
ROSE: An IDE-Based Interactive Repair Framework for
Debugging

STEVEN P. REISS, Department of Computer Science, Brown University, USA
XUAN WEI, School of Computer Science, Wuhan University, China
JIAHAO YUAN, School of Computer Science, Wuhan University, China
QI XIN∗, School of Computer Science, Wuhan University; Hubei Luojia Laboratory, China

Debugging is costly. Automated program repair (APR) holds the promise of reducing its cost by automatically
fixing errors. However, current techniques are not easily applicable in a realistic debugging scenario because
they assume a high-quality test suite and frequent program re-execution, have low repair efficiency, and
only handle a limited set of errors. To improve the practicality of APR for debugging, we propose ROSE,
an interactive repair framework that is able to suggest quick and effective repairs of semantic errors while
debugging in an Integrated Development Environment (IDE). ROSE allows an easy integration of existing
APR patch generators and can do program repair without assuming the existence of a test suite and without
requiring program re-execution. It works in conjunction with an IDE debugger and assumes a debugger
stopping point where a problem symptom is observed. ROSE asks the developer to quickly describe the
symptom. Then it uses the stopping point, the identified symptom, and the current environment to identify
potentially faulty lines, uses a variety of APR techniques to suggest repairs at those lines, and validates
those repairs without re-executing the program. Finally, it presents the results so the developer can examine,
select, and make the appropriate repair. ROSE uses novel approaches to achieve effective fault localization
and patch validation without a test suite or program re-execution. For fault localization, ROSE builds on a
fast abstract-interpretation-based flow analysis to compute a static backward slice approximating the real
dynamic slice while taking into account the symptom and the current execution. For patch validation without
re-running the program, ROSE generates simulated traces based on a live-programming system for both the
original and repaired executions and compares the traces with respect to the problem symptoms to infer
patch correctness. We implemented a prototype of ROSE that works in an Eclipse-based IDE and evaluated its
potency and utility with an effectiveness study and a user study. We found that ROSE’s fault localization and
validation are highly effective and a ROSE-based tool using existing APR patch generators generated correct
repair suggestions for many errors in only seconds. Moreover, the user study demonstrated that ROSE was
helpful for debugging and developers liked to use it.

CCS Concepts: • Software and its engineering→ Software creation and management; Software devel-
opment techniques.

Additional Key Words and Phrases: Debugging, Interactive Repair Framework, Automated Program Repair,
Integrated Development Environment

∗Corresponding author.

Authors’ Contact Information: Steven P. Reiss, Department of Computer Science, Brown University, USA, spr@cs.brown.edu;
XuanWei, School of Computer Science, Wuhan University, China, isabel1015@whu.edu.cn; Jiahao Yuan, School of Computer
Science, Wuhan University, China, yuanjiahao@whu.edu.cn; Qi Xin, School of Computer Science, Wuhan University; Hubei
Luojia Laboratory, China, qxin@whu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7392/2024/1-ART1
https://doi.org/10.1145/3705306

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0003-0942-1883
HTTPS://ORCID.ORG/0009-0008-5700-8464
HTTPS://ORCID.ORG/0009-0003-6904-6285
HTTPS://ORCID.ORG/0000-0003-0543-4935
https://orcid.org/0000-0003-0942-1883
https://orcid.org/0009-0008-5700-8464
https://orcid.org/0009-0003-6904-6285
https://orcid.org/0000-0003-0543-4935
https://doi.org/10.1145/3705306

1:2 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

ACM Reference Format:
Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin. 2024. ROSE: An IDE-Based Interactive Repair Framework
for Debugging. ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (January 2024), 39 pages. https://doi.org/10.
1145/3705306

1 Introduction
Debugging is laborious. Automated program repair [29, 83, 144] (APR) aims to alleviate a developer’s
burden by automatically correcting program errors by identifying the failure-responsible locations
(fault localization), generating patches for the locations (patch generation), and validating the
patches (patch validation). Because people routinely use Integrated Development Environments
(IDEs) to write code and debug, we envision integrating APR into an IDE to provide practical and
useful debugging support. In order for this to occur, APR needs to work in conjunction with the IDE
debugger to let the developer fix errors as they find them. APR needs to work without test cases
since the environment cannot guarantee that a significant number of tests are available [8, 53, 55]
or that the bug occurs while running a test case. APR needs to work without rerunning the program
since errors can be found in situations where this is difficult (e.g., a long run or an interactive
session). Finally, APR needs to be fast enough so that it can be used interactively [89].

Current techniques do not satisfy these requirements. Most techniques are test-based [29, 84, 144].
They assume the existence of an extensive test suite serving as the correctness criterion and rely on
program re-execution against the test suite both to identify the locations to repair and to validate
the patches generated. In practice, high-quality test suites are often unavailable. As suggested
by [8, 53], developers often do not write a test suite containing a sufficient number of test cases
or even do not write tests at all (especially for the initial development). Koyuncu et al. [55] noted
that bugs are often reported without an available test suite being able to reveal them. For over
90% of the real bugs in the Defects4J dataset [45], the test cases relevant to the defective behavior
of the software represent future data and were only introduced after the bug was identified. We
also scanned all Java projects in the Merobase source repository [36] and found that, of the 12,525
projects with 50 or more methods, about 58% of them have no tests at all. In fact, only about
13% projects had as many tests per method as the packages in Defects4J used for evaluating APR
techniques.
Even when a high-quality test suite is available, a test-based technique can still fall short for

practical debugging, as its over-reliance on dynamic analysis for fault localization and patch
validation can lead to decreased efficiency. As reported in the evaluation of some of the latest
test-based techniques (for example CURE [42]), the average time taken to repair an error can be
longer than 20 minutes1. A long repair time is not aligned with a user’s expectation [89], especially
when using an IDE.

Another factor that impedes the adoption of test-based techniques for debugging is need for pro-
gram re-execution. In a realistic debugging scenario, recreating the environment for the immediate
failure caused by the error can be difficult [44, 48, 99, 106] since the failure can be identified in a
long run or in an interactive session.

Some of the recent techniques [6, 7, 25, 55, 110] have sought to achieve error repair without a test
suite. These techniques, although promising, are still not fast [25] or are only applicable to specific
types of errors such as the security vulnerabilities [25, 33] and heap-property faults [110], potential
issues detected by static analyzers [6, 7] (not errors actually observed while debugging), and bugs
that arise from special forms of specifications (e.g., bug reports [55]) or that require additional
resources (e.g., historical patches [6]). Most recently, the Large Language Models (LLMs) have
1Most recent techniques were evaluated in a setting where a five-hour timeout is used for repair. The repair time used to
find a correct patch was often not reported.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/3705306
https://doi.org/10.1145/3705306

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:3

shown superior abilities in suggesting effective patches for error correction. LLM-based techniques
are fast and do not appear to be tied to specific errors. However, they assume that the faulty code
can be effectively pinpointed and do not contain a (non-test-based) patch validation component.
As such, they are actually patch generators rather than full repair tools.

To sum up, current APR techniques are not well-suited for use while debugging in an IDE because
they make strong and unrealistic repair assumptions, do not have the necessary efficiency, and
often have a limited repair scope.

To improve the practicality of APR for debugging, we propose ROSE, an IDE-based framework
that supports Repairing Overt Semantic Errors. A semantic error can cause program runtime
failures, which the developer tackles for debugging [143]. ROSE is not a repair technique but a
framework that facilitates the integration of APR patch generators into an IDE to leverage the
power of existing patch generation approaches to achieve effective debugging. ROSE aims for
interactive and practical semantic error repair. It does not assume the existence of a test suite
and does not require re-executing the program while debugging. With no test suite exposing the
failure, ROSE starts by interacting with the developer to obtain a quick description of the problem
symptom showing what is wrong at a break point. Based on this description, ROSE follows a
generate-and-validate procedure to make repair suggestions by first performing fault localization
to identify potential repair locations responsible for the problem, then invoking the integrated
patch generators to generate potential repairs, and finally validating and sorting those repairs.

The key challenges are how to perform quick and effective fault localization and patch validation
without a test suite andwithout program re-execution. ROSE uses a novel fault localization approach
that starts with a fast abstract-interpretation-based flow analysis that is already available in an
IDE, and uses the results of this analysis along with the problem symptom, current values from the
debugger, and current run time stack to efficiently compute a limited backward slice starting from
the location where the symptom is observed. The abstract interpretation associates an abstract
program state including stack, variable, and memory values with each execution point. ROSE uses
this information by working backwards one step at a time from the stopping point where the
problem was observed, keeping track of which variables and stack elements are relevant at each
point, and building a graph of control and data dependencies relevant to the symptom. The graph
is restricted using current program values and the current execution stack, by limiting the number
of times a variable is changed while being considered, and by limiting the number of control flow
dependencies that are considered. ROSE then converts this graph into the set of lines that might
affect the symptom.
Without using test cases or allowing dynamic program re-execution, patch validation is also

challenging. ROSE tackles the problem by generating simulated traces that reflect the real executions
of the failure-related portions of original and repaired programs and comparing the traces to infer
patch correctness. The simulated traces are generated by a continuous-execution plugin for the IDE.
Specifically, ROSE first obtains a baseline simulated execution that duplicates the original problem
from some point on the current call stack. Then for each patch it obtains a repaired simulated
execution from the same starting point. The trace comparison considers the specified symptom
along with a variety of matching conditions to compute a score approximating the likelihood of
the error being correctly repaired. Finally, ROSE presents the repairs as they are found in priority
order. The developer can choose a repair to preview or have ROSE make the repair.

To assess the effectiveness and usefulness of ROSE, we implemented a prototype of the framework
in the Eclipse-based Code Bubbles IDE [10], and conducted two studies. The first is an effectiveness
study used to evaluate whether ROSE’s approaches work. In this study, we implemented two ROSE-
based repair tools, ROSE-PC and ROSE-PS. The former uses a combination of predefined patterns
and ChatGPT (v3.5-turbo) [15] for repair generation and the latter is based on patch generators

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:4 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

using the patterns and a local-search-based approach [128] to produce repairs. We applied the tools
to two published error benchmarks, QuixBugs [64] and a subset of Defects4J [45] for repair. We
found that ROSE’s core approaches, fault localization and patch validation, are very effective. The
fault localization included the correct repair location for 89% of the errors, and the patch validation
gave a top-5 rank for all correct repairs and was never a reason for ROSE’s failure. Moreover, the
ROSE tools quickly and correctly repaired many errors. The average time of finding a correct repair
is only a few (less than 10) seconds. And the ROSE-PC tool, which uses advanced patch generators,
found correct repairs for as many as 36/40 QuixBugs and 37/60 Defects4J errors.
The second study is a user study designed to evaluate the usability of ROSE. We recruited

26 participants to debug four programs either with or without a ROSE-based tool. Our results
showed that ROSE helped 44% more participants succeed in a debugging task and helped reduce
the debugging time by about 16.5%. Moreover, the feedback given by the participants reveals that
they think ROSE is useful and they like ROSE. Overall, we believe that our results are encouraging,
as they showed that the ROSE framework can empirically integrate existing APR patch generators
into an IDE to provide quick and effective repair suggestions and help developers debug.

The main contributions of this work are:
• A working quick-repair framework that can integrate a variety of repair-generating mecha-
nisms into an IDE to provide accurate suggestions in a reasonable time frame.

• Novel approaches for interactive problem specification, fault localization, and repair validation
that do not require a test suite or program re-execution.

• Evaluations based on two studies that demonstrate ROSE’s effectiveness and usefulness.
• A prototype of ROSE along with our experiment data and study result, publicly available at
https://github.com/rose-apr/rose.

Developer

Program with error

Problem
Definition

Problem Repair locations Repairs

Fault
Localization

Repair
Generation

Baseline
Execution

Generation

Baseline execution

Repair
Validation

Validated
repairs

Repair
Presentation Validated repairs

for preview

Pluggable patch generator

Integrated Development EnvironmentROSE

Repair locations
restricted

Fig. 1. Overview of ROSE.

2 Overview of ROSE
ROSE is an interactive repair framework designed to work in conjunction with an IDE and a
debugger. It performs six steps: problem definition, fault localization, baseline execution generation,
repair generation, repair validation, and repair presentation to generate repair suggestions without a
test suite. Figure 1 shows the workflow of ROSE. Figure 2 presents an example of the interactive
interface of ROSE for problem specification (the top row), fault localization and repair suggestions
(the middle row), and repair preview (the bottom row), which highlights the code changes.

Problem definition. ROSE assumes the developer is using the debugger and the program is
suspended with an observed problem caused by a semantic error. The developer invokes ROSE at
the line where the program stopped. ROSE starts by asking the developer to quickly specify the
problem symptoms (e.g., an unexpected exception). Note that in this step ROSE asks the developer
to describe the observed problem caused by the error, but not the error itself. In the absence of test

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://github.com/rose-apr/rose

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:5

(a) Problem specification options. (b) Detailed options for the variable value problem.

(c) Potential repair locations. (d) Repair suggestions.

(e) Repair preview.

Fig. 2. User interface of ROSE.

suite, the defined problem is used to localize the error and validate patches. This process is detailed
in Section 4.1.

Fault localization. After the problem is defined, the developer asks ROSE to suggest repairs,
code changes that will fix the original problem. ROSE first does fault localization to identify where
the error might be. In the absence of a test suite, and without rerunning the program, ROSE uses an
abstract-interpretation-based flow analysis to statically compute a partial backward slice that starts
from the stopping point, and uses the result of this slice to identify potential lines to repair. The
slice is partial because ROSE takes into account the problem symptoms and the current execution
to create an accurate slice for the identified symptom, while limiting the slice based on execution
distance from the stopping point. More details about fault localization can be found in Section 4.2.

Baseline execution generation. Before invoking the patch generators to generate candidate
repairs, ROSE creates a baseline execution that duplicates the original problem. The baseline
execution not only serves as a foundation for validating repairs that ROSE will generate in the
following step but also helps filter out the potentially faulty lines that were not actually executed.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:6 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

In general, a full problem-duplicating execution might have involved user or external events and
can be too complex to obtain. To ensure efficient and practical repair validation, ROSE considers
only the execution of an error-related routine on the current call stack and everything it calls. ROSE
identifies a suitable error-related routine for which a partial problem-duplicating execution would
be relatively easy to create. ROSE guarantees that there is no routine higher up the call stack that
includes other potentially faulty locations to ensure that all possible locations that can be considered
are considered. This might not include all the locations identified by fault localization but will
include all those whose changes ROSE can detect. ROSE also resets the execution environment
internally for the start of this execution. Next ROSE obtains the complete execution history of that
routine, and finds the location corresponding to the current stopping point in the execution history.
Because fault localization is based on a static analysis, there can be identified potentially faulty
locations that are not executed in the baseline execution and would therefore not cause detectable
changes. These are eliminated from further consideration. This whole process is described in
Section 4.3.

Repair generation. ROSE next invokes the patch generators that have been plugged into the
framework to generate potential repairs for each identified location. ROSE includes a set of default
pattern-based suggesters and has been extended with suggesters based on code search and machine
learning. Each suggester is responsible for generating the repair edit, either as a text edit or an edit
of the underlying abstract syntax tree, providing a brief description of the repair for the developer,
and providing an estimated priority for the repair at this location. Section 4.4 details how ROSE
uses the suggesters to generates repairs.

Repair validation. ROSE next validates the suggested repairs using the baseline execution.
This is done by comparing the full trace of the baseline execution with the corresponding trace of
each repaired program. ROSE takes into account the problem symptom and a variety of matching
situations to compute a semantic priority score approximating the likelihood of the problem being
fixed and the repair being valid (i.e., correct and non-overfitting [104]). The semantic priority score
is used in conjunction with the syntactic priority derived from repair generation to create a final
priority score for the repair. This is described in Section 4.5.

Repair presentation. Finally, ROSE presents the potential repairs to the developer as in Quick
Fix [96] and previous interactive test-suite based APR tools [37, 46]. It shows the repairs in priority
order and limits the presentation to repairs that are likely to be correct. The repairs are displayed
as they are validated so that the developer can preview or make a repair as soon as it is found.
Section 4.6 details this.

3 Related Work
In this section, we discuss related work in test-suite-based and non-test-suite-based program repair,
fault localization, patch validation, and debugging.

3.1 Test-Suite-Based Program Repair
Most of the current automated program repair (APR) techniques are test-based. They use a test suite
as the correctness criterion to help localize where the bug might be, guide the patch generation,
and validate the plausibility of the patches (i.e., check whether the patched programs pass all the
tests). These techniques differ by the strategies used to produce repairs, and are generally classified
as search-based, pattern-based, semantics-based, and learning-based approaches.
Program repair can be viewed as a search problem. A search-based approach implicitly defines

a space of patches and aims to explore the space via some strategy to find a patch that correctly
fixes the bug. A group of the systems including GenProg [59], AE [116], ARJA [140, 141], and
HDRepair [58] use evolutionary algorithms such as genetic programming to perform the search.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:7

These systems define mutation and crossover operators to transform the original program, create
mutants as patched programs, and use fitness functions to guide the search of finding likely correct
patches. Some techniques leverage the code similarity to identify potential fix code for patch
generation. ssFix [127] and sharpFix [128] search for and reuse fix code that is syntactically similar
to the faulty codewithin the original program and across other projects in a code database to produce
patches. SOSRepair [2] and SearchRepair [49] compare program semantics distilled in the form of
constraints via symbolic execution to find behavior-similar programs for bug-fixing. SimFix [39]
focuses on identifying similar code from the local project to produce patches. It additionally
leverages the frequent modification knowledge mined from a corpus of bug-fixing patches to
reduce the search space. CapGen [118] performs three types of context-aware code analysis to
prioritize mutation operators and patches. Hercules [101] analyzes code context to identify similar-
looking evolutionary siblings for simultaneous repair. TransplantFix [133] leverages the inheritance
relationship to identify fix code from the local program and perform graph-differencing-based
transplantation to apply the fix code to the faulty place for repair.

Many APR techniques use fixing patterns for patch generation. PAR [50] is an early system that
uses 10 pre-defined patterns distilled from over 60,000 bug-fixing instances to produce patches.
ELIXIR uses eight patterns including adding a null-pointer checker and changing the boolean
operator for an infix expression. Liu et al. [67] analyzed the patterns used by a set of previous
techniques, identified the frequent ones, and created TBar [67], a state-of-the-art technique that
systematically applies 15 categories of patterns to generate patches. In addition to APR systems that
use a small number of pre-defined patterns, others [54, 69] aim for inferring and mining patterns
for effective patch generation. Recent efforts have investigated using deep learning to guide pattern
selection and patch generation [81, 82].
Some of the semantics-based approaches achieve automated repair by performing semantic

analysis such as symbolic execution to obtain constraints encoding the expected behavior for the
faulty parts of the program and then doing code synthesis to generate the correct code [57, 79, 80,
88, 119]. Apart from the constraint-based techniques, others use a value-based specification derived
from its semantic analysis. They search for the expected values, or angelic values, that the faulty
expressions should hold as the correct behavior, and then work on performing code synthesis to
generate the fixed code satisfying the specification [70, 71, 130, 132].

Many of the learning-based approaches treat code repair as a neural-machine-translation (NMT)
problem [41, 42, 74, 137–139, 151]. They leverage the power of deep learning to train an encode-
decoder model based on a large corpus of bug-fixing instances. The encoder encodes the input code
into hidden status capturing the contextual semantics while the decoder translates the semantics
into fixed code with errors corrected. Current NMT-based techniques differ primarily in the code
pre-processing methods (which decide the context of faulty code considered for translation, the
abstraction of the context, and tokenization), the code representation (based on for example
sequence, tree, and graph), and the model (e.g., LSTM, RNN, and GNN). Readers can refer to [144]
for more details.
Most recently, researchers looked at using Large language Models (LLMs) for repair. Xia et

al. proposed AlphaRepair [123], which uses the pre-trained CodeBERT model to perform cloze-
style APR that predicts the fixed code for the faulty code masked out. Later, they also developed
FitRepair [121], which follows the plastic surgery hypothesis and combines domain-specific fine-
tuning and relevant-identified-based prompting to produce patches, and ChatRepair [124], which
interacts with ChatGPT [15] in multiple iterations and incorporates test failure information to
improve repair performance. Wei et al. proposed Repilot [115], an approach that fuses LLM with the
completion engine to produce patches. Nashid et al. [87] and Wang et al. [113] proposed approaches
that search for relevant bug-fixes and use them as examples to guide LLM-based patch generation.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:8 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

Peng et al. [94] investigated using templates for LLM-based repair of Python type errors. Silva et
al. [103] proposed RepairLLaMA, which combines an effective code representation and the efficient
LoRA adaptor to fine-tune the LLaMA LLM for program repair.
Several studies have also been conducted to understand whether and how LLMs can be reused

for APR. Prenner et al. [95] showed that OpenAI’s Codex can repair many errors in the QuixBugs
dataset and is competitive with NMT-based techniques. Similarly, Sobania et al. [105] found that
ChatGPT is also effective to deal with QuixBugs errors. Fan et al. [22] tried to understand the
failure of Codex for bug repair and explored the possibility of combining APR with Codex for better
repair. Xia et al. [122] used 9 pre-trained LLMs to repair hundreds of real and programming-level
errors from five existing benchmarks in different settings addressing single-function, single-hunk,
and single-line repairs and showed that the LLM-based tools outperform other learning-based
and traditional techniques. Jiang et al. [40] also showed that LLMs can fix more bugs than other
deep-learning-based tools and that fine-tuning these LLMs can lead to more effective repair. Cao et
al. [13] investigated how effective ChatGPT was at repairing deep learning program errors. Zhang et
al. [145] studied the effectiveness of ChatGPT in repairing a new bug dataset containing 151 errors
for 15 programming problems. Finally, Huang et al. [32] investigated using fine-tuned LLMs with
different combinations of code abstractions, code representations, and checkpoint methods used to
address software bugs, programming errors, and vulnerabilities. They identified the fine-tuned LLM
with the best combination and showed that LLM is also promising to handle complex multi-hunk
bugs. While various LLMs have been investigated to fix errors, they are actually only used as patch
generators. For repair, current LLM-based techniques assume that the faulty code (a method, hunk,
or line) has been effectively identified and rely on a test suite to validate the patches generated.

Unlike the above approaches, ROSE is a repair framework rather than a technique. It allows an
APR patch generator to be easily integrated into an IDE to provide quick and effective debugging
support. A ROSE-based tool, which employs a specific patch generator to suggest repairs, is
fundamentally different from existing test-based techniques in that it is interactive, works in an
IDE, and does not assume the existence of a test suite for fault localization and patch validation.

3.2 Non-Test-Suite-Based Program Repair
While most APR techniques require a test suite, some do not. A group of test-free techniques focus
on addressing security vulnerabilities via methods such as constraint-based code synthesis [25],
neural machine translation [17, 23], invariant inference [148], and safety property guidance [33].
Another group targets GitHub issues. Jimenez et al. [43] used four LLMs to generate patches based
on the issue description and the project code. SWE-agent [134] and AutoCodeRover [149] use
LLMs as agents to analyze the issue, search for code, and propose patches. CrossFix [107] searches
for similar GitHub issues or bugs and leverages their fixes for patch generation. A ROSE-based
repair technique is different from these techniques in that it is not limited to security vulnerabilities
or GitHub issues but instead addresses more general semantic errors that arise in a debugging
scenario. Also, unlike these vulnerability-oriented techniques, a ROSE-based technique follows a
generate-and-validate procedure and involves test-free fault localization and patch validation in its
repair process.

Getafix [6], Phoenix [7], FootPatch [110], and SymlogRepair [68] are repair techniques that rely
on static analyzers (e.g., Infer [34]) for bug detection and repair validation. They differ in targeting
different types of bugs and using different approaches to generate repairs. Specifically, Getafix
performs hierarchical clustering of the past fixes to mine patterns and further selects suitable
patterns to produce patches addressing potential issues warned by static analyzers. Phonenix mines
patches that fix static analysis violations from a collection of code repositories. It then uses a
DSL-based synthesis algorithm to learn repair strategies based on the patches mined and applies

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:9

these strategies to make new patches. FootPatch relies on Infer’s static analysis to detect three
types of pointer-related bugs that are resource leaks, memory leaks, and null dereferences and
searches for fix ingredients from the local program to construct patches. To extend the scope
of static-analysis-based repair, SymlogRepair uses Datalog as the domain-specific language to
define program analysis properties and performs symbolic execution to achieve semantic repair
fixing property violations. Unlike these techniques, ROSE does not rely on static analyzers for
specification. It does not aim to address potential issues flagged by static analyzers but instead
works in an IDE to handle semantic failures actually observed for debugging. ROSE interacts with
the developer to obtain a problem description based on which it identifies repair locations and
validates repairs.

ROSE is also related to repair techniques using specifications in the form of contracts such as pre
and post conditions [93, 114], bug reports [55, 66, 86], the Alloy specifications [28], and reference
implementations [78]. ROSE differs from these techniques in that it does not require these types of
more formal specifications.
Finally, ROSE is related to techniques [9, 30, 63] that require human interaction for program

repair. Shipwright [30] involves developer interaction to repair broken Dockerfiles. InPafer [63]
asks for a developer’s feedback to filter incorrect patches. Learn2Fix [9] trains an automatic oracle
to guide the repair process via multiple queries provided by the developer. Unlike these techniques,
ROSE’s goal is not to repair specific types of bugs, filter incorrect patches, or train an oracle for
repair. It aims to provide quick repair suggestions for semantic errors encountered while debugging.
ROSE interacts with the developer only once at the beginning to obtain a problem description and
then automatically generates repair suggestions without further interaction.

3.3 APR Application in Industry
There has been successful APR deployment in industry. SapFix [76], which is built on top of
Sapienz [75] for crash detection, handles the fix of Android app crashes and has been deployed into
Meta’s continuous integration system. When Sapienz reports a crash, SapFix uses both template-
based and mutation-based strategies to propose patches and later tests the patches with the help of
Sapienz. Patches that pass the tests are given to an engineer who is qualified to evaluate the patches
for review. GetaFix [6] leverages previous fix patterns to suggest fixes addressing static analysis
warnings. It was deployed to Meta for suggesting fixes for issues detected by the Infer analyzer.
Empirical evidence shows that developers accepted 42% fixes suggested by GetaFix. BloomBerg also
attempted to incorporate APR into the software development process. It uses the Fixie tool [51]
aiming to tackle simple, repeated bugs and save the debugging time for developers. Fixie addresses
a few common bug types and for each extracts fix patterns from previous commits for bug fixing.
Pracfix [147] is another pattern-based tool that extracts generic reusable patterns from historical
code changes for patch generation. It has been applied to software development in Alibaba and is
shown to be liked by the developers. ROSE is related to these techniques in that it aims to help
developers debug and supports fast repair suggestion. Unlike these tools, however, ROSE requires
an interaction with the developer to get a specification of the problem, and it is not designed to
tackle static errors (flagged by static analyzers for example) or any specific type of semantic errors
(such as crashes). It is a framework that supports non-test-based patch validation and allows the
integration of different patch generators.

3.4 Fault localization
There has been a large body of research [120] dedicated to finding program elements that trigger a
failure. Many of the existing fault localization techniques are spectrum-based [21]. They assume
the existence of a test suite and analyze the code coverage derived from the execution against the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:10 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

passing and failing test cases in the test suite to infer the suspiciousness of the program elements.
Various approaches have been proposed [120] to compute code suspiciousness based on different
forumlae. Studies such as [1, 126] have been conducted to investigate their effectiveness from both
the theoretical and practical perspectives. In addition to spectrum-based techniques, there are also
other approaches that performmutation-based analysis [31, 85, 91], delta-debugging [19, 142], value
replacement [38], predicate switching [146], information retrieval [56, 100, 112, 150], version history
analysis [117], program repair [72], model-driven analysis (e.g., [102]), and various learning-based
strategies [61, 62, 73, 81] to achieve fault localization. ROSE’s fault localization differs from these
approaches in that it is flow-analysis-based and does not require test suite or program re-execution
to identify suspicious locations to repair. Its fault localization is also different from standard slicing-
based approaches [3, 4] and their variants (e.g., [25]) in that it works in a development environment;
it uses a fast, continuous flow-analysis to efficiently compute a static backward slice that simulates
the real dynamic slice; and that it takes into account the abstract program states, the problem
symptom, and current execution environment to limit the slice to provide accurate results.

3.5 Patch validation
Most APR techniques rely on a test suite and require rerunning the program for validation [29].
Given a set of patches, their validation approaches first apply the patches to the original program
to obtain the patched programs and then compile and run these programs against the test suite to
decide whether any of the patches can pass all tests and are possibly correct. Patch validation is
a process that involves repeatedly executing the program against the test suite and is generally
considered an expensive step for bug repair. To accelerate validation, advanced techniques have
been proposed. UniAPR [16] performs on-the-fly execution to use only one JVM process to validate
patches and avoids repeatedly invoking new JVM processes to save time. VarFix [119] uses varia-
tional execution that allows merging program edits and creating meta-programs to accelerate the
search and validation of patches. ExpressAPR [125] uses five strategies based on mutant schemata,
mutant deduplication, test virtualization, test prioritization, and parallelization to achieve fast patch
validation. Other repair approaches resort to non-test-based specifications including the reference
implementations [78], the contracts [114], bug report description [55], static analyzers [6, 7], specific
program behaviors (e.g., crash [24]), and program properties (e.g., heap properties [110]) to achieve
validation.

Unlike these approaches, ROSE is not test-based. It does not require program re-execution
against the tests for validation, nor does it require the various forms of specifications as discussed
above. ROSE’s validation is done by producing and comparing simulated traces that reflect the
dynamic failure-exposing executions of the original and repaired programs to decide whether a
patch resolves the problem specified by the user and infer its correctness.

PATCH-SIM [129] is related to ROSE in that it also compares traces to infer patch correctness. The
approach is however different from ROSE’s in threefolds. First, PATCH-SIM requires a test suite and
its correctness inference is based on the comparison of traces derived from executions of original
and patched programs over both failing and passing test cases whereas ROSE is not test-based
and its trace comparison is based solely on the failure-related executions. Second, PATCH-SIM
compares complete-path spectra derived from real dynamic execution whereas ROSE focuses on
comparing failure executions that are simulated and reflect the real executions. Third, PATCH-SIM
compares traces only to compute a distance score quantifying the trace similarity. ROSE is different
in that it compares executions stepwise, considers both program control flow and program state,
and takes into account the problem symptom and a variety of execution matching situations to
infer patch correctness.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:11

3.6 Debugging
Debugging has long been recognized as a laborious and time-consuming task. To make it easier,
various automated debugging approaches have been proposed. Fault localization [120] is generally
regarded as an automated debugging approach, since it can potentially save developer time by auto-
matically pinpointing the buggy code for developers to examine and fix. Other approaches provide
debugging aids by for example allowing developers to ask why and why-not questions and provid-
ing guidance to answer them [52], incorporating user feedback that confirms the (in)correctness
of variables and paths to narrow down the execution steps that are suspicious [65], re-computing
code suspiciousness based on a factor graph with the user feedback provided [131], and facilitating
explainable scientific debugging with the help of LLMs [47]. Compared to these approaches, ROSE
is different in that it serves as an interactive repair framework that can be integrated into an IDE to
provide actual repairs.
Modern IDEs such as Eclipse and Visual Studio provide the auto-correction facility [5, 96] to

help developers repair simple syntax errors detected by a compiler. A key limitation of such auto-
correction tools is that they do not handle semantic errors exposed at run time. ROSE is designed
to address semantic errors and is thus different. Similar with ROSE, AutoFix [92] is also shown
to be able to provide automated repair support within an IDE. Unlike ROSE, however, AutoFix
is not interactive and requires either a contract (pre- and post-conditions) or a test suite as the
specification. It is restricted to dealing with Eiffel programs and is not a repair framework.

4 Approach
In this section, we elaborate on the six steps that ROSE takes to suggest repairs for debugging.

4.1 Problem Definition
ROSE assumes the program is suspended in the debugger at a location where unexpected behavior
is observed. The developer invokes ROSE from this stopping point. ROSE tries to infer the problem
first and then allows the developer to approve or change its inference. If the program is stopped
due to an exception, ROSE assumes that the problem is that the exception should not have been
thrown. If the program is stopped at an assert statement or call that failed, ROSE assumes that
the assertion failure is the problem. In other cases, ROSE assumes that execution should not have
reached the current line. This might occur if the line represents defensive code that checks for an
unusual or erroneous situation at which the developer had set a break point. The developer can
also indicate that a variable or expression at the stopping point has the wrong value (Figure 2a).
In this case, ROSE shows the current value and lets the developer specify either a correct value
or a constraint on the correct value such as non-null or greater than 0 in the "Other Value" box
(Figure 2b). The default is simply not equal to the current value.

For its later phases, in particular fault localization, ROSE translates the various conditions into
more specific internal checks on variables or expressions. If the symptom is a thrown exception,
ROSE will determine the expression causing the exception and include it as part of the internal
problem symptom. For assertion failures, ROSE will determine the expression computed by the
code that is part of the assertion and include it. For a variable or expression with the wrong value,
it just uses that variable or expression.

Once the developer has defined the problem symptoms, they can ask ROSE to suggest appropriate
repairs. Again, for suggesting repairs, ROSE only needs a description of the problem symptoms.
The developer does not need to know the error or its location.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:12 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

Algorithm 1 Fault localization algorithm sketch.
1: procedure FindFaultyLocations(Location loc,Reference r,ValueSet v)
2: if r == null then ctx = [r->10, COND->4] ⊲ COND is a special reference to control flow
3: else ctx = [COND->4]
4: Add ValueSet v to ctx
5: queue.add(<loc,ctx>) ⊲ queue is a global variable
6: ProcessQueue(queue)
7: procedure ProcessQueue(queue)
8: while queue is not empty do
9: <loc,ctx> = queue.pop()
10: ComputeNext(loc,ctx)
11: procedure ComputeNext(Location loc,Context ctx)
12: if loc has been processed before then
13: ctx = merge ctx with prior context
14: if ctx == prior context then return
15: if loc is start of a method then
16: callctx = new call context with any locals in ctx mapped to arguments on stack at call site
17: Decrement callctx COND priority ⊲ Decrement the priority associated with COND
18: for each call site of this method consistent with stack do
19: Let callloc = location of call
20: queue.add(<calloc,callctx>)
21: else
22: for each prior location priocloc of loc do
23: if priorloc is consistent with current values in context then
24: HandleFlowFrom(priorloc,ctx,loc)
25: procedure HandleFlowFrom(Location priorloc, Context curctx, Location curloc)
26: BackflowData bfd = computePriorStateContext(curctx,curloc,priorloc)
27: Context priorctx = bfd.prior_context
28: if loc is a method call then add relevant arguments to priorctx
29: for each AuxReference aref in bfd.aux_references do
30: refctx = create context with [aref->Max of priority in curctx - 1]
31: if refctx is relevant then queue.add(<aref.location,refctx>)
32: if priorloc is a method call and method is relevant to the call stack then
33: for each method m called from priorloc do
34: returnctx = new context containing return value and COND
35: queue.add(<return location of m,returnctx>)
36: if priorctx is relevant then
37: queue.add(<priorloc,priorctx>)
38: procedure ComputePriorStateContext(Context ctx, Location curloc, Location priorloc)
39: Let newctx = [], arefs = { }
40: for each <ref->priority> in ctx do
41: BackFlow bf = ComputeBackFlow(priorloc,curloc,ref)
42: if bf.reference != null then add [bf.reference->priority] to newctx
43: Remove computed values from value set in context
44: for each AuxReference aref in bf.aux_references do
45: if aref.location == priorloc then add [aref.reference->priority-1] to newctx
46: else add aref to arefs
47: if ctx contains COND->priority then
48: BackFlow bf = ComputeBackFlow(priorloc,curloc,null)
49: for each AuxReference aref in bf.aux_references do
50: if aref.location == priorloc then Add [aref.reference->priority-1] to newctx
51: else add aref to arefs
52: return new BackFlowData with newctx and arefs
53: procedure ComputeBackFlow(Location fromloc,Location toloc,Reference ref)
54: Let newref = null, arefs = { }
55: Consider the code executed between fromloc and toloc
56: if ref is computed by the code then
57: if ref is loaded from local/field/array then newref = reference to source of load
58: else add any parameters of the computation as arefs
59: else if ref is a stack reference then newref = updated stack reference based on stack delta of instruction
60: else newref = ref
61: if ref is empty and code is a conditional branch then
62: add any parameters used on condition as arefs
63: return new Backflow with newref and arefs

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:13

4.2 Fault Localization
In this step, ROSE aims to identify lines that might be causing the identified problem symptom. It
assigns priority to these lines based on the execution distance (essentially the distance in a program
dependence graph) between the line and the identified symptom. It does this by computing a partial
backward slice specific from the problem at the developer’s stopping point using values from the
debugger and the call stack.
ROSE uses the abstract interpretation-based flow analysis tool FAIT [97] included in the IDE.

FAIT updates control and data flow information incrementally as the programmer types. The result
of the abstract interpretation is a data structure that associates an abstract program state (stack,
variable, and memory values) with each execution point, links from each execution point to its
predecessors, the set of methods invoked from each call site, the set of calling points for each
method, the set of writes for each field, and the set of writes to each array.

Overview of the approach. ROSE uses this data structure to do fault localization in two steps.
It first uses FAIT to construct a limited dependency graph representing a backwards slice from the
stopping point based on the identified symptoms. The nodes of this graph are program points from
the abstract interpretation and the edges represent either data dependencies for the symptom or
control dependencies that affect the symptom. This graph is restricted using the current execution
context and the number of changes to the affected variables. Next it finds the set of source lines
that are in the graph. These lines are the potential fault locations.
ROSE builds the dependency graph by starting at the stopping point and working backwards,

one instruction at a time, using the links from flow analysis. For each program point, it maintains
the set of relevant references. References can be to local variables, stack values, or local fields. The
initial set of references is based on the values identified by the symptom (the incorrect variable,
the expressions causing an exception, etc.) determined in the problem definition stage. At each
step, ROSE maps the current set of references to the corresponding set of references at the prior
program point, updating stack locations and taking into account computations, reads, and writes.

For each reference, ROSE maintains a priority representing its computational distance from the
starting point and a value if it is known from the debugger environment. ROSE also maintains a
call stack from the debugger environment. The priority is decremented each time the correspond-
ing reference value was computed and references are discarded when the priority goes to zero.
This provides the computational distance limit for the dependency graph. The known values are
compared to flow-based constraints to restrict which paths to consider. The call stack is used to
restrict which calling sites to consider. A special reference (COND) and priority are used to indicate
that control flow should be considered even if it does not affect any current references.

ROSE handles various special cases. For field accesses relevant to a reference, it considers all cor-
responding field writes as previous program points. For array access, it considers all corresponding
array writes. At a method invocation it determines if the method is relevant to the current set of
references and, if so, adds all return points as previous program points. At the start of a method, it
uses all calling points consistent with the current call stack as previous program points.

The algorithm. An abstract of localization algorithm is shown in Algorithm 1. The initial set
of program references is determined by the problem symptom. For example, a problem based on
a variable includes a reference to the variable, and a problem based on an exception includes a
reference to the stack element containing the expression value causing the exception. The initial
context also indicates that control flow is relevant. The set of initial values is obtained from the
debugger. The algorithm uses a work queue mechanism to process each location and associated
context (lines 8-10).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:14 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

For a given location and context, the algorithm needs to compute any prior locations that would
be executed immediately before the current one, and determine the proper context for that location
based on the current context. This computation is based on what code was executed between the
prior and the current location. If the current location corresponds to the start of a method, then
the algorithm considers all callers to that method in the static analysis that match the current call
stack and sets up a new context at each call site, mapping any local parameters to the arguments at
the call, and decrementing the condition count (lines 15-20). Otherwise, it uses the flow analysis to
determine prior program points where the abstract values are consistent with any current known
values and considers each in turn (lines 21-24). Consistency is based on flow constraints which
can indicate if a value can or must be null or provide ranges for integer values. These are checked
against the known values maintained in the context.
The algorithm considers what was executed between the prior state context and the current

one in order to determine the proper set of references for the prior state. ROSE includes code to
determine, for a given reference, both what that reference was at the prior state and what other
references might have been used to compute it (lines 54-63). A stack reference might change its
location in the stack, might disappear, or might become a reference to a local variable (on a load); a
local reference might be changed to a stack reference (on a store). A field load adds all locations
where that field was stored as auxiliary references; an array load adds all locations where array
elements were set. A stack reference computed using an operator, adds the operands as auxiliary
references. For example, if the top of the stack was relevant and the code was an ADD, then the
reference to the top of the stack would be removed, but auxiliary references to the top two stack
elements (the operands of the ADD) would be added with a decremented priority. This information
is combined for each reference in the context (lines 40-46) and for control flow if relevant (lines
47-51). The resultant contexts and locations are then queued for future consideration (lines 29-31
and 36-37).

Method calls are handled explicitly by the algorithm. A method is relevant if its return value or
the ‘this’ parameter is relevant. If the call is relevant, the algorithm adds all the parameters to the
prior state (line 28). If control flow is relevant, it also queues the return site of any method called at
this point with a context that includes the return value if that was relevant (lines 32-35).
The result is a set of program points where a relevant value or relevant control flow was

computed. This is the set of potential error locations to be considered. The priority of the location
is determined by the maximum priority associated with a reference in the context. This priority
reflects the execution distance of the corresponding location, which does not necessarily correlate
with fault localization and is currently not used. From the set of program points, ROSE computes
the set of potential error lines. It can optionally exclude from this set any test routines or drivers to
ensure that ROSE fixes the problem rather than changing the test.
We note that this type of analysis yields different results than control-flow or spectra-based

methods. Spectra-based localization, because it uses coverage information, only provides infor-
mation at the basic-block level. ROSE identifies specific expressions that can directly affect the
problem. Statements that are not indicated as erroneous by ROSE do not affect the problem. On
the other hand, locations where a new statement should be inserted in a particular branch can
be identified by spectra-based techniques but may be ignored by ROSE. ROSE assumes that the
latter case can be deferred to repair generation. ROSE’s fault localization, because it is based on
static information, can include lines that are not executed in the faulty run and are therefore not
relevant. These would not be included in spectra-based localization. ROSE deals with this by using
the baseline execution to remove these lines.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:15

4.3 Generating a Baseline Execution
After fault localization, ROSE generates a baseline execution that duplicates the problem. The
baseline execution is a simulated execution that shows how the program got into the current state
based on the current debugging environment. ROSE uses this execution to identify and exclude
previously-localized locations that are not executed in the faulty run. These locations will not be
considered for repair generation in the following step, as they are not related to the observed failure.
The more important use of the baseline execution is for repair validation. Without assuming the
availability of test suite and the ability to rerun programs, ROSE validates a repair by obtaining
the simulated baseline execution and the corresponding repaired execution and comparing the
traces derived from executions to check if the problem symptoms go away, the repair is likely to be
correct [104], and the program seems to work.

With the help of SEEDE [98], a practical live-programming facility, ROSE produces a simulated
execution trace that includes the history of each variable, field, and array element that have been
updated during the execution in terms of the original and new values and the time stamp. The trace
also includes a time stamp for each executed line and function call. ROSE could invoke SEEDE
to obtain a complete execution 𝑒 starting at the beginning of the program to recreate the current
execution environment. This is not practical because ROSE could be invoked in the middle of a run
that involved user or other external interaction, from a run that had gone on for several minutes or
hours, or from a thread other than the starting thread. To address this, ROSE tries to obtain a local
partial re-execution 𝑒 that starts with a routine on the current execution stack using the current
environment in order to duplicate the problem. Using 𝑒 , which is shorter than 𝑒 , for validating
potential repairs is more practical and efficient. To find 𝑒 , ROSE needs to (1) determine the routine
at which to begin and (2) ensure that the simulated execution from SEEDE matches the actual
execution.

To determine where to begin execution, ROSE first identifies a close stack frame that includes all
potential locations identified by fault localization directly or indirectly, preferring logical starting
points, for example, a callback from a system routine. Choosing such a frame handles the case
where the stopping point is in one routine, but the error is in one of the callers of that routine or
in a routine one of the callers invoked. The user interface ROSE provides also lets the developer
specify a particular starting frame.
Ensuring that the simulated execution matches the actual execution can be challenging when

the code changed a parameter or global variable the execution depended on. In general, it is not
possible to reverse the execution back to the chosen starting point. However, this is often feasible in
practice. If the program changes a parameter value it is often possible to recompute the parameter
in the calling context. Another typical situation occurs when the program checks whether a value
has previously been computed by trying to add it to a done set, and just returns if it has. If the actual
execution added a value to that set, then the simulated execution would just return and would not
match the actual one. SEEDE provides a mechanism for defining additional initializations before
creating the execution which ROSE uses to tackle these problems. ROSE attempts to iteratively
find appropriate initializations of changed variables. If this approach fails, ROSE will not be able to
validate any repair and it yields no results.

Choosing a higher-level starting point involves a trade-off between effectiveness and efficiency.
Higher-level starting points will often initialize the problematic values directly, thus eliminating the
need to reverse the execution. This is why ROSE prefers starting at the main program or callback
from a system routine. However, a higher-level starting point can greatly increase the validation
time, making ROSE impractical for interactive use.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:16 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

Once a baseline execution has been found, ROSE uses the set of lines that were executed in that
baseline to restrict the set of possibly faulty locations. It removes any faulty location that is not
executed from the set of locations to check. This effectively converts the static analysis based on
flow information into a more dynamic analysis.

4.4 Repair Generation
The next step is to generate potential repairs for each identified potential error location. Like Quick
Fix or PRF [26], ROSE supports pluggable repair suggesters. Each suggester is invoked for each
identified line to generate a set of repairs. For each generated repair, the suggester returns either a
text or an abstract syntax tree edit, a description of the repair for the developer, and a local priority
for the repair that estimates its likelihood at the particular location. A common routine is provided
to generate a default description based on an analysis of the edit. Suggesters are given a priority
which is used to determine the order to consider them. The priority is used to run the various
suggesters on the different faulty lines in parallel with multiple threads using a thread pool and a
priority queue. This ensures that the suggesters most likely to succeed are run early in the process
so that successful repairs are reported quickly.
ROSE provides an initial set of suggesters based on patterns. Additional suggesters based on

existing APR techniques have been added including a code-search-based approach, a learning-based
approach, and an approach based on ChatGPT. We chose these suggesters as we found that they
have complementary repair abilities and are fast enough to be used interactively. This lets ROSE
offer quick and effective repairs while debugging in the IDE.

Pattern-based suggesters. The suggester with the highest priority looks for code smells [109]
(common programming errors) that may occur at a potential error line. This is a pattern-based
analysis where the set of patterns is based on various studies of common errors [11, 14] and bug
fixes [12, 90] as well as our own programming experience. Current patterns include ones dealing
with equality such as using == for =, using == rather than equals, and using == for an assignment;
ones dealing with strings such as using toString rather than String.valueOf and calling methods
like String.trim but not using the result; ones dealing with operators often used incorrectly such as
xor or complement; and ones dealing with confusing integer and real arithmetic.

The suggester with the second highest priority is one that handles avoiding exceptions by
inserting or modifying conditionals around the code where an exception was thrown, a common
fix. Most of the remaining pattern-based suggesters currently have the same lower priority. These
include one that handles conditionals by changing the relational operator; one that considers
different parameter orders in calls; one that looks for common errors with loop indices in for
statements; and one that considers replacing variables or methods with other accessible variables
or methods with the same data type.

Search-based suggester. ROSE uses sharpFix [128], a code-search-based tool, to find suggested
repairs based on similar code in the current project. sharpFix identifies similar code by matching
tokens extracted from variable, type, and method names, renames the variables, types, and methods
used in the similar code, identifies related statements and expressions, and performs four types of
modifications to produce patches. sharpFix has slightly lower priority since it is slower than the
simple, pattern-based suggesters, but has proven effective. The results from sharpFix are reordered
and filtered to avoid duplicating the other suggesters.

Learning-based suggester. Another suggester uses SequenceR [18] to produce repairs. Se-
quenceR is a machine-learning-based tool that performs sequence-to-sequence learning to “trans-
late” an error line into a fixed line. ROSE invokes SequenceR to produce repairs and again filters and
sorts the results to avoid duplication. The current implementation of SequenceR is relatively slow
and is prone to generating repairs that do not compile, so this suggester has the lowest priority.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:17

You are an Automated Program Repair Tool for Java programs.

The following code contains a buggy line that has been removed.
```
public static int gcd(int a, int b) {

if (b == 0) {
return a;

} else {
>>> [INFILL] <<<

}
}
```

This was the original buggy line which was removed by the infill location.
` return gcd(b, a%b);`

Please provide the correct line at the infill location, and nothing else.

Fig. 3. An example of the prompt produced by ROSE’s ChatGPT-based repair suggester.

ChatGPT-based suggester.A final suggester uses a query to ChatGPT that includes the method
containing the potentially faulty line and asks ChatGPT to suggest a replacement for that line.
This is invoked once for each potentially faulty line. The suggester produces a prompt to ChatGPT
consisting of four parts: (1) a statement telling ChatGPT to perform as an automated repair tool; (2)
the method containing the potential repair location (the error line) where the location is replaced
with a special mark “>>> [INFILL] <<<”; (3) the original error line (to be fixed); and (4) a request
of replacing the mark with error-repaired code. The suggester sends the prompt to ChatGPT to
obtain repaired code. Figure 3 shows an example of the prompt for repairing the GCD error in the
QuixBugs dataset [64].

For the cases we have considered, this suggester seems quite effective, so we assigned it a high
priority. We note that ChatGPT, though widely recognized as an effective repair generator, can
generate invalid repairs that are partial statements (e.g., an partial if-statement with only the
if-condition and without the then branch); that involve no changes; that are syntactically invalid;
or that are insertions rather than replacements. The current suggester handles some of these issues,
ensuring the suggested fix is a full, syntactically correct statement when possible and checking
if the replacement should be considered as an insertion rather than a replacement. Additional
improvements are left as future work.

Other suggesters. The current system and priorities seem to work reasonably well, producing
reasonable suggested fixes in a reasonable time. Using other repair generation approaches [84] to
improve the recommendations is quite straightforward.

4.5 Validating a Repair
ROSE validates a repair by comparing the simulated baseline execution with the simulated repaired
execution from the same starting point using the same initializations. To obtain the simulated
repaired execution, ROSE uses SEEDE to re-execute the code after the repair has been made.
This yields a full execution trace, which ROSE compares with the baseline execution trace. The

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:18 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

Call of program point
can be found

in repair?

Repair execution
doesn’t throw an

exception?

Program point can
be found in repair?

Valid Likely
valid

Exception thrown
after match point?

Unknown A different
exception thrown?

Likely
invalid

Invalid

Top method
returned?

Likely
valid

Likely
invalid

Program point: The stopping point or its
equivalent in the simulated trace.

Top method: The method at which the
simulated trace starts executing. This is
one of the methods on the execution stack.

Fig. 4. Repair validation with an exception or assertion problem (i.e., ValidateException/ValidateAssertion in
Algorithm 2).

Exception thrown?

Invalid
Match found?

Value at match ==
original value?

Invalid Target value
given?

Value at match
matches target

value?

Valid Invalid

Valid

Target value
given?

Value in focus
ever matches
target value?

haveold is true?

Less likely
valid

More likely
valid

Invalid

haveold is false?

Likely
valid haveother is true?

Unknown Invalid

haveold: Variable ever held original value.
haveother: Variable held other value.

Match found: The simulated execution can be directly mapped
to the original execution (in terms of control flow) and the value
of the variable in question.

Fig. 5. Repair validation with a variable problem (i.e., ValidateVariable in Algorithm 2).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:19

Algorithm 2 Repair validation algorithm.
1: procedure Validate(Execution orig, Execution repair)
2: if repair has a compiler or run time type error then
3: return 0
4: Matcher matcher = ComputeMatch(orig, repair)
5: if !matcher.executionChanged() then
6: return 0
7: double score = Validate<ProblemType>(matcher) ⊲ ProblemType: Exception, Assertion,

or Location
8: double closeness = difference_time / problem_time
9: return score * 0.95 + closeness * 0.05

No match found
and matching call

found?

Exception thrown?

Likely
invalid

Likely
valid

Matching call
not found?

Likely
invalid

Invalid

Fig. 6. Repair validation with a location problem (i.e., ValidateLocation in Algorithm 2).

comparison yields a validation score between 0 and 1, with 0 indicating that the repair is invalid
and 1 indicating a high degree of confidence in the repair.

ROSE considers the suggested repairs, looking at them in order based on their associated syntactic
priority. Multiple repairs are considered in parallel using multiple threads. ROSE keeps track of the
number of repairs it has validated and the total execution cost of validating those repairs. It stops
considering repairs when either a maximum number of repairs have been considered or when the
total cost (number of steps of SEEDE execution) exceeds a limit. These bounds are dependent on
whether there has been a likely repair and are designed so that ROSE finishes within a reasonable
interactive time frame even if it means not reporting a repair that might otherwise be found.

High-level algorithm. A high-level sketch of the actual matching algorithm is shown in Algo-
rithm 2. If the proposed repair either does not compile or yields a run-time type error, then the
repair is considered invalid (lines 2 and 3). Otherwise, the repaired execution is matched with the
baseline execution by ComputeMatch (line 4). This comparison goes through the two execution
traces step-by-step, checking both control flow and data values. It finds the first location where
the control flows differ and the first location where data values differ. It also finds the call in the
repaired execution corresponding to the call in which the program stopped, and the point in the
repaired execution that corresponds to the stopping point in the original execution.
Because repair locations are computed using static analysis, the repaired execution can match

the baseline execution up to the problem point. When that happens, ROSE considers the repair
invalid as it had no effect (lines 5 and 6). Otherwise, it validates the repaired execution based on
the given problem symptoms (line 7) with the various checks shown in Figures 4, 5, and 6.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:20 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

Validation for exception or assertion problems. If the symptom involves either an unex-
pected exception or an assertion violation, the validator, as shown in Figure 4, checks if the repaired
run avoided the error and scores the repair in various conditions to give high priority to a repair
whose execution is close to the original baseline execution but does not throw an exception, partic-
ularly, the original exception. Specifically, if the repaired execution includes the problem context,
then if no exception was thrown, the repair is considered valid (score is 1) if the problem line was
executed or likely valid if it was not. If an exception was thrown after the matching point, then the
validity of the repair is not easily known and thus considered equally valid and invalid (score is
0.5); if a different exception was thrown, the repair is considered unlikely; if the same exception
was thrown, the repair is considered invalid (score is 0). If there was no matching problem context,
the repair is considered probably valid if no exception was thrown and likely invalid if one was.

Validation for variable problems. If the symptom involves a variable value, as Figure 5 shows,
ROSE scores the repairs and gives high priority to a repair whose execution is close to the baseline
where the variable takes on either (1) the target value consistent with the developer’s specified
constraint or (2) a value different from the original if no constraint is given. Specifically, ROSE first
checks if an exception is thrown in the repaired execution, and if so, treats the repair as invalid.
Otherwise, if the program point can be matched in the repaired execution, it compares the repaired
value at that point to the target or original value to decide validity. If no match for the program
point can be found, then ROSE considers the set of values the variable takes on and computes a
score accordingly.

Validation for location problems. In cases where the problem involves reaching an unex-
pected line, ROSE uses the approach shown in Figure 6 to compute a score based on whether the
line was executed. If the program point can be matched in the repaired execution, and the line is
still executed, the repair is considered invalid. In other cases ROSE penalizes the executions which
throw an exception or do not call the problem method in the first place.

ROSE adjusts all these scores to favor results where the change occurs later in the execution. This
is done by considering the point where the execution (either data or control flow) changes relative
to the problem point and incorporating this fraction as a small part of the score (Algorithm 2, lines 8
and 9). ROSE later adjusts the score returned by this algorithm by checking if the partial execution
completed successfully.

Accurately quantifying the likelihood of repair validity based on the various possible trace match-
ing conditions for effective patch prioritization is challenging. ROSE currently uses a predefined set
of constants to quantify likely and unlikely validation scores based on different conditions. These
were determined based on an initial suite of problems for testing ROSE and on our debugging expe-
rience. We found the patch validation works well in this way (see Section 6.1) and will investigate
in future work using more advanced learning-based techniques to possibly obtain better scores for
validation.

4.6 Presenting the Result
Once a repair has been validated, it is sent to the front end to be displayed to the developer. ROSE
maintains a validity threshold and only sends repairs whose scores are above this. The front
end computes a final repair probability by combining the syntactic priority computed by repair
generation and the semantic priority computed by validation. It then provides a view of the current
repairs ordered by this combined score. This view is updated as repairs are found. This provides a
live, on-line view of the potential repairs.

The developer can interact with the repair window as repairs are presented. They can choose a
particular repair and ask for a preview. This brings up a window showing the code before and after
the repair with the differences highlighted as shown in Figure 2e. Alternatively, the developer can

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:21

ask ROSE to make the repair. In this case, using the hot-swap capability of Java, the developer can
continue execution with the repaired code.

5 Example
To clarify how ROSE works, consider its behavior on the Defects4J example Chart_1. This bug,
found in JFreeChart, involves setting a legend item implicitly and then not having it appear in the
collection of legends. We set up a simple main program that creates a renderer, a dataset, and a
plot. Then it adds a single value to the dataset in row S1 and column C1. It then expects the legend
items from the renderer to be the label S1. However, the set of legend items returned is empty. This
is checked with two assert statements in our main program, one to check the size of the set and the
other to check if the single element is actually S1.

When we run the example in Code Bubbles, the debugger stops with a breakpoint when the first
assertion fails. We then choose "Ask ROSE to help debug" and get the dialog with the assumed
symptom being "Assertion should not have failed". This is correct, so we can just click on "Suggest
Repairs" to start the ROSE evaluation process.

ROSE first does fault localization. Since the failure is an assertion statement, ROSE notes that an
incorrect value is the boolean that results at the end of the assertion expression. It issues a flow
query to FAIT asking it to identify all execution points that can affect this value.
The code in FAIT for ROSE, identifies the particular statement in the existing flow analysis,

and then does a backward slice from that point noting that the top of the stack (the result of the
comparison) is relevant with a score of 10, and control flow to that point is relevant with a score of
4. The backward slice is computed one instruction or execution step at a time, keeping track of
which stack and variable values are relevant. The backward slice that results is a graph of 7,010
nodes, each corresponding to a specific execution point, starting with the assertion statement and
including lines from our main program, as well as seven other source files from JFreeChart. ROSE
condenses these by combining all those that refer to the same line. The result is a set of 608 possible
buggy lines.
ROSE next creates a baseline execution for the run. In this case, it executes the test code that

sets up the renderer, dataset, and plot and then fails with the assertion exception. The resultant
execution trace contains 64 method calls from non-library methods with 443 lines being executed.
With variables and values included, the overall trace is over 5000 lines of XML. ROSE first uses this
trace to eliminate all potentially buggy lines that were never executed or that were part of the main
program. Of the 608 starting locations, 491 were never executed, 69 represented duplicates, and 10
were in the driver program. After eliminating these, 38 possible buggy locations in 6 different files
were left to consider.

ROSE next queues up tasks to run each of the 13 possible checkers on each of the 38 potentially
buggy locations. The 484 tasks are run in parallel using a thread pool using priorities based on the
priority of the checkers. When ChatGPT is used, the various checkers generate 110 possible fixes.
However, ROSE detects that 46 of these are actually duplicates, so only 64 possible fixes need to be
checked. The correct patch, replacing != with == in a conditional in getLegendItems, is generated
both with and without using ChatGPT. ROSE is not perfect at detecting duplicates, so it reports
three possible patches when ChatGPT is used, all of which are essentially the same. When ChatGPT
is not used, 92 possible repairs are generated but only 46 possible fixes need to be checked, and
the correct patch is generated by a pattern-based suggester. Note that the checking order varies
between runs because of the inherent parallelism in the checking process.

To validate the results, ROSE again uses SEEDE for each of the possible patches, generating the
corresponding trace. Most of these result in an exception, either the original assertion exception, a
null pointer exception, or an illegal argument exception. For five to eight of the possible patches,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:22 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

SEEDE determines that the result will not compile and eliminates them. Two of the possible patches
yield run time errors, generally type inconsistencies. Only the correct patch results in a complete
run without any exceptions, and is thus considered valid.
The overall process takes about 28 seconds to run, with an initial correct result being returned

after about 10 seconds.

6 Evaluation
We implemented a prototype of ROSE that works with the Eclipse-based Code Bubbles IDE [10]
and developed two ROSE-based tools using different sets of APR patch generators as the repair
suggesters. To evaluate ROSE, we did two studies, an effectiveness study and a utility study. In the
effectiveness study, we applied the ROSE-based tools to two benchmarks QuixBugs and Defects4J
for error repair. We assessed the repair abilities of these tools with a focus on evaluating the
effectiveness of ROSE’s core components, fault localization and patch validation. To understand
ROSE’s usefulness and practicality, we did a utility study by recruiting 26 university students to
perform four debugging tasks with and without ROSE. The study was designed to determine if
ROSE is helpful to developers.

We wanted to answer four research questions:
• RQ1: How effective are ROSE’s core approaches: fault localization and patch validation?
• RQ2: How efficient are ROSE-based tools for error repair?
• RQ3: How many errors can ROSE-based tools repair?
• RQ4: How useful is ROSE in helping people debug?

We designed the effectiveness study to answer the first three questions and the utility study to
answer the last question.

6.1 Effectiveness Study
6.1.1 Setup. As stated in Section 4.4, the ROSE framework integrates four repair suggesters for
patch generation. In the experiment, we created two ROSE-based tools, ROSE-PC and ROSE-PS.
ROSE-PC uses a combination of the pattern-based generators and ChatGPT (v3.5-turbo) [15]
as the repair suggesters. ChatGPT was shown to have powerful error-repair abilities [105, 124],
and pattern-based generators can serve as complementary role [94]. We used ROSE-PC in the
experiment to investigate how ROSE works with state-of-the-art patch generators. ROSE-PS on the
other hand uses the pattern-based generators and the search-based sharpFix technique [128] for
repair generation. We used ROSE-PS to see how ROSE works with traditional (non-LLM-based)
repair generators. An evaluation of ROSE with the traditional suggesters helps us assess ROSE’s
effectiveness without the potential influence of LLM’s data leakage issue [144]. We did not include
the SequenceR suggester for the study, as we found that the tool is prone to producing a large
fraction of invalid patches that do not correctly repair the error.
We chose two widely used benchmarks for APR [77, 136], QuixBugs and a subset of Defects4J

(v2.0). QuixBugs [64] is a set of 40 programs containing typical programming errors. Defects4J [45]
is a corpus of more complex development errors. For each, we checked how many errors can be
repaired and how quickly can this be done. More importantly, we evaluated the effectiveness of
ROSE’s fault localization and patch validation approaches by analyzing how they contributed to
the final repair result, either a success or a failure.

To simulate an IDE-based interactive repair experiment, for the QuixBugs benchmark, we created
an Eclipse workspace containing all 40 unrepaired programs but no tests. For each unrepaired
program, we created a main program that effectively ran a failing test, identified the problem
symptom based on the original JUnit assertion, and ran ROSE to generate repairs. Following a

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:23

standard way to evaluate automated repairs, we considered a repair correct if it was semantically
the same as that provided in the benchmark (the ground truth repair). While determining semantic
equivalence can be challenging, it was clear and easy in these cases.
For the Defects4J benchmark, we focused on overt errors relevant to the assumptions of ROSE.

These were errors that involved a single line being modified or added. Our initial set of errors
was those with single-hunk fixes used to evaluate SequenceR [18]. We identified different projects,
Chart, Closure, Lang, Math, Math3, Mockito, and Time, eliminated multi-line errors, grouped the
remaining errors by their base package, created a working set for each package that included the
error code if possible, and then eliminated errors that no longer failed in that working set. The
result was a set of 56 errors. We further augmented the set of errors with four new errors (Chart14A,
Lang47A, Math22A, and Math35A), which were derived from the Defects4J multi-hunk errors in
the seven projects and are single-line errors exposed by a failing test. For each of the seven projects,
we set up an Eclipse workspace that included code with all the associated errors. Next, we created
a main program for each error based on a failing test, replacing the JUnit assertion of the test with
an assert statement. We used the failing tests only to identify the problems to repair so the results
could be compared to prior work. We ended up with 60 different Defects4J errors. For each, we used
the failing assertion or a thrown exception as the problem symptom for ROSE. As with QuixBugs,
we ran ROSE on each of the errors in each workspace. We considered a repair suggested by ROSE
to be correct if it was the same or semantically equivalent to the Defects4J corrected code at the
same location.

Table 1. Result of fault localization (FL) and patch validation (PV). FL: Percentage of errors for which ROSE’s
fault localization succeeded (i.e., ROSE successfully found the error line); PV: Percentage of repaired errors
for which ROSE’s patch validation ranked the correct repair as top-1, 3, 5, and 10. Note that there was no
error for which correct repair was not found due to the failure of ROSE’s patch validation.

Tools
All QuixBugs Defects4J

FL PV FL PV FL PV
Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

ROSE-PC 0.89 0.85 0.96 1.00 1.00 1.00 0.89 0.92 1.00 1.00 0.82 0.81 1.00 1.00 1.00
ROSE-PS 0.89 0.88 0.94 1.00 1.00 1.00 0.86 0.93 1.00 1.00 0.82 0.89 0.95 1.00 1.00

6.1.2 Result for RQ1: Effectiveness of fault localization and patch validation. ROSE is an IDE-based
repair framework intended to make debugging easier. We focus on evaluating ROSE by assessing the
effectiveness of its core components, which are the test-free fault localization and patch validation.
Table 1 presents our result. Specifically, it shows the percentage of errors (QuixBugs, Defects4J,
and both) for which ROSE’s fault localization included the line to be patched (the FL columns) and
the percentage of errors for which the patch validation ranked the correct repairs ROSE generated
within the top-1, 3, 5, and 10 results (the PV columns).

ROSE’s fault localization result successfully included the fault location for about 89% of the errors
(second column). This shows that ROSE’s fault localization found the target repair locations for
most of the errors and is effective. For all QuixBugs errors, ROSE identified the right locations to
repair (column FL under QuixBugs), and for about 82% Defects4J errors, it found the right locations
(column FL under Defects4J). The fault localization failed to find the repair locations for 11 Defects4J
errors. For seven of the errors, fault localization failed because the target location is too far away
(execution-wise) from the stopping point and is not considered; for two errors, it failed because
the error location is related to a field declaration, not an executed statement, a situation that is
currently not supported for detection and repair; and finally for the other two errors, ROSE did not
find the locations due to misidentifying a dependency from a Java library method that changes the
internals of an object, and due to the failure caused by handling an expected exception.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:24 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

After fault localization, the baseline execution generation phase further eliminated 20-50% of
the falsely localized lines, and it never filtered out a correct location. This shows that the baseline
generation can help limit the localization result and improve the repair accuracy. Note that ROSE
ignores the rank of the error location as reported by fault localization. It generates repairs for all
the identified locations and then validates and prioritizes those repairs.

The PV columns of Table 1 show how ROSE performs for patch validation. Unlike fault localiza-
tion, because the tools ROSE-PC and ROSE-PS generated different repairs, their validation results
are different. Our result shows that ROSE’s patch validation is highly effective. According to Table 1
(columns 3–6), for over 85% errors, ROSE’s patch validation gave a top-1 rank for the correct repair,
and the ranks for all correct repairs are within top-5. Note that the average number of candidate
patches that ROSE looked at for validation and prioritization is not low and is over 32 for QuixBugs
and over 58 for Defects4J errors, according to the #Checked columns of Tables 2, 3, and 4. Overall,
our result shows that ROSE can effectively prioritize the candidate repairs and hence ROSE can
propose a small number of repairs for the user to review, which demonstrates ROSE’s practicality
for debugging.

Columns #Results and Correct Rank of Tables 2, 3, and 4 present more details about the validation
result in terms of the number of repairs returned by ROSE’s backend (#Results) and the rank of the
correct repair (Correct Rank) for all errors the ROSE-based tools correctly repaired.

ROSE’s fault localization and patch validation without test cases are very effective. The
fault localization correctly identified the repair location for 89% of the errors. The patch
validation gave a top-1 rank for over 85% of errors and a top-5 rank for all. Patch validation
was never the reason for ROSE’s repair failures.

6.1.3 Result for RQ2: Repair Efficiency. Efficiency is a key factor that affects the practicality
and usefulness of ROSE. We measured the running time of ROSE and presented the results in the
columns Total Time and Fix Time of Tables 2, 3, and 4. Total Time gives the total time in seconds for
all repairs to be found. Fix Time shows the time in seconds for the correct repair to be reported and
viewed.

Our result shows that the ROSE tools are highly efficient. It takes only seconds for the tools to
report the final repair suggestions. For ROSE-PC, the average total time for finding all repairs is
only about 4 seconds for QuixBugs errors and 18 seconds for Defects4J errors (row Average and
column Total Time in Tables 2 and 3). The time for finding and reporting a correct repair is much
shorter and is only 0.8 seconds for QuixBugs and 5.7 seconds for Defects4J errors (row Average
and column Fix Time in Tables 2 and 3). A delve into the time taken by ROSE-PC (Total Time) to
repair these errors shows that a significant fraction was used for repair generation and validation
(which are bundled together at the implementation level to allow a quick report of valid repairs).
On average, about 6.3% of the time was spent on fault localization, 13.7% was dedicated to baseline
execution generation, 63.9% was consumed by repair generation and validation, and the remaining
16.1% was for setup, information sending, file loading, etc. According to Table 4, the ROSE-PS tool
is also fast and has similar repair time.
For the same QuixBugs and Defects4J errors, running a test suite once takes about 0.5 and 16.5

seconds. Note that because a test-based repair technique often needs to run the test suite multiple
times to validate different patches, it is much more expensive than ROSE. Our statistics of various
test-based repair techniques shows that these techniques can take minutes to repair a bug (see [20]
for more details).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:25

Table 2. Results for QuixBugs errors by ROSE-PC, the ROSE-based tool with the default pattern-based
generators and ChatGPT used as repair suggesters. #Results: the number of repairs returned by the backend;
Correct Rank: the rank of correct repair; Total Time: the total time for all repairs to be found; Fix Time:
the time for the correct repair to be reported and viewed; Fix Count: the number of repairs validated; SEEDE
Count: the total number of instructions SEEDE executed before processing the correct repair; #Checked:
the number of repairs on which validation was run. All times reported are in seconds.

QuixBugs Error Names / Statistics #Results Correct Rank Total Time Fix Time Fix Count SEEDE Count #Checked
BitCount 6 1 0.6 0.1 1 18 10

BreadthFirstSearch 4 1 5.0 0.9 5 689 20
BucketSort 2 1 3.3 1.1 9 20463 12

DepthFirstSearch 7 1 3.4 0.6 2 194 15
DetectCycle 6 1 2.2 0.2 4 134 26

FindFirstInSorted 11 5 3.3 0.2 6 215 51
FindInSorted 9 1 2.4 0.1 1 56 51

Flatten 5 2 2.2 0.2 1 785 16
Gcd 3 1 1.3 0.1 2 72 7

GetFactors 1 1 2.4 0.8 11 25159 16
Hanoi 4 1 2.9 0.2 8 5334 45

IsValidParenthesization 2 1 1.4 0.1 1 64 9
KHeapSort 1 1 2.1 0.1 1 1642 10
Knapsack 5 1 4.5 0.6 9 42748 73

Kth 15 1 4.6 0.2 2 3039 61
LcsLength 3 1 9.3 0.2 2 17639 57
Levenshtein 1 1 17.5 8.6 11 482935 15

Lis 11 1 3.3 0.3 10 10182 68
LongestCommonSubsequence 2 1 5.3 0.2 4 6877 42

MaxSublistSum 2 1 1.7 0.2 4 464 18
MinimumSpanningTree 8 1 3.9 0.4 2 6793 42

NextPalindrome 1 1 1.9 0.2 11 8602 21
NextPermutation 4 1 3.7 0.5 12 11810 83

Pascal 16 1 4.4 0.4 7 6942 76
PossibleChange 5 1 1.7 0.3 3 2300 12

QuickSort 3 1 4.0 0.3 6 38785 58
ReverseLinkedList 3 1 4.1 2.8 25 63507 28

RpnEval 4 1 2.2 0.2 3 2567 17
ShortestPathLength 1 1 5.4 0.9 7 25978 78
ShortestPathLengths 3 1 13.3 3.7 13 1549196 22

ShortestPaths 2 1 2.8 0.7 9 75649 11
Sieve 3 3 2.0 0.6 6 4770 6
Sqrt 8 5 2.0 0.1 2 36 17

ToBase 1 1 2.0 0.1 1 45 21
TopologicalOrdering 2 1 4.4 1.0 4 11040 31

Wrap 3 1 2.3 0.3 10 23090 23
Median 3.0 1.0 3.1 0.3 4.5 6063.5 21.5
Average 4.6 1.3 3.9 0.8 6.0 68050.5 32.4
StdDev 3.8 1.0 3.3 1.5 5.0 266342.3 23.5

On average, it takes longer for a ROSE tool to repair a Defects4J error than a QuixBugs error.
The repair time can be affected by a variety of factors such as the length of the execution from
the starting point, the number of potential error lines, and the number of repairs that need to be
validated. It varies with different errors.

It can be the case that ROSE does not suggest any repairs for an error, as all the potential repairs
it generated may have a score lower than the validity score and were discarded. On average, it took
ROSE-PC and ROSE-PS about 14.6 and 26.4 seconds on the average to report a no-repair-found
result. The median time are only 3.9 and 10.6 seconds. This result suggests that ROSE fails fast for
errors that it cannot repair.

ROSE is highly efficient. A ROSE tool is quick at providing repair suggestions. It takes only
seconds (often just a few seconds) for finding and reporting a correct repair. ROSE also fails
fast for errors that it cannot repair.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:26 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

Table 3. Results for Defects4J errors by ROSE-PC, the ROSE-based tool with the default pattern-based
generators and ChatGPT used as repair suggesters. #Results: the number of repairs returned by the backend;
Correct Rank: the rank of correct repair; Total Time: the total time for all repairs to be found; Fix Time:
the time for the correct repair to be reported and viewed; Fix Count: the number of repairs validated; SEEDE
Count: the total number of instructions SEEDE executed before processing the correct repair; #Checked:
the number of repairs on which validation was run. All times reported are in seconds.

Defects4J Error Names / Statistics #Results Correct Rank Total Time Fix Time Fix Count SEEDE Count #Checked
Chart01 3 1 27.9 8.7 14 52279 58
Chart09 17 3 35.2 4.5 6 3009 73
Chart11 4 1 15.5 2.2 2 1325 30
Chart12 2 1 22.5 1.6 4 8367 13
Chart20 1 1 14.1 3.5 10 1415 24
Chart14A 2 1 84.8 35.3 1 53 14
Chart17 4 1 14.5 3.0 3 258 13
Closure57 25 1 8.0 0.3 6 7948 48
Closure62 3 1 6.6 0.5 16 12291 32
Closure65 1 1 12.2 2.9 1 2698 81
Lang06 4 1 7.9 1.4 5 906 91
Lang21 1 1 4.6 0.4 2 11566 22
Lang24 12 1 8.4 0.7 2 344 142
Lang33 8 1 3.1 1.2 11 215 13
Lang39 32 3 6.8 1.4 9 1556 93
Lang58 3 1 11.4 3.4 37 7627 135
Lang59 5 1 4.0 0.8 10 271 23
Lang61 2 1 7.4 1.0 15 5740 100
Math02 24 1 38.0 8.9 24 512047 188
Math05 5 1 3.9 0.6 5 116 27
Math11 2 1 48.8 18.7 2 77126 23
Math22A 1 1 3.3 0.7 10 285 19
Math27 1 1 12.4 1.8 15 11665 108
Math30 2 2 18.4 10.6 21 372876 40
Math32 1 1 48.6 42.8 2 643 9
Math34 6 1 10.0 3.1 11 16556 23
Math41 14 1 11.4 1.0 11 15103 170
Math59 2 1 1.8 0.2 1 29 3
Math69 2 1 17.6 2.8 5 58758 72
Math75 5 2 5.6 2.4 21 38450 29
Math82 9 3 32.9 6.7 1 56140 18
Math94 4 1 5.4 0.5 1 234 32
Math96 5 1 7.0 1.1 9 850 54
Math105 47 1 11.1 0.9 1 163 93
Mockito38 5 1 3.0 0.3 4 432 10
Time04 33 2 52.7 12.4 38 110091 207
Time19 3 2 41.8 23.4 16 10777 46
Median 4.0 1.0 11.4 1.8 6.0 3009.0 32.0
Average 8.1 1.3 18.1 5.7 9.5 37843.5 58.8
StdDev 10.7 0.6 18.3 9.6 9.3 102525.4 53.5

6.1.4 Result for RQ3: Number of Errors Repaired. With the pattern-based and LLM-based repair
suggesters, ROSE-PC found correct repairs for 36 QuixBugs and 37 Defects4J errors. Using the
ChatGPT suggester, ROSE-PC repaired 26 Defecst4J errors and 30 QuixBugs errors. It used the
pattern-based suggester to repair 11 Defects4J and 6 QuixBugs errors. Tables 2 and 3 list these
errors together with other repair information including the number of repairs generated, the rank
of correct repair, and the repair time. The result suggests that, a ROSE tool that uses advanced
patch generators can repair many programming-assignment-level and real errors. With traditional
suggesters, ROSE-PS found less correct repairs and addressed 14 QuixBugs and 19 Defects4J errors.
Most (31, or 94%) of the errors were patched by the pattern-based suggester. Using the sharpFix
suggester, ROSE-PS repaired two Defects4J errors. Table 4 shows the error names and the tool’s
repair result.
ROSE-PC found no repairs for 26 errors. For 15 (or 58%) errors, the failures were due to the

inabilities of the underlying suggesters in making the correct repairs, not a problem of the ROSE
framework per se. The other errors were not addressed due to the fault localization failure, as

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:27

Table 4. Results forQuixBugs and Defects4J errors by ROSE-PS, the ROSE-based tool with the default pattern-
based generators and sharpFix-local. #Results: the number of repairs returned by the backend; Correct
Rank: the rank of correct repair; Total Time: the total time for all repairs to be found; Fix Time: the time for
the correct repair to be reported and viewed; Fix Count: the number of repairs validated; SEEDE Count: the
total number of instructions SEEDE executed before processing the correct repair; #Checked: the number of
repairs on which validation was run. All times reported are in seconds.

Benchmark Error Names / Statistics #Results Correct Rank Total Time Fix Time Fix Count SEEDE Count #Checked

QuixBugs

BitCount 5 1 0.7 0.1 1 18 25
BreadthFirstSearch 4 1 4 0.7 3 320 17

BucketSort 1 1 3.7 1.3 9 25190 36
DetectCycle 5 1 2 0.2 2 56 25

FindFirstInSorted 11 4 3 0.8 12 60333 50
Gcd 2 1 1.5 0.1 2 72 15
Hanoi 1 1 3.2 0.6 15 9515 43

Knapsack 1 1 4.5 0.5 12 37846 67
NextPermutation 1 1 4.5 0.1 2 1932 72

Pascal 14 2 4.2 0.5 12 9432 70
QuickSort 2 1 4.9 1 17 136326 75
RpnEval 1 1 2.2 0.2 1 857 11
Sieve 1 1 2.4 0.6 4 2487 21

TopologicalOrdering 1 1 4.8 2 15 36981 31
Median 1.5 1 3.4 0.5 6.5 5959.5 33.5
Average 3.6 1.3 3.3 0.6 7.6 22954.6 39.9
StdDev 4.1 0.8 1.3 0.5 6 37695.9 23

Defects4J

Chart01 1 1 26 9.8 25 73793 54
Chart11 2 1 18.3 12.8 26 26395 51
Chart12 1 1 30 10.5 5 10542 34
Chart20 1 1 17.6 9.6 25 3870 37
Chart14A 1 1 68 31.5 5 246 11
Closure62 2 2 9 3.3 22 16760 132
Closure65 2 1 11.5 2.5 1 2698 87
Lang06 2 1 10.9 4.7 24 25228 82
Lang21 1 1 9.3 1.1 3 11288 62
Lang33 7 1 4.3 1.7 6 106 9
Lang58 3 1 11.7 2.6 14 4025 114
Lang59 2 1 4.6 1 10 273 20
Math59 3 1 2.9 0.3 1 29 12
Math75 7 1 14.2 10.1 31 85353 68
Math94 3 1 6.6 0.6 1 234 36
Math02 23 1 41.4 9.2 8 190435 173
Math05 17 4 9.2 6.1 62 1663 114
Math11 1 1 51.8 19 3 114581 19

Mockito38 4 1 2.9 0.4 6 931 7
Median 2 1 11.5 4.7 8 4025 51
Average 4.4 1.2 18.4 7.2 14.6 29918.4 59.1
StdDev 5.9 0.7 17.8 7.8 15.3 51105.9 47.3

discussed in Section 6.1.2. For 67 errors, ROSE-PS found no repairs, and its underlying suggesters
did not produce correct repairs for 56 (or 84%) errors.

We also compared the ROSE tools with 28 existing APR techniques whose repairs were reported
for the errors used in the experiment. We found that ROSE-PC correctly repaired more QuixBugs
and Defects4J errors than all the techniques and that ROSE-PS repaired more QuixBugs errors
than most techniques and more Defects4J errors than all but nine recent techniques including
KNOD [41], AlphaRepair [123], and SelfAPR [137]. ROSE-PC and ROSE-PS are also faster than
existing techniques. Detailed result can be found at [20]. We note that although we did a comparison
because of ROSE’s resemblance to existing APR techniques, the comparison is not direct, as the
inputs, outputs, and goals of a ROSE tool differ from those of the program repair tools.

A ROSE-based tool found correct repairs for as many as 36 of 40 QuixBugs and 37 of 60
Defects4J errors. A primary reason for the repair failures is the inability of the underlying
repair suggesters in producing the correct repairs.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:28 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

6.2 Utility Study

Table 5. Debugging tasks.

Task Id Error Method Name Error Benchmark Error Root Cause MLOC Time Limit (min.) ROSE gave correct suggestion
Task 1 gcd Defects4J Integer overflow 51 37.5 YES
Task 2 appendFixedWidthPadRight Defects4J Array Index Out Of Bounds 19 18.0 YES
Task 3 bitcount QuixBugs Logical Error 9 37.5 YES
Task 4 isValidParenthesization QuixBugs Logical Error 15 25.5 NO

We did a user study to investigate the usefulness and practicality of ROSE. For this study, we
recruited 26 participants and assigned them to two groups. We chose four debugging tasks whose
erroneous functionalities are not too project-specific and asked the participants to do the tasks
with and without ROSE. We used the ROSE-PS tool, which does not find correct repairs for all tasks,
for the study. By using this tool, we investigated both debugging scenarios where ROSE succeeds
by finding a correct repair and fails with all incorrect repairs. We compared the performance of the
two groups of participants in terms of success rate and debugging time. At the end of the study, we
also did a survey in which we asked the participants to provide feedback about their experience of
using ROSE and their feelings about ROSE’s usefulness.

6.2.1 Study Design. In the study, participants first read a tutorial we created to learn how to use
Code Bubbles [10] and ROSE, and then attempted four debugging tasks. If they use ROSE for a
task 𝑡 , we asked them to provide feedback regarding if and how ROSE helped in completing 𝑡 right
after 𝑡 was done. At the end of the study, we did a survey in which we asked questions about their
experience of using ROSE for debugging and their feelings about ROSE’s usefulness.
The goal of the tutorial was to teach a participant how to use ROSE and Code Bubbles, the

Eclipse-based IDE containing the ROSE user interface. In detail, it teaches a participant (a) how to
view and edit code in Code Bubbles; (b) how to debug using the traditional IDE-based debugger
without ROSE; and (c) how to debug using ROSE. To help the participant understand the details,
we use an example to show, step by step, how to repair a Defects4J error Math59.

We designed four debugging tasks as shown in Table 5. From left to right, the table lists the task
id (Task Id), the name of the error method (Error Method Name), the benchmark from which the
error was chosen (Error Benchmark), the root cause of the error (Error Root Cause), the size of the
error method in LOC (MLOC), the max time in minutes allowed to do the task (Time Limit (min.)),
and whether ROSE provided correct repairs (ROSE gave correct suggestion).
For the first two tasks, we used the errors Math94 and Lang59 from the Defects4J benchmark;

and for the last two, we used the errors BitCount and IsValidParenthesization from the QuixBugs
benchmark. We note that ROSE was not successful on repairing all these errors. The error methods
are designed to (1) compute the greatest common divisor of two input integers; (2) append an object
to a string builder padding on the right to a fixed length; (3) count the number of bits of a given
decimal; and (4) check whether the parentheses in a given string are matched. We chose these
four errors because the functionalities of the error methods are relatively easy to understand, their
fixes are not too complex nor too simple (according to a pilot study we did with 13 undergraduate
students, the debugging time used to complete a task without using ROSE is ∼19.7 minutes on
average), and they cover the cases where ROSE can suggest both correct and incorrect repairs.
Because the tasks are not equally difficult, we used different time limits, which we determined with
the pilot study result. The time limit of a task is computed as 𝑡 × 1.5 where 𝑡 is the average time
taken to complete the task without ROSE in the pilot study and 1.5 is used to account for more
flexibility.

For each task, we showed the participant the failure along with the input triggering the failure.
To make sure debugging could be done in a reasonable amount of time, we additionally informed

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:29

the participant the error method where fixes should be made and the functionality of the error
method along with its expected behavior for the given input. Note that we did not restrict ROSE’s
focus to the error method to make its repair process easier. For participants who were allowed to
use ROSE, we did not tell them where to set the stopping point to invoke ROSE and whether ROSE
could give correct suggestions or not. For each task, we recorded the time a participant used to
complete it. To decide whether a participant succeeded for a task, we manually inspected the repair
made by the participant and compared it against the developer repair provided by the benchmark.
We recruited 26 participants who were all students from Wuhan University. Four of the par-

ticipants were graduate students and the others were undergraduates. All participants have at
least two years’ programming experience and know how to write code in Java. To implement a
controlled experiment, we randomly assigned a participant to one of two groups, either Group A
or Group B. Each group has 13 participants. We asked participants in Group A to complete Task 1
and Task 2 with ROSE and the other two without ROSE. We asked participants in Group B to do
the opposite, i.e., complete Task 1 and Task 2 without ROSE and the others with ROSE.

After each task, we asked participants who used ROSE in the task to provide feedback regarding
if and how ROSE helped. At the end of the study, participants are asked to fill in a questionnaire to
answer eight questions including five single-choice questions and three free-answer questions to
provide their feedback regarding the experience of using ROSE and ROSE’s usefulness. The second
column of Table 7 presents the five single-choice questions. The three free-answer questions are (1)
if ROSE was helpful, how did it help? (2) if ROSE was not great, what made you feel unwilling to
use ROSE in the future? and (3) how to improve ROSE?

Table 6. Result of the debugging tasks.

Task Id Without ROSE With ROSE
Success # (%) Time (min.) Success # (%) Time (min.)

Task 1 5 (38.5) 23.7 11 (84.6) 14.0
Task 2 10 (76.9) 12.6 13 (100) 8.1
Task 3 9 (69.2) 18.6 13 (100) 7.7
Task 4 9 (69.2) 13.5 11 (84.6) 13.6
Average 8.3 (63.5) 17.1 12 (92.3) 10.9

6.2.2 Result for RQ4: ROSE’s usefulness and practicality. Table 6 details how the participants
performed for the debugging tasks with and without using ROSE in terms of the success number and
rate (Success # (%)) and the debugging time (Time (min.)). The success number denotes the number
of participants who successfully completed the debugging task and repaired the error correctly
within the time limit. The success rate denotes the percentage of participants who succeeded in the
task. Debugging time is the average time used by participants who successfully completed the task.
On average, 92.3% of participants who used ROSE succeeded in the debugging task whereas

only 63.5% of participants who did not use ROSE succeeded. This shows ROSE helped 44.6% more
participants find the correct repair for a debugging task. Moreover, participants who used ROSE
and succeeded spent 10.9 minutes to complete the debugging task, whereas participants who did
not use ROSE spent 17.1 minutes (56.9% more time) to make a correct repair. This shows ROSE can
help reduce debugging time.

We used the paired t-test method [60] to investigate the significance of performance difference.
This result shows the differences of success number and rate are significant (p-values are both
0.022), which implies ROSE significantly helped more participants succeed in the debugging tasks.
The difference of debugging time is overall insignificant (p-value is 0.09). As Table 6 shows, for

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:30 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

Task 4, ROSE did not generate correct repairs, and participants who used ROSE spent slightly more
time for debugging than those who did not use ROSE. For this task, ROSE generated 18 repair
suggestions, which are all incorrect. It is possible that participants who used ROSE in this case
checked many of these suggestions one by one by previewing what has been changed, applying
the repair to the program, executing the repaired program, and analyzing the result. An incorrect
repair can be misleading and slow down the debugging process. Nevertheless, according to the
survey result, 53.8% of participants thought that ROSE was useful in this case because the suggested
repairs, albeit incorrect, helped them identify the faulty variables and statements. For example, a
participants who used ROSE for Task 4 said: “Maybe the suggestions are not so correct, but it gives
directions to figure out how this bug appears”.

Table 7. Result of the five survey questions.

Question Id Question Score
Q1 You find ROSE useful to help you with your tasks. 4.5
Q2 What do you think of the idea of ROSE? 4.2
Q3 ROSE would be useful for debugging tasks in general. 4.2
Q4 How do you like ROSE in general? 4.2
Q5 Would you consider using ROSE to debug your own code? 3.5

Table 7 presents the single-answer questions, which were designed to understand the participants’
experience of using ROSE and their feelings about ROSE’s usefulness. For each question, the
participant gives a score from 1 and 5, where 1 represents the most negative feedback and 5
represents the most positive feedback. For example, 5 for first question means that the participant
strongly feels that ROSE was useful while 1 means the participant thinks ROSE was not useful at
all.

The average scores for the first four questions are all above 4. This shows overall the participants
find ROSE useful for debugging and they like ROSE. The score for Q5 is 3.5. This implies their
willingness of using ROSE to debug their own code is not so strong. Based on their detailed
feedback, we realized that this is mostly related to the design of Code Bubbles (the IDE where ROSE
is currently integrated), the GUI interface, presentation, and aesthetics. For example, some of the
participants complained that the shortcut keys (for viewing and editing code) are not typical, the
fonts are sometimes small, and colors are not what they like. Many participants also mentioned
that they are more willing to use ROSE if it could be integrated into other IDEs such as IntelliJ
IDEA [35] and Visual Studio Code [111]. We believe these can all be further improved.

ROSE helped 44.6% more participants succeed in the debugging tasks and helped reduce
the debugging time by 36.2%. Participants found ROSE useful and they liked ROSE.

6.3 Threats to Validity
Our evaluation shows that ROSE is a very effective and practical framework that supports quick
repair of semantic errors and is helpful for debugging. There are however both external and
internal threats that can potentially harm the validity of the evaluation. As for external threats,
our experiment conducted to investigate the effectiveness and usefulness of ROSE is based on
repair tools configured with two sets of repair suggesters. We used errors from two benchmarks
for evaluation, and the user study includes a limited number of participants doing four debugging
tasks. The experiment result may not generalize to other suggesters and errors. The study result
could also vary with different participants and tasks.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:31

We nevertheless note that we included both advanced (including ChatGPT) and traditional
techniques, and they were selected because they are both efficient and accurate and are thus
well-suited for ROSE’s quick-repair goal. We focused on investigating how ROSE’s key components
(i.e., fault localization and patch validation) work with these patch generators configured, and we
found the two components were both very effective. The errors used in our experiment have been
used to evaluate other existing repair techniques. Our user study, albeit limited, is non-trivial and
is comparable to existing debugging-based studies (such as [63] and [98]) in terms of the number
of participants and tasks.

To mitigate internal threats, we thoroughly tested the implemented code of ROSE and carefully
checked the repair results to gain confidence in the validity of our evaluation. We note that the
current implementation of ROSE is a prototype. We plan to investigate further improving it by for
example handling Java reflection.
As for threats to ROSE’s utility, it is possible that if the developers can specify the symptom, it

would not be too difficult to manually repair the error. While this is possible, it is not typical. In
other words, we think it is usually the case that a developer knows a problem caused by the error,
but this does not necessarily make debugging easier, because the location where a problem arises
may not be where changes should be made (which is why fault localization techniques exist) and
even if the developer knows where to change, it does not necessarily mean that finding a valid
repair in only a few seconds would be easy. A ROSE-based tool, which works in seconds to make
repair suggestions, can offer help. Our study results support this.
Another threat to utility relates to the participants of the user study we did to evaluate ROSE.

The participants are all students. Although they have at least two years’ programming experience
to be eligible for participation, they are not professional software engineers, and their results may
not reflect how useful ROSE is to professional software developers. The study can however be
extended with professional software engineers involved to investigate the utility of ROSE for highly
skilled developers.
ROSE is a repair framework that leverages the power of existing APR patch generators to

achieve quick repair of semantic errors and facilitate debugging. Its current focus is on dealing
with relatively simple errors. We experimented with single-line errors. But it is possible to also
use ROSE to handle single-hunk, multi-line errors provided that the patch generators plugged
in ROSE can generate multi-line patches. Because ROSE’s fault localization assumes that each
potential location be treated independently, it does not support repairing multi-hunk errors whose
fix changes multiple locations of the program. We also note that ROSE can be less helpful when
applied to handling complex errors that require multi-line or even multi-hunk changes for fixing.
Nevertheless, as we previously showed, a ROSE-based tool fails fast when it generates no repairs
(Section 6.1.3) and even when it generates incorrect repairs, these may still provide useful repair
hints and do not considerably slow down the debugging time (Section 6.2). We also note that it is
possible to integrate more advanced patch classification and ranking techniques (such as [27]) to
further reduce the chance of reporting incorrect repairs, which we leave as future work.

The effectiveness of a ROSE-based technique depends on all of its components: fault localization,
patch generation, and patch validation. These components have dependencies. The output of a
previous component is the input of the following. In this way, any inaccuracy of a component
can affect its following components, and errors could accumulate and finally lead to ineffective
repair. This is a known problem for APR in general. We note that ROSE’s approach can mitigate
the accumulation to some extent, as its baseline execution generation can filter out potential faulty
lines that are identified by fault localization but do not actually execute and its validation can also
exclude candidate patches that do not exhibit any failure-resolving behaviors.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:32 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

ROSE’s patch validation is based on simulated trace comparison. The comparison uses heuristics
and scores for patch prioritization. Although Section 6.1.2 shows that the validation is empirically
effective, there can be cases where the heuristics and scores do not lead to a good prioritization.
For example, the heuristic that ROSE uses for validating exception or assertion problems gives
high priority to a repaired execution that avoids the error and is close to the original baseline
execution. However, it can be the case that a correctly repaired execution is not highly close to the
original baseline (consider a repaired execution that avoids the exception with an early return) and
is thus not given a high rank. In future work, we plan to explore learning-based approaches for
improvement.

7 Conclusion and Future Work
Due to the unrealistic assumptions and the low-efficiency characteristic, automated program
repair (APR), though promising to deal with semantic errors, has not been shown to be practical
while debugging. To improve the practicality of APR and make it an everyday part of IDE to help
people debug, we developed ROSE, a framework that allows the integration of existing APR patch
generators to produce quick-repair suggestions for semantic errors. To ensure practicality and
usefulness, ROSE does not require a test suite or program re-execution for problem specification
and patch validation. Rather, ROSE interacts with the developer to obtain a problem symptom
describing the error. It then performs test-free fault localization accounting for the program states
and their dependency while working closely with the debugger to identify potential repair locations.
After generating a baseline execution and invoking the patch generators to propose repairs for
these locations, ROSE validates the repairs via simulating and comparing traces while accounting
for various matching conditions and the problem symptom to suggest repairs likely to be correct.

The effectiveness and utility studies used to evaluate the efficacy and usefulness of ROSE show
that ROSE’s repair can provide correct suggestions for many semantic errors in seconds, that ROSE’s
test-free fault localization and patch validation are highly effective, and that ROSE can indeed help
developers debug. A video showing ROSE in action can be seen at https://youtu.be/GqyTPUsqs2o.
In future work, in addition to improving ROSE to handle complex language features (such as

Java reflection), incorporating advanced static patch assessment approaches (such as [27, 108, 135]),
and performing an extensive experiment with more APR patch generators used for repair and
more diverse errors for evaluation, we will explore enhancing ROSE’s ability to address complex
multi-hunk errors, which require changes of multiple locations for repair. One possible direction for
tackling multi-hunk errors would be performing iterative repair by localizing and proposing single-
location patches and evolving them into multi-location repairs. We will explore leveraging both
learning-based approaches and human feedback to provide critical guidance. ROSE’s presentation
highlights the code changes made in a repair but does not provide in-depth analyses showing why
the changes can fix the problem. It would be interesting to explore generating for each repair an
explanation in natural language (via for example LLMs) showing more debugging insights. The
implementation of ROSE is currently tied to the Code Bubbles IDE supporting Java language. It can
however be refactored to provide APIs adhering to the Language Server Protocol (LSP) and the
Debug Adapter Protocol (DAP) to allow easy integration into other IDEs and platforms. We will
continue to improve ROSE (and the open source SEEDE and FAIT tools it uses). The open-source
code base of the latest version of ROSE can be found at https://github.com/StevenReiss/rose. The
artifact of this work is available at https://github.com/rose-apr/rose.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://youtu.be/GqyTPUsqs2o
https://github.com/StevenReiss/rose
https://github.com/rose-apr/rose

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:33

Acknowledgments
We are grateful for the valuable comments and suggestions given by the anonymous reviewers.
This work was partially supported by the National Natural Science Foundation of China under the
grant numbers 62202344 and 62141221 and the OPPO Research Fund.

References
[1] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan JC Van Gemund. 2009. A practical evaluation of spectrum-based

fault localization. Journal of Systems and Software (2009), 1780–1792.
[2] Afsoon Afzal, Manish Motwani, Kathryn T Stolee, Yuriy Brun, and Claire Le Goues. 2019. SOSRepair: Expressive

semantic search for real-world program repair. IEEE Transactions on Software Engineering 47, 10 (2019), 2162–2181.
[3] Hiralal Agrawal, Richard A DeMillo, and Eugene H Spafford. 1993. Debugging with dynamic slicing and backtracking.

Software: Practice and Experience 23, 6 (1993), 589–616.
[4] Hiralal Agrawal and Joseph R Horgan. 1990. Dynamic program slicing. ACM SIGPlan Notices 25, 6 (1990), 246–256.
[5] Auto Correct 2023. Visual Studio’s Auto Correct. https://marketplace.visualstudio.com/items?itemName=sygene.auto-

correct
[6] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix: Learning to fix bugs automatically.

Proceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1–27.
[7] Rohan Bavishi, Hiroaki Yoshida, and Mukul R Prasad. 2019. Phoenix: Automated data-driven synthesis of repairs for

static analysis violations. In Proceedings of the 27th ACM Joint Meeting on the Foundations of Software Engineering.
613–624.

[8] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015. When, how, and why developers (do
not) test in their IDEs. In Proceedings of the 10th Joint Meeting on the Foundations of Software Engineering. 179–190.

[9] Marcel Böhme, Charaka Geethal, and Van-Thuan Pham. 2020. Human-in-the-loop automatic program repair. In
Proceedings of IEEE 13th International Conference on Software Testing, Validation and Verification. 274–285.

[10] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri, William Cheung, Joshua Kaplan, Christopher
Coleman, Ferdi Adeputra, and Joseph J LaViola Jr. 2010. Code Bubbles: Rethinking the user interface paradigm of
integrated development environments. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering. 455–464.

[11] Renée C Bryce, Alison Cooley, Amy Hansen, and Nare Hayrapetyan. 2010. A one year empirical study of student
programming bugs. In Proceedings of IEEE Frontiers in Education Conference. F1G–1.

[12] Eduardo Cunha Campos and Marcelo de Almeida Maia. 2017. Common bug-fix patterns: A large-scale observational
study. In Proceedings of ACM/IEEE International Symposium on Empirical Software Engineering and Measurement.
404–413.

[13] Jialun Cao, Meiziniu Li, MingWen, and Shing-chi Cheung. 2023. A study on prompt design, advantages and limitations
of chatgpt for deep learning program repair. arXiv preprint arXiv:2304.08191 (2023).

[14] Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena Ferrucci. 2019. Not all bugs are the same: Under-
standing, characterizing, and classifying bug types. Journal of Systems and Software 152 (2019), 165–181.

[15] ChatGPT 2023. ChatGPT. https://chat.openai.com/
[16] Lingchao Chen, Yicheng Ouyang, and Lingming Zhang. 2021. Fast and precise on-the-fly patch validation for all. In

Proceedings of IEEE/ACM 43rd International Conference on Software Engineering. 1123–1134.
[17] Zimin Chen, Steve Kommrusch, and Martin Monperrus. 2022. Neural transfer learning for repairing security

vulnerabilities in c code. IEEE Transactions on Software Engineering 49, 1 (2022), 147–165.
[18] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshyvanyk, and Martin Monperrus.

2019. SequenceR: Sequence-to-sequence learning for end-to-end program repair. IEEE Transactions on Software
Engineering 47, 9 (2019), 1943–1959.

[19] Holger Cleve and Andreas Zeller. 2005. Locating causes of program failures. In Proceedings of the 27th international
conference on Software engineering. 342–351.

[20] d4j28toolresult 2022. Defects4J Errors Repaired by 28 APR techniques. https://docs.google.com/spreadsheets/d/
1uo5mVTZPRYx0oLrkll1N4Ab3hazcAMWvPw2lH7NC2gg/edit?usp=sharing

[21] Higor A de Souza, Marcos L Chaim, and Fabio Kon. 2016. Spectrum-based software fault localization: A survey of
techniques, advances, and challenges. arXiv preprint arXiv:1607.04347 (2016).

[22] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei Tan. 2023. Automated repair of programs
from large language models. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
1469–1481.

[23] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung. 2022. VulRepair: a T5-based
automated software vulnerability repair. In Proceedings of the 30th ACM Joint European Software Engineering Conference

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://marketplace.visualstudio.com/items?itemName=sygene.auto-correct
https://marketplace.visualstudio.com/items?itemName=sygene.auto-correct
https://chat.openai.com/
https://docs.google.com/spreadsheets/d/1uo5mVTZPRYx0oLrkll1N4Ab3hazcAMWvPw2lH7NC2gg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1uo5mVTZPRYx0oLrkll1N4Ab3hazcAMWvPw2lH7NC2gg/edit?usp=sharing

1:34 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

and Symposium on the Foundations of Software Engineering. 935–947.
[24] Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury. 2019. Crash-avoiding program repair. In Proceedings of the

28th ACM SIGSOFT International Symposium on Software Testing and Analysis. 8–18.
[25] Xiang Gao, Bo Wang, Gregory J Duck, Ruyi Ji, Yingfei Xiong, and Abhik Roychoudhury. 2021. Beyond tests: Program

vulnerability repair via crash constraint extraction. ACM Transactions on Software Engineering and Methodology 30, 2
(2021), 1–27.

[26] Ali Ghanbari and Andrian Marcus. 2020. PRF: a framework for building automatic program repair prototypes for
JVM-based languages. In Proceedings of the 28th ACM Joint Meeting on the Foundations of Software Engineering.
1626–1629.

[27] Ali Ghanbari and Andrian Marcus. 2022. Patch correctness assessment in automated program repair based on the
impact of patches on production and test code. In Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis. 654–665.

[28] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. 2011. Specification-based program repair using
SAT. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. 173–188.

[29] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated program repair. Commun. ACM (2019),
56–65.

[30] Jordan Henkel, Denini Silva, Leopoldo Teixeira, Marcelo d’Amorim, and Thomas Reps. 2021. Shipwright: A Human-
in-the-Loop System for Dockerfile Repair. In Proccedings of IEEE/ACM 43rd International Conference on Software
Engineering. 1148–1160.

[31] Shin Hong, Byeongcheol Lee, Taehoon Kwak, Yiru Jeon, Bongsuk Ko, Yunho Kim, and Moonzoo Kim. 2015. Mutation-
based fault localization for real-world multilingual programs (T). In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 464–475.

[32] Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu, Wenjie Wang, Shuhao Li, and Yuqing Zhang. 2023. An Empirical
Study on Fine-tuning Large Language Models of Code for Automated Program Repair. (2023).

[33] Zhen Huang, David Lie, Gang Tan, and Trent Jaeger. 2019. Using safety properties to generate vulnerability patches.
In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 539–554.

[34] Infer 2023. Infer. https://fbinfer.com/
[35] IntelliJ IDEA 2022. IntelliJ IDEA. https://www.jetbrains.com/idea/
[36] Werner Janjic, Oliver Hummel, Marcus Schumacher, and Colin Atkinson. 2013. An unabridged source code dataset

for research in software reuse. In Proceedings of 10th Working Conference on Mining Software Repositories. 339–342.
[37] Dennis Jeffrey, Min Feng, Neelam Gupta, and Rajiv Gupta. 2009. BugFix: A learning-based tool to assist developers in

fixing bugs. In Proceedings of 17th International Conference on Program Comprehension. 70–79.
[38] Dennis Jeffrey, Neelam Gupta, and Rajiv Gupta. 2008. Fault localization using value replacement. In Proceedings of the

International Symposium on Software Testing and Analysis. 167–178.
[39] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. 2018. Shaping program repair space with

existing patches and similar code. In Proceedings of the 27th ACM International Symposium on Software Testing and
Analysis. 298–309.

[40] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of code language models on automated program
repair. arXiv preprint arXiv:2302.05020 (2023).

[41] Nan Jiang, Thibaud Lutellier, Yiling Lou, Lin Tan, Dan Goldwasser, and Xiangyu Zhang. 2023. KNOD: Domain
knowledge distilled tree decoder for automated program repair. In Proccedings of 43th International Conference on
Software Engineering (to appear).

[42] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural Machine Translation for Automatic
Program Repair. In Proceedings of IEEE/ACM 43rd International Conference on Software Engineering. 1161–1173.

[43] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan. 2023.
Swe-bench: Can language models resolve real-world github issues? arXiv preprint arXiv:2310.06770 (2023).

[44] Wei Jin and Alessandro Orso. 2012. Bugredux: Reproducing field failures for in-house debugging. In 2012 34th
international conference on software engineering (ICSE). IEEE, 474–484.

[45] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of existing faults to enable controlled
testing studies for Java programs. In Proceedings of the 2014 International Symposium on Software Testing and Analysis.
437–440.

[46] Shalini Kaleeswaran, Varun Tulsian, Aditya Kanade, and Alessandro Orso. 2014. MintHint: Automated synthesis of
repair hints. In Proceedings of the 36th International Conference on Software Engineering. 266–276.

[47] Sungmin Kang, Bei Chen, Shin Yoo, and Jian-Guang Lou. 2023. Explainable Automated Debugging via Large Language
Model-driven Scientific Debugging. arXiv preprint arXiv:2304.02195 (2023).

[48] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large language models are few-shot testers: Exploring llm-based
general bug reproduction. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://fbinfer.com/
https://www.jetbrains.com/idea/

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:35

2312–2323.
[49] Yalin Ke, Kathryn T Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing programs with semantic code search (t).

In 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 295–306.
[50] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic patch generation learned from

human-written patches. In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 802–811.
[51] Serkan Kirbas, Etienne Windels, Olayori McBello, Kevin Kells, Matthew Pagano, Rafal Szalanski, Vesna Nowack,

Emily Rowan Winter, Steve Counsell, David Bowes, et al. 2021. On the introduction of automatic program repair in
Bloomberg. IEEE Software 38, 4 (2021), 43–51.

[52] Andrew J Ko and Brad A Myers. 2004. Designing the Whyline: a debugging interface for asking questions about
program behavior. In Proceedings of the SIGCHI conference on Human factors in computing systems. 151–158.

[53] Pavneet Singh Kochhar, Tegawendé F Bissyandé, David Lo, and Lingxiao Jiang. 2013. An empirical study of adoption of
software testing in open source projects. In Proceedings of 13th International Conference on Quality Software. 103–112.

[54] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein, Martin Monperrus, and Yves Le Traon.
2020. Fixminer: Mining relevant fix patterns for automated program repair. Empirical Software Engineering (2020),
1980–2024.

[55] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Martin Monperrus, Jacques Klein, and Yves Le Traon.
2019. iFixR: Bug report driven program repair. In Proceedings of the 27th ACM Joint Meeting on the Foundations of
Software Engineering. 314–325.

[56] Tien-Duy B Le, Richard J Oentaryo, and David Lo. 2015. Information retrieval and spectrum based bug localization:
Better together. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. 579–590.

[57] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser. 2017. S3: Syntax-and semantic-guided
repair synthesis via programming by examples. In Proceedings of the 11th Joint Meeting on the Foundations of Software
Engineering. 593–604.

[58] Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. History driven program repair. In Proceedings of IEEE 23rd
international conference on software analysis, evolution, and reengineering (SANER). IEEE.

[59] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2011. GenProg: A generic method for
automatic software repair. IEEE transactions on software engineering (2011), 54–72.

[60] Erich Leo Lehmann, Joseph P Romano, and George Casella. 2005. Testing statistical hypotheses. Vol. 3. Springer.
[61] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deepfl: Integrating multiple fault diagnosis dimensions for

deep fault localization. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). 169–180.

[62] Yi Li, Shaohua Wang, and Tien N Nguyen. 2021. Fault Localization with Code Coverage Representation Learning. In
Proccedings of IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 661–673.

[63] Jingjing Liang, Ruyi Ji, Jiajun Jiang, Shurui Zhou, Yiling Lou, Yingfei Xiong, and Gang Huang. 2021. Interactive
Patch Filtering as Debugging Aid. In Proceedings of 37th IEEE International Conference on Software Maintenance and
Evolution. 239–250.

[64] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017. QuixBugs: A multi-lingual program repair
benchmark set based on the Quixey Challenge. In Proceedings Companion of the 2017 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software for Humanity. 55–56.

[65] Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jinsong Dong. 2017. Feedback-based debugging. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE, 393–403.

[66] Chen Liu, Jinqiu Yang, Lin Tan, and Munawar Hafiz. 2013. R2Fix: Automatically generating bug fixes from bug
reports. In Proceedings of IEEE 6th international conference on software testing, verification and validation (ICST). IEEE,
282–291.

[67] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. TBar: Revisiting template-based automated
program repair. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
31–42.

[68] Yu Liu, Sergey Mechtaev, Pavle Subotić, and Abhik Roychoudhury. 2023. Program Repair Guided by Datalog-Defined
Static Analysis. In Proceedings of the 31st ACM SIGSOFT international symposium on foundations of software engineering
(ESEC/FSE) to appear.

[69] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic inference of code transforms for patch generation. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. 727–739.

[70] Fan Long and Martin Rinard. 2015. Staged program repair with condition synthesis. In Proceedings of the 2015 10th
Joint Meeting on the Foundations of Software Engineering. 166–178.

[71] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning correct code. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 298–312.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:36 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

[72] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and Lu Zhang. 2020. Can automated
program repair refine fault localization? a unified debugging approach. In Proceedings of the 29th ACM International
Symposium on Software Testing and Analysis. 75–87.

[73] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and Lingming Zhang. 2021. Boosting
coverage-based fault localization via graph-based representation learning. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.
664–676.

[74] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin Tan. 2020. Coconut: combining
context-aware neural translation models using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT
international symposium on software testing and analysis (ISSTA). 101–114.

[75] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated testing for android applications. In
Proceedings of the 25th international symposium on software testing and analysis. 94–105.

[76] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia, Ke Mao, Alexander Mols, and Andrew
Scott. 2019. Sapfix: Automated end-to-end repair at scale. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 269–278.

[77] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin Monperrus. 2017. Automatic repair
of real bugs in Java: A large-scale experiment on the Defects4J dataset. Empirical Software Engineering 22, 4 (2017),
1936–1964.

[78] Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury. 2018. Semantic
program repair using a reference implementation. In Proceedings of the 40th International Conference on Software
Engineering. 129–139.

[79] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. Directfix: Looking for simple program repairs. In
Proceedings of IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE). IEEE, 448–458.

[80] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable multiline program patch synthesis
via symbolic analysis. In Proceedings of the 38th International Conference on Software Engineering. 691–701.

[81] Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2022. Improving fault localization and
program repair with deep semantic features and transferred knowledge. In Proceedings of the 44th International
Conference on Software Engineering. 1169–1180.

[82] Xiangxin Meng, XuWang, Hongyu Zhang, Hailong Sun, Xudong Liu, and Chunming Hu. 2023. Template-based Neural
Program Repair. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 1456–1468.

[83] Martin Monperrus. 2018. Automatic software repair: a bibliography. Comput. Surveys 51, 1 (2018), 1–24.
[84] Martin Monperrus. 2020. The Living Review on Automated Program Repair. (Dec. 2020). https://hal.archives-

ouvertes.fr/hal-01956501 working paper or preprint.
[85] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the mutants: Mutating faulty programs for

fault localization. In Proccedings of Seventh International Conference on Software Testing, Verification and Validation.
IEEE, 153–162.

[86] Manish Motwani and Yuriy Brun. 2023. Better automatic program repair by using bug reports and tests together. In
2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 1225–1237.

[87] Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023. Retrieval-based prompt selection for code-related few-shot
learning. In Proceedings of the 45th International Conference on Software Engineering (ICSE’23).

[88] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. 2013. Semfix: Program repair via
semantic analysis. In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 772–781.

[89] Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury. 2022. Trust Enhancement Issues in Program
Repair. In Proceedings of the 44th International Conference on Software Engineering. 2228–2240.

[90] Kai Pan, Sunghun Kim, and E James Whitehead. 2009. Toward an understanding of bug fix patterns. Empirical
Software Engineering 14, 3 (2009), 286–315.

[91] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault localization. Software Testing, Verification
and Reliability (2015), 605–628.

[92] Yu Pei, Carlo A Furia, Martin Nordio, and Bertrand Meyer. 2015. Automated program repair in an integrated
development environment. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2. IEEE,
681–684.

[93] Yu Pei, Carlo A Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and Andreas Zeller. 2014. Automated fixing of programs
with contracts. Ieee transactions on software engineering 40, 5 (2014), 427–449.

[94] Yun Peng, Shuzheng Gao, Cuiyun Gao, Yintong Huo, and Michael R Lyu. 2023. Domain Knowledge Matters: Improving
Prompts with Fix Templates for Repairing Python Type Errors. arXiv preprint arXiv:2306.01394 (to appear at ICSE’24)
(2023).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://hal.archives-ouvertes.fr/hal-01956501
https://hal.archives-ouvertes.fr/hal-01956501

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:37

[95] Julian Aron Prenner, Hlib Babii, and Romain Robbes. 2022. Can OpenAI’s codex fix bugs? an evaluation on QuixBugs.
In Proceedings of the Third International Workshop on Automated Program Repair. 69–75.

[96] Quick Fix 2023. Eclipse’s Quick Fix. https://wiki.eclipse.org/FAQ_What_is_a_Quick_Fix%3F
[97] Steven P. Reiss. 2019. Continuous Flow Analysis to Detect Security Problems. arXiv preprint arXiv:1909.13683 (2019).
[98] Steven P. Reiss, Qi Xin, and Jeff Huang. 2018. SEEDE: simultaneous execution and editing in a development

environment. In Proceedings of 33rd IEEE/ACM International Conference on Automated Software Engineering. 270–281.
[99] Tobias Roehm, Nigar Gurbanova, Bernd Bruegge, Christophe Joubert, and Walid Maalej. 2013. Monitoring user

interactions for supporting failure reproduction. In 2013 21st International Conference on Program Comprehension
(ICPC). IEEE, 73–82.

[100] Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry. 2013. Improving bug localization using struc-
tured information retrieval. In Proceedings of IEEE/ACM International Conference on Automated Software Engineering.
345–355.

[101] Seemanta Saha, Ripon K Saha, and Mukul R Prasad. 2019. Harnessing evolution for multi-hunk program repair. In
Proceedings of IEEE/ACM 41st International Conference on Software Engineering. 13–24.

[102] Kostyantyn M Shchekotykhin, Thomas Schmitz, and Dietmar Jannach. 2016. Efficient Sequential Model-Based Fault-
Localization with Partial Diagnoses.. In Proceedings of the 25th International Joint Conference on Artificial Intelligence.
1251–1257.

[103] André Silva, Sen Fang, andMartin Monperrus. 2023. RepairLLaMA: Efficient Representations and Fine-Tuned Adapters
for Program Repair. arXiv preprint arXiv:2312.15698 (2023).

[104] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure worse than the disease? Overfitting
in automated program repair. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
532–543.

[105] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An analysis of the automatic bug fixing
performance of chatgpt. arXiv preprint arXiv:2301.08653 (2023).

[106] Mozhan Soltani, Annibale Panichella, and Arie Van Deursen. 2018. Search-based crash reproduction and its impact
on debugging. IEEE Transactions on Software Engineering 46, 12 (2018), 1294–1317.

[107] Shin Hwei Tan, Ziqiang Li, and Lu Yan. 2024. CrossFix: Resolution of GitHub issues via similar bugs recommendation.
Journal of Software: Evolution and Process 36, 4 (2024), e2554.

[108] Haoye Tian, Kui Liu, Yinghua Li, Abdoul Kader Kaboré, Anil Koyuncu, Andrew Habib, Li Li, Junhao Wen, Jacques
Klein, and Tegawendé F Bissyandé. 2023. The Best of Both Worlds: Combining Learned Embeddings with Engineered
Features for Accurate Prediction of Correct Patches. ACM Transactions on Software Engineering and Methodology 32,
4 (2023), 1–34.

[109] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano Di Penta, Andrea De Lucia, and Denys
Poshyvanyk. 2015. When and why your code starts to smell bad. In Proceedings of 37th IEEE International Conference
on Software Engineering. 403–414.

[110] Rijnard van Tonder and Claire Le Goues. 2018. Static automated program repair for heap properties. In Proceedings of
the 40th International Conference on Software Engineering. 151–162.

[111] Visual Studio Code 2022. Visual Studio Code. https://code.visualstudio.com/
[112] Qianqian Wang, Chris Parnin, and Alessandro Orso. 2015. Evaluating the usefulness of ir-based fault localization

techniques. In Proceedings of the 2015 international symposium on software testing and analysis. 1–11.
[113] Weishi Wang, Yue Wang, Shafiq Joty, and Steven CH Hoi. 2023. RAP-Gen: Retrieval-Augmented Patch Generation

with CodeT5 for Automatic Program Repair. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 146–158.

[114] Yi Wei, Yu Pei, Carlo A Furia, Lucas S Silva, Stefan Buchholz, Bertrand Meyer, and Andreas Zeller. 2010. Automated
fixing of programs with contracts. In Proceedings of the 19th international symposium on Software testing and analysis.
61–72.

[115] Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang. 2023. Copiloting the copilots: Fusing large language models
with completion engines for automated program repair. In Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. 172–184.

[116] Westley Weimer, Zachary P Fry, and Stephanie Forrest. 2013. Leveraging program equivalence for adaptive program
repair: Models and first results. In 2013 28th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 356–366.

[117] Ming Wen, Junjie Chen, Yongqiang Tian, Rongxin Wu, Dan Hao, Shi Han, and Shing-Chi Cheung. 2019. Historical
spectrum based fault localization. IEEE Transactions on Software Engineering 47, 11 (2019), 2348–2368.

[118] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018. Context-aware patch generation for
better automated program repair. In Proceedings of IEEE/ACM 40th International Conference on Software Engineering.
1–11.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://wiki.eclipse.org/FAQ_What_is_a_Quick_Fix%3F
https://code.visualstudio.com/

1:38 Steven P. Reiss, Xuan Wei, Jiahao Yuan, and Qi Xin

[119] Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le Goues. 2021. VarFix: balancing edit expres-
siveness and search effectiveness in automated program repair. In Proceedings of the 29th ACM Joint Meeting on the
Foundations of Software Engineering. 354–366.

[120] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A survey on software fault localization.
IEEE Transactions on Software Engineering 42, 8 (2016), 707–740.

[121] Chunqiu Steven Xia, Yifeng Ding, and Lingming Zhang. 2023. Revisiting the Plastic Surgery Hypothesis via Large
Language Models. arXiv preprint arXiv:2303.10494 (to appear at ICSE’24) (2023).

[122] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated program repair in the era of large pre-
trained language models. In Proceedings of the 45th International Conference on Software Engineering (ICSE 2023).
Association for Computing Machinery.

[123] Chunqiu Steven Xia and Lingming Zhang. 2022. Less training, more repairing please: revisiting automated program
repair via zero-shot learning. In Proceedings of the 30th ACM Joint Meeting on the Foundations of Software Engineering.
959–971.

[124] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42
each using ChatGPT. arXiv preprint arXiv:2304.00385 (2023).

[125] Yuan-An Xiao, Chenyang Yang, Bo Wang, and Yingfei Xiong. 2023. ExpressAPR: Efficient Patch Validation for Java
Automated Program Repair Systems. In Proceedings of 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE), Demonstration Track.

[126] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. 2013. A theoretical analysis of the risk evaluation
formulas for spectrum-based fault localization. ACM Transactions on software engineering and methodology (TOSEM)
22, 4 (2013), 1–40.

[127] Qi Xin and Steven P. Reiss. 2017. Leveraging syntax-related code for automated program repair. In Proceedings of
32nd IEEE/ACM International Conference on Automated Software Engineering. 660–670.

[128] Qi Xin and Steven P. Reiss. 2019. Better code search and reuse for better program repair. In 2019 IEEE/ACM International
Workshop on Genetic Improvement. 10–17.

[129] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018. Identifying patch correctness in
test-based program repair. In Proceedings of the 40th International Conference on Software Engineering. 789–799.

[130] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and Lu Zhang. 2017. Precise condition
synthesis for program repair. In Proceedings of IEEE/ACM 39th International Conference on Software Engineering.
416–426.

[131] Zhaogui Xu, Shiqing Ma, Xiangyu Zhang, Shuofei Zhu, and Baowen Xu. 2018. Debugging with intelligence via
probabilistic inference. In Proceedings of the 40th International Conference on Software Engineering. 1171–1181.

[132] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian Lamelas Marcote, Thomas Durieux, Daniel
Le Berre, and Martin Monperrus. 2016. Nopol: Automatic repair of conditional statement bugs in java programs. IEEE
Transactions on Software Engineering 43, 1 (2016), 34–55.

[133] Deheng Yang, Xiaoguang Mao, Liqian Chen, Xuezheng Xu, Yan Lei, David Lo, and Jiayu He. 2022. TransplantFix:
Graph Differencing-based Code Transplantation for Automated Program Repair. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 1–13.

[134] John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir Press.
2024. Swe-agent: Agent-computer interfaces enable automated software engineering. arXiv preprint arXiv:2405.15793
(2024).

[135] He Ye, Jian Gu, Matias Martinez, Thomas Durieux, andMartin Monperrus. 2021. Automated classification of overfitting
patches with statically extracted code features. IEEE Transactions on Software Engineering 48, 8 (2021), 2920–2930.

[136] He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2021. A comprehensive study of automatic program
repair on the QuixBugs benchmark. Journal of Systems and Software 171 (2021), 110825.

[137] He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monperrus. 2022. SelfAPR: Self-supervised Program
Repair with Test Execution Diagnostics. In Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering. 1–13.

[138] He Ye, Matias Martinez, and Martin Monperrus. 2022. Neural program repair with execution-based backpropagation.
In Proceedings of the 44th International Conference on Software Engineering. 1506–1518.

[139] Wei Yuan, Quanjun Zhang, Tieke He, Chunrong Fang, Nguyen Quoc Viet Hung, Xiaodong Hao, and Hongzhi Yin.
2022. CIRCLE: Continual repair across programming languages. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 678–690.

[140] Yuan Yuan and Wolfgang Banzhaf. 2018. ARJA: Automated repair of java programs via multi-objective genetic
programming. IEEE Transactions on software engineering (TSE) 46, 10 (2018), 1040–1067.

[141] Yuan Yuan and Wolfgang Banzhaf. 2020. Toward better evolutionary program repair: An integrated approach. ACM
Transactions on Software Engineering and Methodology (TOSEM) 29, 1 (2020), 1–53.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

ROSE: An IDE-Based Interactive Repair Framework for Debugging 1:39

[142] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why? ACM SIGSOFT Software engineering
notes 24, 6 (1999), 253–267.

[143] Andreas Zeller. 2009. Why programs fail: a guide to systematic debugging. Morgan Kaufmann.
[144] Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen. 2023. A Survey of Learning-based

Automated Program Repair. arXiv preprint arXiv:2301.03270 (2023).
[145] Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong Fang, Bowen Yu, Weisong Sun, and Zhenyu Chen. 2023. A

critical review of large language model on software engineering: An example from chatgpt and automated program
repair. arXiv preprint arXiv:2310.08879 (2023).

[146] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Locating faults through automated predicate switching. In
Proceedings of the 28th international conference on Software engineering. 272–281.

[147] Xindong Zhang, Chenguang Zhu, Yi Li, Jianmei Guo, Lihua Liu, and Haobo Gu. 2020. Precfix: Large-scale patch
recommendation by mining defect-patch pairs. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Software Engineering in Practice. 41–50.

[148] Yuntong Zhang, Xiang Gao, Gregory J Duck, and Abhik Roychoudhury. 2022. Program vulnerability repair via
inductive inference. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
691–702.

[149] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024. Autocoderover: Autonomous program
improvement. arXiv preprint arXiv:2404.05427 (2024).

[150] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed? More accurate information retrieval-
based bug localization based on bug reports. In Proceedings of 34th International Conference on Software Engineering.
14–24.

[151] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong, and Lu Zhang. 2021. A syntax-guided
edit decoder for neural program repair. In Proceedings of the 29th ACM Joint Meeting on the Foundations of Software
Engineering. 341–353.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

	Abstract
	1 Introduction
	2 Overview of ROSE
	3 Related Work
	3.1 Test-Suite-Based Program Repair
	3.2 Non-Test-Suite-Based Program Repair
	3.3 APR Application in Industry
	3.4 Fault localization
	3.5 Patch validation
	3.6 Debugging

	4 Approach
	4.1 Problem Definition
	4.2 Fault Localization
	4.3 Generating a Baseline Execution
	4.4 Repair Generation
	4.5 Validating a Repair
	4.6 Presenting the Result

	5 Example
	6 Evaluation
	6.1 Effectiveness Study
	6.2 Utility Study
	6.3 Threats to Validity

	7 Conclusion and Future Work
	Acknowledgments
	References

