with
designs as they work on it. The environ-
ment must support this by providing a
general interpreter that can evaluate pro-
grams in any language that can be defined
in the system. Additional support can be
provided by letting these languages be
compiled to yield a more efficient
evaluation.

® An experimental framework. Design
prototyping should be encouraged by
providing an interactive environment with
immediate feedback. The advantages of
such an environment are shown by the suc-
cess of such systems as Lisp and Smalltalk.

17

The environment should have facilities
that let designers understand the program
as it executes. These facilities might
include various execution views, profiling
tools, debugging aids, and dynamic dis-
play of the program’s data structures.

¢ A multiwindow, user-oriented front
end. The environment should run on a
workstation where different views and
different languages can be displayed with
multiple windows. These views should
provide the functionality needed to do the
design: They should be editors for the
underlying design that support browsing
and documentation as it is written. Mul-
tiple windows should also give program-
mers system-control functions such as the
ability to execute and interact with the pro-
totype designs.

® General environmental support. The
environment should provide the tools
needed for software design in a moderate-
sized project, including design storage and
retrieval with version control. This lets new
ideas be tried without modifying a stable
system. There should be support for
cooperative design so a group of program-
mers sharing a common design can safely
work on different pieces of it. While the
system should provide a good interactive
environment, it should also be able to pro-
duce a readable printout of the resulting
design.

Garden overview

Garden is an attempt to meet many of
these requirements for a conceptual pro-
gramming environment. It consists of a
programming system designed to support
multiple languages, a set of tools that pro-
vide a multiwindow user interface, and an
underlying database system to provide
environmental support.

Object-oriented framework. Garden
uses an object-oriented programming sys-
tem to provide the necessary control
abstraction.* Object-oriented systems
view all their data in terms of objects: data
blocks that are instances of a particular
class or type. Associated with each class is
a set of operations that can be applied to
the object. The classes are arranged in a
hierarchy so subclasses can inherit the
properties, data, and operations of their

18

parents. Experience with Smalltalk’ has
shown that object-oriented systems are
good for prototyping because they provide
a high degree of reusability and encourage
the use of data abstraction.

Garden uses objects to represent pro-
grams as well as data. The result is a sys-
tem that is good for prototyping and
encourages the use of both data and con-
trol abstraction. You build programs by
putting together collections of objects,
define new languages by defining new
types of objects that represent programs,
and use the class hierarchy to reuse exist-
ing languages when defining new ones.

The object-oriented
Garden system is good
for prototyping and
encourages the use of
both data and control
abstraction.

Objects form a consistent basis for sup-
porting multiple languages — any lan-
guage can be defined in terms of its
underlying constructs. In Garden, the
differing constructs are represented by
different classes of objects; the relation-
ships among the constructs are represented
as other objects referred to by the objects.
For example, an automaton is represented
as an object of class Fsa and includes
objects of class State for each state of the
automaton and each object of class Arc
for each arc.

Garden uses these object constructs as
the actual program. One operation it pro-
vides for an object class defines what it
means to evaluate an object of that class.
For example, evaluating an Fsa object with
a value causes the automaton to move to
the next state using that value. Since this
operation is defined for all program
objects, different program abstractions
and hence different languages can be freely
mixed hierarchically. Garden lets you
define an operation for any object by
providing another object that describes the
operation. Thus you can use any currently
defined language when describing the
evaluation semantics of a new language.

Garden provides an interpreter and a cor-
responding compiler to yield efficient exe-
cution of object-based programs.

Because objects represent programs,
Garden has no bias toward any syntactic
form; it lets the syntax of an object-based
language be defined textually or graphi-
cally, or both ways. The current imple-
mentation allows wide latitude in the
selection of graphical displays for such
languages. While Garden’s goalis to let the
system provide a natural representation
using the underlying objects of most lan-
guages, the system now provides only a
single textual, Lisp-like representation that
is not suitable for all languages, particu-
larly those with cyclic underlying
structures.

Garden supports the definition of
semantics for object-based languages by
providing a rich underlying set of pro-
gramming primitives, including strings,
lists, and tables (indexed relations in the
database sense) with a full range of oper-
ations. It provides primitives for concur-
rent processing using lightweight
processes, including monitors and sema-
phores.

A general dependency mechanism can
handle constraint-based programming as
well as event-triggered demons. It gives full
access to the system’s underlying naming,
typing, and evaluation mechanisms. These
facilities can be used with any defined lan-
guages to define the semantics of a new
language.

Multiwindow environment. Garden’s
programming environment lets you create
and modify the objects that represent their
programs and data. Objects can be viewed
or modified in any of three editors. One
editor displays the textual form of the
object and allows normal text editing. The
second provides an object-based browser
on the object, letting you select, view, and
modify an object’s contents or one of its
component objects on a field-by-field
basis. The third displays a visual represen-
tation of the objects and lets you interact
directly with this form.

The system coordinates these different
editors with a multiwindow display on a
Unix-based workstation. Each editor runs
in a window on the display; you can set up

IEEE Software

these windows with a window manager or
nest them in another editor or tool. Gar-
den lets multiple instances of each editor
be active simultaneously. It also lets you
put up multiple editors, of the same or
different types, on the same objects simul-
taneously. In this multiple view, the system
keeps the various windows consistent:
When you change the underlying object
with any editor, all the other views update
automatically.

The object editors can view data as well
as enter and work on programs. The vari-
ous editors can be brought up under pro-
gram control as sophisticated input
mechanisms or output displays. You can

put up views of the data structures the pro-
gram is working on. Garden automatically
updates such views as the program changes
the underlying objects at a user-control-
lable granularity.

The multiwindow display provides
other programming tools. One or more
interactive windows can provide a read-
eval-print loop with the textual language
interface. A variety of system browsers can
be defined that let you select an object with
a variety of criteria such as the scope in
which it is defined, its class, its name, and
its fields. A documentation editor lets you
quickly find and create textual documen-
tation for any object in the system. In addi-

tion, windows can be defined for both
graphical and textual program input and
output.

Figure 1 shows a sample of a complete
Garden screen. The sequence of Gothic
letters and icons at the bottom represents
the windows available. The windows dis-
played include a type editor in the upper
left, a browser editor in the upper right, a
read-eval-print loop window in the lower
left, and a graphical editor in the lower
right. Each window contains a title bar,
move and resize icons in the corners, and
ablank bar at the bottom to move the win-
dow. Hidden beneath the title bars are but-
tons to remove the window and to pop

E Example_R.name

phet

. Jplaces =< ... >
*(VioletUpdate)

*(Evaluate)
*(VioletInsert)

<NONAME>

text = "Example A’
type = Null
*(NameSetValue)

*{Evaluate)
*(Name Type)

scope
*(NameValue)
*(NameSetType)

Layout Display Inset Eval

1] Ztmp/1119F 116012740 LILY

FILE BUFFER EDIT

>>> (SOURCE “petri,l1")
Null

>>> (SOURCE “petri,.pic,1")
Null

»> (save_pics)

{ File file_name = "petri,pic,1"; file_mode = "w"; }
»

LILY TEXT SAGE

@SysBrowser

EDIT FILE

RESIZE HOVE

ICON HARDCOPY SAVE WINDOW SAVE SETUP

INVERT

Figure 1. Garden screen.

November 1987

19

Petri net example

The example in Figure A is specified in the textual language
currently provided by Garden. The language is defined to look
and feel like Lisp so first-time users have a degree of familiar-
ity when they start using Garden. However, it is only a Lisp-like
syntax that Garden uses to define objects. The basic form of a
Lisp S-expression serves several purposes. If the first compo-
nent is a type name, it is a definition of an object of that type
where the latter components contain the field values for the
object. If the first component is a field access object (identified
by an initial open single quote [*]), it is an invocation of the
corresponding message applied to the second component; if
the field object refers to a data field, the corresponding message
just returns the field’s value. If the first component is neither a
type or afield access object, the S-expression is translated into
a Call object where the first component is the object to evalu-
ate and the latter components are composed into an argument
list.

The language provides other extensions to simplify textual
Garden programming. Objects can be defined with a named rep-
resentation rather than the positional representation inherent
in S-expressions. Quoting occurs as in Lisp, with a quotation
mark (") followed by an expression actually yielding a Quote
object containing that expression. Local scopes and local

Type definitions

(TYPE_DEFINE "pNet{name:Name,transitions|#plrans,places|#-
pPlace}”)
(TYPE_DEFINE "plrans{name:String,eval:Any,input:#pPlace,out-
put:#pPlace,”&
"active~Boolean,sema~Semaphore}"”)
(TYPE_DEFINE "pPlace{name:String,init:Integeroutput:#plrans,”&
"count~Integer,sema:Semaphore}”)

Evaluation definitions

(DE pNet_EVAL <pnet:pNet>
{» <>
(LISTLOORP (‘places pnet) ‘Initialize)
(LISTLOORP (‘transitions pnet) ‘Initialize)
(LISTLOOP (‘transitions pnet) ‘NewThread)
(LISTLOOP (‘transitions pnet) ‘Check)
(THREAD_WAIT_FOR_CHILD)
*}
)

(DE plrans_ THREAD < ptrans:plrans >
(THREAD_NEW_CHILD (BUILD CALL “Work (LIST_NEW (QQUOTE
ptrans))) 00))

(DE pTrans_WORK < ptrans:plrans >
{» <>
(LOOP True True (SEQ
(SEMA_P (‘sema ptrans))
(EVAL ptrans)
(LISTLOOP (LIST_PERM (‘output ptrans)) ‘Add)
(FIELD_SET False ptrans ‘active)
(‘Check ptrans)))
*}
)

(DE pTrans_CHECK < ptrans:plrans >
{* <ok:Boolean>
(COND (‘active ptrans) (RETURN Null))
(SETQ ok (LISTLOOP (‘input ptrans) ‘Check BOOL_AND True))
(COND ok (LISTLOOP (‘input ptrans) ‘Use))

Figure A. Example of a Petri net in the Garden language.

names can be defined with the separators {* and }* containing
alist of names and one or more evaluatable objects. The result
is either a Block object or an appropriate type of Lambda object
with the initial list of names as local variables defined in a new
scope and a Seq object containing the sequence of actions as
the body.

The first part of the example in Figure A defines the type struc-
ture used for Petri nets. Each type is defined as a string contain-
ing its name and then a list of its fields inside braces ({ }). The
fields are defined with a name, a separator, and atype. The sepa-

- rator can be a colon (;) indicating a data field, a vertical bar (|)

indicating a structural field, or a caret (~) indicating a dynamic -
field. In general, data fields are descriptive; structural fields
include the other components of the language; and dynamic
fields are used for runtime values.

The second portion contains the definition of the Lambda
objects associated with the messages used in evaluating the
objects composing a Petri net. The function De takes three argu-
ments: a name, a list of parameters, and a body. It creates a
Lambda object with the list of parameters and the body and
binds this to the given name. The parameters are defined in a
local scope for this particular definition.

(LISTLOOP (‘input ptrans) ‘Release)
(COND ok (SEQ
(FIELD_SET True ptrans ‘active)
(SEMALV (‘sema ptrans))))
*}
)

(DE plrans_EVAL < ptrans:plrans > (EVAL (‘eval ptrans)))

(DE pTrans_INIT <ptrans:plrans>
{t <>
(FIELD_SET False ptrans ‘active)
(FIELD_SET (SEMAPHORE 0) ptrans ‘sema)
*}
)

(DE pPlace_INIT <pplace:pPlace>
{» <>
(FIELD_SET (SEMAPHORE 1) pplace ‘sema)
(FIELD_SET (‘init pplace) pplace ‘count)
*}
)

(DE pPlace_CHECK <pplace:pPlace>
{xr <>
(SEMA_P (‘sema pplace))
(INT_GTR (‘count pplace) 0)
*}
)

(DE pPlace_USE < pplace:pPlace>
(FIELD_SET (INT_SUB (‘count pplace) 1) pplace ‘count))

(DE pPlace_ADD <pplace:pPlace>
{x <>
(SEMAL_P (‘sema pplace))
. (FIELD_SET (INT_ADD (‘count pplace) 1) pplace ‘count)
(SEMALV (‘sema pplace))
(LISTLOOP (LIST_PERM (‘output pplace)) ‘Check)
*
}
)

(DE pPlace_RELEASE < pplace:pPlace> (SEMA_V (‘sema pplace)))

20

|IEEE Software

(uncover) and push (cover) it on the dis-
play. General window-management com-
mands and a prompt window are at the
very bottom of the screen.

Garden provides a consistent menu and
mouse-oriented interface to most win-
dows. Apple Macintosh-style pull-down
menus provide editing and control-
oriented options in the editors. Complex
parameters are entered in each window via
dialogue boxes. A base editor with a com-
mon set of editing operations is used for all
textual displays and editing. It can cut and
paste text among displays. All these facil-
ities are available for user programs from
within the Garden system. They are imple-
mented using the tools of the Brown
Workstation Environment.$

Garden also provides a consistent set of
mouse utilities to select and define objects.
A common routine provides a series of dia-
logue boxes that prompt you to define an
object of a given type. This dialogue is
modified on the basis of the expected type
to simplify your task as much as possible.
For example, when a string object is
required, you must type only the contents
of a string. In general, this dialogue
prompts you for access to an object or for
the type of a new object; in the latter case,
it prompts you for the various fields. You
can control the dialogue on newly created
objects of your own types by identifying
the expected field types and noting which
fields should not be prompted for.

In addition, Garden provides a common
facility for selecting objects and reusing
them anywhere on the display. All editors
let an object be selected by pressing the
right mouse button. The selected object is
stored in a common buffer as the current
object. All dialogue boxes let you choose
this current object as an alternative to
entering all the box’s fields with generic
types for the object.

Environmental support. Garden’s
object-oriented database system provides
many environment facilities.” The data-
base system is designed to store all objects
in use. Because objects are used to repre-
sent programs and data — as well as the
semantics for evaluating object-based pro-
grams and the syntax rules for drawing
and editing objects textually and visually

November 1987

— this facility saves your complete envi-
ronment.

You can use the external database
several ways. In its pure form, Garden
provides a persistent environment where
everything you do is stored in the database.
Because the underlying database system is
a real database system, many program-
mers can share the same object space with
appropriate consistency checking and
access control. The database system also
provides version control, letting you cre-
ate and restore versions of your whole
environment.

You can access the database as if it were
a workspace facility — taking an APL-like
or Lisp-like approach to development,

independent of whether it is done on one’

or several databases. You can open a data-

A conceptual environment

first requires a workable

underlying model that

can support a wide variety
of languages.

base as read-only to access a set of lan-
guages, an environment, and the current
system state. Then, as new facilities are
added to this workspace, they can be saved
in the workspace in a separate database
that can in turn be used as the starting
point for a later run.

Partitioning the system this way uses the
inherent similarities between environmen-
tal support and database technology,
providing such features as version and
access control consistently across systems
and among users. However, it does place
an efficiency burden on both Garden and
the database system since an environment
will consist of many (typically 20,000 to
100,000) relatively small (40-byte average)
objects that must be rapidly accessed when
evaluating the program and displaying
object structures.

Garden attacks this problem by provid-
ing an in-core database system to interface
to the external database and by having the
in-core system cache as many objects as
possible. The in-core system provides

additional environmental support, includ-
ing background garbage collection over all
objects not known to the database system
in an effort to eliminate as many tem-
porary objects as possible. It also provides
anested transaction mechanism with both
fast and abortable transactions. This
mechanism provides the basis for the
general dependency mechanism that Gar-
den offers; it could also be used as the basis
for an undo facility because it lets you set
marks in a transaction and partially abort
the current transaction back to a previ-
ously defined mark.

Defining languages

The first problem in building a concep-
tual programming environment is to
develop a workable underlying model that
can support a wide variety of languages.
This variety must include textual lan-
guages, visual languages, nonexecutable
design languages, and languages that are
now only a figment of someone’s imagina-
tion. The key to solving this problem is the
choice of an underlying representation
through which languages can be defined.

Objects as a basis. Today’s languages
are usually defined formally in terms of
their abstract syntax. This abstract syntax
is represented as a tree where the internal
nodes represent constructs such as state-
ments and subprograms and where the leaf
nodes represent semantically relevant ter-
minals such as names and constants. A
mapping from the concrete syntax (the tex-
tual form of the language) to the abstract
syntax is provided either formally (by
using a context-free grammar) or infor-
mally (by stating what the concrete form
of each abstract construct is). The seman-
tics of such languages are defined as map-
pings from the abstract syntax trees to
some semantic form. This can be a pro-
gram for operational semantics, a set of
mathematical functions that show how the
state changes for denotational semantics,
or a set of logical rules for axiomatic
semantics.

While abstract syntax trees work well
for hierarchical, textual languages, they
are not a natural representation for the
nonhierarchical languages that arise in

21

conceptual programming. In particular,
two-dimensional languages such as finite-
state automata and dataflow diagrams
have a natural representation that is a
general cyclic graph rather than a simple
tree. Using an unnatural representation
here would complicate language definition
beyond what is desirable in conceptual
programming.

Garden addresses this problem by
generalizing the abstract syntax tree model
of semantics into an object-based model.
Objects represent programs directly. The
instance data (fields) associated with an
object are used three ways in specifying a
program: (1) Some fields are structural,
specifying an underlying graph of objects
that replaces the abstract syntax tree. (2)
Other fields are static attributes, contain-
ing data about the program instance rele-
vant to the static semantics and
corresponding to the attributes that would
be attached to the abstract syntax tree to
store the static semantics. (3) Still other
fields are dynamic values, those that reflect
the execution semantics, since Garden
actually runs object-based programs.

Defining a language in Garden is a
three-step process: (1) The type structure
that serves as the object basis is developed.
(2) The semantics for these types is
defined. (3) The syntax, both textual and
visual, is specified.

Defining the object basis. The first step
is to define the set of types that describe

program objects in the new language. This
requires that you understand and charac-
terize the language’s components. You
should create a type for each component.
The type should have fields to contain both
the structural information needed to
describe the corresponding program struc-
ture and any state information needed to
evaluate this object.

For example, suppose you wanted to
develop a language based on Petri nets.’
A Petrinet is composed of places that can
store markers and transitions that use mar-
kers and generate new ones. Typically, the
markers are used for concurrency control
while actions are associated with the tran-
sitions. Figure 2 shows an example Petri
net. The object basis for Petri nets con-
tains three types of objects: pNet objects
represent complete Petri nets, pTrans
objects represent transitions, and pPlace
objects represent places.

A pNet object contains three fields, one
holding the name of the Petri net and the
others lists of transitions and places.

A pTrans object contains six fields. The
first holds an identifying string that names
the transition. The second field holds the
associated action, an arbitrary object that
Garden will evaluate when the transition
is triggered so this Petri-net language can
be associated naturally with any other Gar-
den language. The next two fields contain
the list of input places and the list of out-
put places for the transition. The remain-
ing fields hold a flag during execution

Figure 2. Petri net example.

22

indicating that the transition is currently
active and a semaphore associated with the
transition.

A pPlace object contains fields with the
identifying name and the number of mar-
kers that should initially be at the place. It
also contains a field with the list of transi-
tions it is connected to, a field for the cur-
rent count of the number of markers
stored at the place, and a field containing
the semaphore controlling access to the
place.

Defining the semantics. The second step
in defining a Garden language is to define
the semantics of the types. You do this by
associating evaluation functions with the
types. Sometimes an evaluation function
is defined only for the top-level type (for
example, a flowchart or an automaton). In
other cases, it is convenient to define the
evaluation of an object of this type with
the evaluation of its component objects,
and it is thus necessary to define semantics
for the component types.

Evaluation of a Petri net occurs when
the pNet object is evaluated. The code
associated with evaluating a pNet object
first initializes the net and starts a control
thread for each transition. It then tries to
execute each transition by sending each
one a Check message. After this, the Petri
net will continue executing on its own until
one of the transitions terminates.

Each transition evaluates in its own con-
trol thread. The message NewThread
starts the control thread and sends a Work
message to the transition. The code
associated with this message is a simple
loop that waits for the transition to be acti-
vated by doing a P operation on the tran-
sition’s semaphore; it then evaluates the
transition object itself to evaluate the
associated action. When the action com-
pletes, an Add message is sent to each out-
put place and the transition sends itself a
Check message to see if it should fire
again.

When a transition gets a Check message,
it must check if it should fire and, if so, en-
able its semaphore. It first checks if the
transition is active and, if so, returns
immediately. It then locops through the
input places, sending each a Check mes-
sage. This message does a P operation on

|EEE Software

the corresponding place’s ssmaphore and
returns a Boolean value indicating whether
there is a marker at the place. If all mar-
kers are present, each input placeis sent a
Use message to decrement its marker
count. Next, each input place is sent a
Release message to do a V operation on its
semaphore. Finally, if the transition
should fire, it does so by setting its active
flag and doing a V operation on its sema-
phore. (This example is simplified so that
multiple connections from a place to a
transition are not handled. In a more prac-
tical framework, a link object would rep-
resent the connection between a place and
a transition.)

pPlace objects must respond to five
messages: (1) Initialize, (2) Check to lock
and check if there is a marker, (3) Use to
remove a marker, (4) Add to add a marker,
and (5) Release to unlock their semaphore.
The only complexity here involves adding
a marker to a place when all transitions
connected to the place must be sent a
Check message.

Defining the language syntax. The final
step in developing a conceptual language
in Garden is providing a syntax for the lan-
guage. Garden offers several syntactic
forms that can be defined for the new lan-
guage. These reflect the different ways that
the language can be displayed and input.

Garden provides a textual interface to
objects (this interface is a Lisp-like lan-
guage). In the language, objects are
defined by putting the object type and
values for the fields in braces ({ }). The
field values can be named or be provided
positionally, where the first value is the
first field. Omitted fields are initialized to
a default value. In addition, parentheses
can be used instead of braces when only
positional fields are given.

Currently, you can make only small var-
iations in the textual forms allowed for an
object. For input, you can define reason-
able default values for fields and can deter-
mine the fields’ order. If you want more
complex manipulations, you can define an
explicit Build or Instance operator for the
type. The Build operator takes the type
and the set of initial field values and builds
the correct instance; the Instance operator

November 1987

Visual programming environments

The Garden effort draws on past research in several areas. Garden is a general-
purpose visual programming system, providing many of the capabilities of visual
programming languages. At the same time, Garden is an interactive programming
environment in the flavor of the many versions of Lisp. Garden, being an object-
oriented system, is closely related to previous work in this area, in particular to
interactive systems such as Smalltalk and Lisp with types. And Garden is a pro-
gramming environment designed for use with multiple windows on a powerful per-
sonal workstation and shares features of other such environments.

A multilanguage approach to conceptual programming such as Garden’s differs
considerably from the extensive body of work in visual languages.' Much of this
work uses a single visual representation as a programming language. This work
extends from flowchart programming to simulating finite-state automata, graphi-
cal dataflow representations, graphical data-structure representations, graphi-
cal programming-by-demonstration, and functional programming. Other work has
concentrated on using visual representations to support design languages such
as SADT, SREM, and the Yourdon method, or to provide machine-checkable
documentation as a design aid. All these efforts are single-view systems. They
do not support the wide range of views necessary for conceptual programming
to be a practical approach to large-scale programming.

While Garden has a lot in common with interactive object-oriented environments
such as Smalltalk, there are significant differences. Some of these are apparent
at afiner level of detail than is presented in the main article, notably in the under-
lying model of objects. The basic difference, however, is the use of objects through-
out the system to represent both programs and data. This, along with the lack of
any preferred programming language or methodology, makes Garden an ideal
testbed for working with several paradigms concurrently. Moreover, the heavy
emphasis on the graphical display of objects provides a visual component that
would have to programmed explicitly for each structure in other systems.

Garden’s approach to producing a complete programming environment also
differs from the multiview program-development systems for workstations devel-
oped over the past 10 years. These include the Cedar Mesa environment from Xerox
PARC, the Magpie system from Tektronics, and the Pecan program-development
system at Brown University. These systems are based on a single textual program-
ming language. The Pecan system and PV try to provide alternative graphical
representations to the textual programming language, but the experience with
Pecan has shown that such graphical views have limited power and usefulness
when they are tied to syntax. The syntactic basis forces you to treat these two-
dimensional representations one-dimensionally, and the graphics provide no sig-
nificant advantage over text. Because the wide range of graphical views that peo-
ple use do not conveniently fall in the confines of a single language, it seems
unlikely that a system based on a single programming language can effectively
support them all.

Reference

1. G. Raeder, “A Survey of Current Graphical Programming Techniques,” Computer, Aug.
1985, pp. 11-25.

must build an initial instance with no
defined fields.

You have some control over the textual
output form used to display the object.
You can control the basic display form
(whether to use the braced form with
explicit field names or the parenthesized
form).

Garden also gives you control over
which fields are normally displayed. You
can indicate fields that should not be dis-
played when showing a particular object
type textually. Different fields can be indi-
cated for objects that are displayed
explicitly versus objects that are compo-

nents of another object, a facility that pro-
vides readable displays of cyclic structures.
In this case, all fields are displayed at the
top level, but only identifying fields are
displayed at lower levels.

Finally, if you need more control over
the object’s textual display, you can pro-
vide a message handler that is invoked
when the object is to be displayed that will
display a substitute object. This message
handler can differ for objects displayed at
the top level and those displayed inside
other objects.

In addition to a textual syntax, Garden
provides a general facility for interactively

23

requesting an object definition. This facil-
ity builds an instance of an object of the
designated type and then uses a sequence
of dialogue boxes to get field values for the
component fields. You can customize this
process to some extent for each object type
you define. For example, you can order
the fields so values are requested in a given
order and abort the sequence of dialogue
boxes to use default values for the remain-
ing fields, or you can designate fields for
which the system will not request values
(these fields thus will hold the default
value).

Additional control is provided through
the typing of the fields, since values of
different types are prompted for differ-
ently. For example, if a string is expected,
you can enter the string without having to
type quotes around it; if a type is expected,
you are given dialogue-box buttons for the
most common types.

You can also provide a message handler
for the type to be invoked when you fin-
ish providing the fields. This function is
then responsible for cleaning up the initial
object and maintaining consistency of the
data structures. Such functions are nor-
mally used to set up complex structural
fields of objects with minimal user infor-
mation. For a doubly linked list, for exam-
ple, this function could set up the proper
back links once you defined the forward
links.

Defining the visual syntax. Defining the
visual syntax of the new language is the
final part of the language specification.
This process has two parts: defining the
visual display of the language’s objects
and defining the interpretation of graphi-
cal editing operations on this display. Gar-
den tries to make this complex process as
simple as possible by using a graphics
package explicitly designed for drawing
data structures. This package includes an
editor that lets you interactively describe
different ways to draw objects of a given
ty'pe and a graphical editor that lets you
modify the objects being displayed.’

Garden’s general layout package, Gelo,
is designed to be a flexible and powerful
interface for drawing pictures of data
structures or, in Garden, structures of
objects representing programs and data. It

24

provides a simple interface for designing
the graphical representation for the struc-
ture and can lay out arbitrarily complex
structures without programming the
layouts.

Gelo’s layouts are based on a hierarchy
of graphical objects that are loosely related
to the various components of the original
data structure. Initially, four different
types of objects are provided:

® Basic objects. These display simple
user data, fields of more complex user
data, and constants such as the name of
the data type. They contain a text string
representing their value. This string can be
enclosed inside a rectangle, circle, or other
figure, which can be filled and colored as
desired.

¢ Tiled objects. These display fixed
composites and recursive structures. They

Defining the visual
syntax of the new
languages is the final
part of the language
specification.

consist of a rectangle split into tiled
regions. Each region contains another type
of object to.be drawn. You can impose
some constraints on the regions’ sizes and
have some control on the tiles’ sizes.

¢ Layout objects. These display more
complex or variable structures. They con-
sist of a rectangular region into which
nodes and arcs are placed. Gelo uses
heuristics to automatically lay out the
resulting graph. It chooses the amount of
space between the nodes, the method for
laying out the nodes, and the method for
routing the arcs between the nodes.

® Arc objects. These represent arcs in
layouts. They allow a characterization of
how the arc is drawn and of the labels that
can be placed on the arc.

This simple framework is powerful
enough to handle a wide variety of data-
structure displays. Moreover, the system
supports a general mechanism for these
blocks, letting new block types be added
as needed.

Visual languages in Garden are charac-
terized by mappings from the Garden
object types of the language to Gelo
objects. These mapping are defined
through a set of stylized examples of the
display for the types and are used to build
the hierarchy of Gelo objects that cor-
respond to a particular Garden structure.
You can display and edit this hierarchy.

Figure 3 shows the stylized mappings for
the Petri-net language. A pNet object, the
top level of the net, is drawn as a simple til-
ing with two tiles, one on top to hold the
name and one below to hold the Petri net’s
picture. The layout used in the editor for
this mapping is shown in Figure 3a.

Two mappings are shown for pTrans
objects.

The first is used when the object is
drawn inside a layout. This is the form
used in the picture of the Petri net; it is a
vertical line labeled with the identifying
string of the transition. The mapping
itself, shown in Figure 3b, specifies that
both the input and output fields should be
used, with arcs drawn from the objects
denoted by the input fields and arcs drawn
to the objects denoted by the output fields.

The second mapping, the default map-
ping for pTrans objects shown in Figure
3c, is used when the object occurs outside
alayout. This is a tiling containing the type
name on top, an indentation bar on the
left, and then the fields in the order in
which they occur in the type definition.
The mapping for pPlace objects in the pic-
ture of a Petri net (Figure 3d) is a basic type
shaped as a circle with the identifying
string displayed.

The result of these mappings is the Petri
net example of Figure 2 displayed by Gar-
den in Figure 4. Garden lets you use this
visual form to create and edit objects as
well as for simple display. The editor uses
Gelo to put up a display and then lets you
apply graphical editing operations to
modify it. Each graphical editing opera-
tion must map to a change of the underly-
ing object. This change is made and the
display is then updated for the modified
object.

To support consistent graphical editing
for a variety of structures, the graphical
structure editor translates your editing
request into requests to change values or

IEEE Software

19

File £dit. Props

Top

Data Fields
name : Name
transitions | $Sequence_ 0
{places | $Sequence_Of pPlé|

Constant Fields
valuate ¥ { LANBDA J

Work # { LAMBDA }

Fixup # £ LAMBDA 3
VioletUpdate # { LAMBDA }
VioletInsert # { LAMBDA }
VioletInsertfArc # { LAMBDF|
Picture = { GeloDbject }

19 plrans File

Super Tupes
<none> * pAiny

Data Fields
name : String
eval ! Any
input : $Sequence_Of _pPl.
output : $Sequence_Of _pP.

active © Boolean = False

Work # £ LAMBDA 3

Check # { LAMBDA 3
Evaluate # { LAMBDA 3
NoBuild = False

Picture = { GeloObject }

Top

1t Props

q q
(a) (b)
IC 9
plrans File Top Edit Props pPlace
Super Types tring Super Types ring
<none> » pAny 5 <Empty <none> * phny <Empty>
s Computed> <Computed>
val> <New Field> <New Field>
S o ST <From Source>|
Data Fields Sinput) rom Self> Data Fields <From Self>
name : String <output) T name 3 String s
eval : Any <active> Al init ¢ Integer = 0 1At
input : $Sequence_Of pPlac {semad neut output : $Sequence_Of_pT output
output : $Sequence_Of _pPl4 output count | Integer = 0 AL
active ~ Boolean = False Lhtive sema : Semaphore doss
sema : Semaphore sema UNNAMED
UNNAMED
Constant Fields Constant Fields
Tnitialize ® { LAHBDA ¥ Initialize # { LAMBDA ¥
Work # § LAMBDA } Check # { LAMBDA 3
Check # { LAMBDA } Use # £ LAMBDA 3
Evaluate # { LAMBDA } Add # { LAMBDA 3
NoBuild = False Release # { LAMBDA }
Picture = { GeloObject } NoBuild = False
Picture = { GeloObject }
q 49 [4
(c) (d)

Figure 3. Stylized mappings for Petri-net objects: (a) layout for pNet object, (b) plrans object mapping when drawn
in a layout, (c) default plrans object mapping, and (d) pPlace object mapping.

to add or delete elements from a layout.
These requests are mapped by Garden into
messages sent to the displayed objects.
Garden’s default facility for handling
these messages is usually sufficient.

But one instance where it is insufficient
is when the mapping from Garden objects
to Gelo types is so complex that the facil-
ity cannot determine where a node or arc
can be added or should be deleted. It also
fails when nodes or arcs are added several
times but actually appear only once. And
it will succeed but yield inconsistent object
structures if the Garden objects contain
redundant information that was not used
in the drawing, such as doubly linked lists.
In these cases, you must provide message
handlers that perform the correct opera-
tion on the particular data types.

November 1987

S —

Edit Layout Display Inset

Eval

Example B

Figure 4. Garden’s Petri-net display.

25

For the Petri net example, you would
have to provide several message handlers
to ensure that the editor worked correctly.
In particular, handlers must be defined for
inserting and deleting both nodes and arcs.
These are necessary both because the
underlying objects contain redundant
information (the transitions point to their
input places and the places point to the
transitions in which they are used) and
because adding nodes is ambiguous since
alayout node can be a place or a transition.

The definition of these editing functions
completes the introduction of a Petri-net
language into Garden. The work involved
is quite small: It takes a day or two for
someone familiar with the Garden system.

Using the new language. Once the Petri-
net language is defined in Garden, you can
use it as one of the basic conceptual lan-
guages in your repertoire. Petri nets can be
used to define the asynchronous control
aspects of a more complex system. Petri
net examples can be created and used eas-
ily. Moreover, programs using Petri nets
can be freely mixed with all other Garden
languages.

The conceptual programmer would cre-
ate Petri-net objects with the graphical edi-
tor described above. The Petri net would
be created and modified by adding places
and transitions to the drawing of the net.
When a new object is to be inserted, the
system uses dialogue boxes to prompt for
the object type and then for the fields of
this new object. Places and transitions can
be connected in the editor by dragging arcs
from one to the other. The various values
— labels, initial settings, and evaluation
routines — can be changed using this or
other editors.

Evaluation of the Petri net begins with
the top-level pNet object. Garden’s
general debugging and monitoring facili-
ties are available for the new language,
and, if there is an error during evaluation,
you would be placed in a read-eval-print
loop at the point of the error so the vari-
ables can be queried and execution can be
continued if requested. Similarly, you
could trace and suspend execution of any
object composing the Petri net.

In addition to these standard debugging
facilities, the Garden graphical editor can

26

automatically animate the Petri-net pro-
grams. The editor highlights each object
that it displays when that object is evalu-
ated. Because Petri nets evaluate by evalu-
ating their transition objects, a graphical
view of the pNet object being evaluated
will show the evaluation by successively
highlighting each transition as it fires.

here is nothing special about the

Petri net example discussed here.

Garden can and has been success-
fully used to define a wide variety of lan-
guages, including functional dataflow
languages, finite automata, flowcharts,
dataflow design languages, a CSP-like
ports language, a programming-by-
demonstration language, and language
facilities provided by Paisley, Linda, and
Multilisp.

The Garden prototype currently runs on
Digital Equipment Corp. VAX worksta-
tions and on Sun workstations. It is being
used both for general experimentation and
as the basis for several research projects at
Brown University. The implementation
runs at about the speed of a Lisp inter-
preter and includes a compiler that
produces C code to give a tenfold improve-
ment in performance over interpreted
code.

The work on the Garden system is only
half done, and the system is just now
becoming really usable. As the system
becomes more stable and as my colleagues
at Brown University and I get more expe-
rience with it, we hope to test out the
promises of conceptual programming and
see if this is a viable approach to design
that improves programmer productivity as
we hope it will. Such experiments will at
first be informal, based on the experience
of the initial users, but we hope be more
rigorous later when the system can handle
a controlled experiment.

We are working in several areas related
to this system and its concepts because
Garden is by no means perfect or com-

. plete. Significant work remains to be done

not only to get experience with the system
but also to improve its interfaces and to
make it into a real environment.

The graphical interface is weak in two
respects. First, the layouts are produced
completely automatically and often are
not aesthetically pleasing. We are looking
into using better heuristics for layouts and
finding ways of letting programmers con-
trol the layout to some extent. Second, the
graphical editor is essentially a structured
editor for the underlying object. We would
prefer, in many cases, that this editor be a
simple drawing package to let users simply
draw the program and then parse the
result.

The textual interface also needs
improvement. Currently, you must map
your conceptual language into Garden’s
Lisp-like notation. While this isn’t as
detrimental in the textual case as it is in the
graphical one, it is a drawback we want to
eliminate. A more serious disadvantage is
that the current language is not suitable for
defining complex object structures, espe-
cially those that are not trees.

Although Garden is designed and imple-
mented to sit on top of an object-oriented
database system, we have had little expe-
rience with the actual use of the system,
primarily because its initial implementa-
tions has not had the performance needed
for an interactive system. The perform-
ance problem is being addressed and may
be resolved in the next year.

We are also looking at the very difficult
problem of semantics that the current
implementation of Garden tries to avoid.
Ideally, a multiparadigm system should
have a consistent internal semantics. Such
a semantics provides a basis for compila-
tion, for consistency checking between
views, and for view mapping. View map-
ping is important if the several program-
ming paradigms are to be applied to the
same portion of the program, a situation
that arises when you want to see and use
both a dataflow and a control-flow view
of the same module. In this case, the sys-
tem must be able to map changes in either
view to appropriate changes in the other.
With a broad spectrum of views, the sim-
plest way of allowing such mappings is to
have a common semantic basis and to
generate the views from this basis. -0

IEEE Software

Acknowledgments

This research was supported in part by the
Office of Naval Research and the Defense
Dept.’s Advanced Research Projects Agency
under contract N00014-83-K-0146 and ARPA
Order No. 4786, by National Science Founda-
tion grant SER80-04974, by a contract with
IBM, by a grant from AT&T Foundation, and
by a grant from Digital Equipment Corp. Par-
tial equipment support was provided by Apollo
Computer, Inc.

References

1. D.T. Ross, ‘“‘Applications and Extensions
of SADT,”’ Computer, April 1985, pp.
25-35.

2. M. Alford, ‘““‘SREM at the Age of Eight:
The Distributed Computing Design Sys-
tem,’”’ Computer, April 1985, pp. 36-46.

3. F.P. Brooks, Jr., ‘“No Silver Bullet:
Essence and Accidents of Software
Engineering,’’ Computer, April 1987, pp.
10-19.

DAV KIN

4. S.P. Reiss, ‘“An Object-Oriented Frame-

work for Graphical Programming,’’ SIG-
Plan Notices, Oct. 1986, pp. 49-57.

. A. Goldberg and D. Robson, Smalltalk-80:

The Language and Its Implementation,
Addison-Wesley, Reading, Mass., 1983.

. J.N. Pato, S.P. Reiss, and M.H. Brown,

‘““An Environment for Workstations,’’
Proc. IEEE Conf. Software Tools, CS
Press, Los Alamitos, Calif., 1985, pp.
112-117.

. A.H. Skarra, S.B. Zdonik, and S.P. Reiss,

‘“An Object Server for an Object-Oriented
Database System,’’ Proc. Workshop
Object-Oriented Database Systems, CS
Press, Los Alamitos, Calif., 1986, pp.
196-204.

. J.L. Peterson, ‘‘Petri Nets,”” Computing

Surveys, Sept. 1977, pp. 223-252.

. S.P. Reissand J.N. Pato, ‘‘Displaying Pro-

grams and Data Structures,”’ Proc. 20th
Hawaii Int’l Conf. System Sciences, CS
Press, Los Alamitos, Calif., 1987

Effective Resources For Software Professionals

From Prentice Hall

New for 1988!

CREATING EFFECTIVE SOFTWARE: COMPUTER PROGRAM DESIGN
USING THE JACKSON METHODOLOGY: David King—Citicorp
(013-189242-8) $35.00

(,R[‘A]‘”\G Looking for a quick, effective way of designing programs?

EFFECTIVE Here’s your book. Based on the easily understood Jackson
AT 3 Program Design Method (JSP), this presentation facili-
tates program design. Includes JSP’s use with database
software, fourth generation languages, and other aspects of
today’s data processing environment.

STRUCTURED DESIGN: FUNDAMENTALS OF
A DISCIPLINE OF COMPUTER PROGRAM-
MING AND SYSTEMS DESIGN. Edward Your-
don and Larry L. Constantine. Yourdon, Inc.
(013-854471-9) $48.00

The classic introduction to the architecture of
programs and systems. Lays foundations for
structured design techniques. Examines top-
down design and heuristics commonly used
by the program designer.

CONTROLLING SOFTWARE PROJECTS:
MANAGEMENT, MEASUREMENT, &
ESTIMATES. Tom DeMarco—Atlantic Systems
Guild, Inc. (013-171711-1) $36.33

This prescription for accurate time, cost, and
risk projections details the how-to’s of effec-
tive, objectively measurable, software projects
and provides a strong framework of methods
on which to gather and analyze data.

CURRENT PRACTICES IN SOFTWARE
DEVELOPMENT: A GUIDE TO SUCCESSFUL
SYSTEMS. David King—Citicorp.
(013-195678-7) $33.33

The software tools and techniques available
for use-in the systems development life cycle
of today are effectively presented in this
essential, new guide. The seven stages of the
life cycle are explored.

SOFTWARE VERIFICATION AND VALIDATION:

REALISTIC PROJECT APPROACHES. Michael
S. Deutsch—Hughes Aircraft Company
Space and Communications Group.
(013-822072-7) $45.67

This comprehensive treatment of practical
approaches explores state-of-the-art
methodologies and describes verification and
validations techniques that have been used
successfully on contemporary, large-scale
software projects. Abundant, real-world
examples are provided.

{

Steven P. Reiss is an associate professor of com-
puter science at Brown University. His research
interests include programming environments,
graphical programming, database implementa-
tion, statistical database security, and computa-
tional geometry. Before working on Garden, he
developed the Pecan program-development
system.

Reiss received a BA in mathematics from
Dartmouth College and a PhD in computer
science from Yale University.

Address questions about this article to Reiss
at Computer Science Dept., Brown University,
Providence, RI 02912.

SOFTWARE METRICS: ESTABLISHING A
COMPANY-WIDE PROGRAM. Robert Grady
and Deborah Caswell—Hewlett - Packard
Company, (013-821844-7) $35.33

How to establish a company-wide software
metrics program. This introduction to soft-
ware metrics is based on work done at
Hewlett-Packard. The guide’s many practical
features provide information on what data to
collect, how to start collecting, how to effec-
tively use the data collected and what
problems to expect.

SOFTWARE MAINTENANCE: THE PROBLEM
AND ITS SOLUTIONS. James Martin and
Carma L. Mc Clure—Northwestern Univer-
sity. (013-822361-0) $53.33

This complete description of proven tech-
niques for updating, revising, and correcting
computer programs emphasizes designing
programs with an eye toward reducing and
controlling maintenance needs and
procedures.

Available at better bookstores or

direct from Prentice Hall at (201)

767-5937. For quantity orders call
(201) 592-2498.

PRENTICE HALL

Simon & Schuster
Higher Education Group
Englewood Cliffs, NJ 07632

Reader Service Number 2

