
Building an Interface for Controlling IoT Devices
Steven P. Reiss

Department of Computer Science
Brown University

Providence, RI USA
spr@cs.brown.edu

Abstract—As more and more devices become available and in-
terconnected, there is a growing need for end users to control the
devices in a programmatic manner. Our prior work explored end-
user programming models for the Internet of Things (IoT). We
started with the premise that current trigger-based approaches,
while helpful, are not sufficient. What is needed was a more
programmatic, continuous approach for handling more complex
devices. Our prior work explored different strategies for such a
continuous approach. In this paper we detail the lessons learned
and outline our current directions aimed at creating a practical
system.

Index Terms—Internet of things; end-user programming; de-
bugging; program understanding.

I. INTRODUCTION

It is becoming common for everyday devices, from tele-
visions to toasters, to be connected to the Internet and con-
trollable from anywhere. Most such devices provide separate
apps that let end-users control them from their phones. While
separate apps can provide a high-quality, device-specific in-
terface, requiring tens or hundreds of apps is obviously not
ideal for the user. Several alternatives have arisen. Some, like
IFTTT [1], are generic, providing a trigger-based programming
approach that is suitable for controlling simple devices. Others,
like SmartThings [2] or OpenHab [3], let manufacturers create
limited customizable interfaces for their devices and also pro-
vide a trigger-based programming environment for the devices.
Another approach is to use a general command application
such as Alexa or Siri. Manufacturers can also provide bridges
from their devices to these, letting end-users control their
devices using speech or simple time-based commands.

These approaches are insufficient. Prior work has shown that
trigger-based programming approaches are not natural ways
of specifying interactions [4,5]. Approaches using machine
learning have been tried [6] and have been successful for single
devices with a limited set of inputs such as the Nest thermostat.
As more devices need to be controlled, the feature-interaction
problem arises, so that languages for controlling them need to
handle potentially complex interactions [7]. More importantly,
from an end-user’s perspective, is that a large number of rules
may be needed for a complex device.

Our obsession is a “smart sign”. This is a display outside
our office showing our current status such as “Available” or
“In a Meeting, Back at 1” or “On the Phone”, and is updated
automatically based on a variety of sensors and other devices.
We currently have over 20 different status displays and most
transitions from one to another are possible. If we were to

program the sign using only a trigger-based approach, we
would need hundreds of rules. Another example is a smart
skylight that can be open, closed, or partially open. The
complexity here comes from the set of sensors that such a
skylight would depend on and the fact that these interact.
The sensors might include the outside and inside temperatures,
whether it is raining or not, the current inside and outside air
quality, and the outside wind speed and direction. A trigger
based approach to this would need rules for all possible
changes under all possible conditions.

From this, we concluded that one needs a control language
that describes the target state given current conditions rather
than one that describes state changes based on all possible con-
dition changes. This implies a rule-based, continuous approach
as opposed to a trigger-based one. For our sign, for example,
this means we need 20-some rules rather than hundreds. Such
a language, while easy to conceive of, is not necessarily easy
to implement, understand, or program.

Our goal is to provide a language for programming IoT
devices using general rules, both continuous and trigger based.
(Trigger-based rules are still needed for trigger-based actions
such as sending an email or setting off an alarm.) The
requirements of such a language start with being easy to use
for non-programmers. It must be easy to understand what is
written. It must be easy to understand the consequences of
each rule on each device and the interactions of the various
rules. It must work as an app on the user’s phone (or similar
device), with possible web support. An architecture supporting
this language must be designed to work at Internet-scales,
handling thousands of users and tens of thousands of devices.

We are currently attempting to demonstrate that such an
approach can be practical. The next section of the paper
describes our prior efforts. The following sections describe
the lessons learned and our current approach.

II. OUR PRIOR WORK

Our prior work explored different end-user programming
models for a continuous rule-based language for controlling
IoT devices, with an emphasis on controlling our smart
sign [8]. This work included four different web-based user
interfaces, each with different goals in mind, an engine to
interpret the rules, simple implementations of sensors (mo-
tion detector, off-the-hook detector, in the office detector
using Bluetooth, working at home detector, on-zoom detector,
Google calendar interface, web-based weather interface), and



a web-page implementation of our sign (the actual sign is
a tablet running a kiosk app displaying that page). We also
implemented experimental implementations of the engine with
SmartThings and OpenHab.

The underlying engine supported priority-based rules that
were run when any condition changed. It provided polling
facilities for the devices that needed to be polled. It also pro-
vided a notion of hypothetical worlds where conditions could
be set arbitrarily in order to explore possible rule conflicts and
answer what-if questions. The engine only supported a single
user and was designed to be run on that user’s local machine.
It also provided a RESTful web interface for the front ends.

The four interfaces explored different end-user program-
ming goals. The first, a programmer’s interface, provided a list
of all the rules. It let the end-user change the rule priorities,
edit rules, delete rules, and add new rules. The second, a new-
rule interface, provided the front end for defining a new rule
but also provided information as to what existing rules might
conflict with the new rule as the user defined it. The third
interface was a learning or demonstration based [6] interface
based loosely on the Nest thermostat [9]. It let the user define a
situation based on the available sensors and time, defaulting to
current values, and then define the result. The system would
then build a decision tree using this and all prior rules and
would construct an appropriate rule. The final interface was
a modular interface similar to the programmer’s interface but
where the end-user could restrict the set of displayed rules by
what devices they affect, what devices they are affected by,
or what conditions they are affected by. This was designed
for debugging and attempted to provide a simpler interface in
cases where there were a large number of rules.

While we are still using this system (the sign is currently
available as https://www.cs.brown.edu/people/spr/status.html),
we have not found it easy to use. The limitation to running on
the user’s machine limited its use to a single user and a single
sign and required the user have a machine running 24/7. The
different user interfaces, while each had distinct advantages,
were each problematic in their own way. The programmer’s
interface was too complex, displaying too many rules, and it
was easy to make mistakes. The new-rule interface was not
always accurate and thus was not particularly helpful since
it could not be trusted. The learning interface had problems
because it had difficulty learning time intervals from events
with specific times and very noisy data, the hypothetical
worlds did not reflect history, and there were privacy concerns
with keeping event data. The modular interface provided too
much flexibility for creating rules and was confusing when
there were rules that affected or were affected by multiple
devices. Moreover, having four different user interfaces was
not ideal.

To move forward, we needed to develop a practical, multi-
user system with a single user interface that combined the
good aspects of the existing system while avoiding its pitfalls.
To this end, we first noted a number of lessons learned and
are using these to design and build the follow-on system that
will attempt to meet our requirements.

III. LESSONS LEARNED

We have several years of experience with the current system
and experimental user interfaces. Based on this we have
discerned a number of precepts that need to be considered
in developing a more practical approach. These apply to the
underlying rule-based approach, the engine that interprets the
rules, the user interfaces, and devices such as our smart sign.

A. Rule Lessons.

Rules are the basis for a continuous control-based language.
They need to be defined in such a way that they can be easily
understood and are amenable to simple, easy-to-use interfaces.

We first determined that rules should only handle AND
conditions. AND is much more common than OR and combi-
nations of AND and OR are difficult to understand, even for
programmers. OR conditions can be emulated by defining new
conditions or by multiple rules.

Next we understood the need for virtual conditions such
as a latch (condition true once it is triggered), a duration
(condition true for k minutes after triggering), or debouncing
(condition has to be stable for k seconds to be considered). Our
existing system implemented these both as virtual devices and
as complex conditions. We found conditions easier to define
and use. A practical approach must let the user define such
conditions.

Considering all rules at once is confusing to the user even
if there are only 20 some rules. The confusion comes in
both understanding the priorities and how they interact, and
in understanding what the rules do. The modular interface
was useful here, but only when applied to a single device
and then only if rules can only affect a single device. Since
rules that affect multiple devices seem uncommon and can be
easily mimicked as separate rules, we plan to restrict rules to a
single device and the new interface will automatically provide
modularity based on the device.

Priorities are confusing when there are a relatively large
number of rules. Our experience shows that rules can be
classified into meta-priority levels and fine priorities within
these designations. Our new approach for devices with more
than 5 rules is to predefine a set of 3-5 priority levels and let
the user place rules within a level. They can still organize the
rules within a level, but this should be a much smaller set and
more easily understood.

Our current interface has the user provide names for rules
for later display. While these names are helpful and necessary,
their meaning is forgotten after years. In the existing system,
users had to go to the editing interface to completely under-
stand a rule. Our new system will augment names with a more
detailed description of what the rule does.

Finally, we determined that the system needs to handle both
triggers and continuous rules. To do so means that we need
both trigger and continuous conditions, and need to specify, for
each condition, whether it is a trigger or continuous. Actions
can be triggered, continuous, or either, which again needs to
be specified. Continuous actions are generally triggers that
persists until a subsequent action. Creating complex rules

https://www.cs.brown.edu/people/spr/status.html


using only triggers is error prone since it is unlikely that
two triggers will occur simultaneously. Thus our system will
restrict trigger rules to containing a single trigger condition and
possibly other non-triggers, and insist that trigger rules have
a trigger action. Much, but not all of this, was implemented
over time in the existing system.

B. Device Lessons.

Our previous implementation requires writing new code
in the core system in order to add a new device. This is
obvious impractical in a production environment. A more
practical approach is to allow devices to be added and removed
dynamically without requiring any code. This puts a little more
burden on the device implementations. It also means we need
to have devices that are known to the system but disabled so
that rules defined for those devices don’t disappear. Moreover,
it can require a condition asking if a device is enabled or
disabled.

To support multiple users and dynamic devices, our new
approach is based on bridges to either specific devices or to
device hubs. We provide a bridge to SmartThings that can
include all the user’s SmartThings devices; a bridge to a cloud-
based implementation of our sign; a bridge to Google calendar;
and a generic bridge that handles simple devices such as a
monitor that determines if we are working at home. Such
bridges require user credentials. Bridges can also be used to
support devices such as weather access and events based on
RSS-feeds that do not require credentials and can be shared
among users.

A system that handles a large number of users and a larger
number of devices can not afford to do polling of devices
directly. This means that either the devices themselves should
do the polling or the polling is the responsibility of the bridge
for a particular user. The generic bridge in our new approach
assumes that the devices are not connected continually, but
rather ping the bridge occasionally and send any state changes
to the bridge. The ping requests are used to send commands
to the device and to request current device information.

Our existing system provides several devices aimed at
determining the user’s current location so that the sign can
be updated accordingly. This includes checking if the user’s
phone is seen via Bluetooth from the office, a motion detector
and an activity sensor. A better approach would be to assume
the user carries their phone with them most of the time, and to
have an app on the phone that determines its current location
and can send it to the system. This would provide a more
comprehensive and simpler approach that is more broadly
applicable once privacy concerns are taken into account.

C. Debugging Lessons.

One of the most surprising aspects of our experience to
date is the number of errors that occur when defining rules.
About half of the time as new rules are defined incorrectly, so
that either the new rule did not apply when it should because
some other rule with similar conditions had higher priority, or
it applied in cases where it should not have because it overrode

the rule that should have applied. Fixing an erroneous rule was
generally easy, involving either adding conditions or changing
its priority relative to other rules. However, such problems
should not occur in the first place and the user should not have
to wait until they see the wrong output to fix the problem.

To counter this, we had the rule definition interface and the
learning interface which could also be used for debugging.
Neither of these proved particularly useful. The rule definition
interface only showed rules that were overridden, and was not
always accurate because of problems with the hypothetical
worlds. The learning interface proved too cumbersome to
use and did not provide accurate information about partial
overrides.

Our new system will try to address this issue by providing
a “Validate” button when defining a rule. This will analyze
the current set of rules and provide the user with detailed
information as to exactly when the rule would be applied,
which rules might override it in other circumstances, and
which rules the new rule override and under what circum-
stances. The current mechanism for doing this, hypothetical
worlds, is not sufficient as it uses a discrete notion of time and
does not understand either the effects of actions on properties
of a device or the dependencies between conditions. We are
hoping a comprehensive validation mechanism will obviate
the need for actual after-the-fact debugging, and will make
rule definition less error-prone.

D. User Interface Lessons.

While having multiple interfaces was helpful for under-
standing the domain, a practical system should be restricted
to a single user interface. Moreover, this interface has to work
with the limited screen space available on mobile devices
while still offering enough of a global overview to make the
user comfortable with using the system for multiple devices
with a potentially large rule set.

Our strategy is to use the programmer’s interface as the
basis, but to incorporate modularity based solely on target
device and a small set of higher-level priorities to restrict the
number of displayed rules to a feasible few (5-7). Then to use
the validation feature described above to handle debugging by
ensuring that rules are defined correctly in the first place.

Finally, our current interface for defining what our sign
should display is clumsy and needs to be simplified. Currently
the sign is defined by the user using an SVG editor. This
provides considerable flexibility but also requires considerable
work on the user’s part and typically requires a significant
amount of screen space so it would be difficult to use on a
mobile device. Defining the exact sign should not be part of
the rule definition and needs to be simplified.

Our new approach separates the sign from the rest of the
system. It uses a simple language for creating signs based on
the set of signs we have created thus far. It lets user save
and reuse directly or with modifications a set of standard
signs. A rule for setting our new smart sign in our rule-based
environment just provides the name of the target sign along



with optional information such as the end time of a meeting.
This is more in line with how other devices are controlled.

IV. THE NEXT GENERATION SYSTEM

We are replacing our current system with a new system
capable of handling multiple users and a large and varied set
of devices. The system consists of the interacting components
outlined below.
iQsign. We started with a cloud-based implementation of our
smart sign designed to handle multiple users while making
it simpler to define signs. This includes a textual language
for defining signs with both text and images, and a library
of saved signs and images. The back end and web interface
is implemented in Node.js, with a Java system for actually
generating sign images and a Flutter/Dart mobile app. It is
accessible at https://sherpa.cs.brown.edu:3336.
Catre. Next we took our existing rule-interpreting back end
and adapted it to handle our new requirements. This involved
handling multiple users, running in the cloud rather than on
one’s personal machine, adding the notion of device bridges,
and handling dynamic creation, disabling and removal of
devices. It also involved simplifications such as removing
hypothetical worlds and virtual devices, minimizing record
keeping, and removing polling interfaces.

The system provides a RESTful interface designed to sup-
port an appropriate front end; various forms of user authentica-
tion both for the system and for the various bridges; and a more
uniform approach to condition definition and management.
Data is stored securely using MongoDB and the system is
implemented in Java.
Cedes. This provides a multiple-user, web accessible bridge
to various engines and devices. It communicates directly with
Catre through a secure socket. It communicates to different
engines such as SmartThings and iQsign over the Internet us-
ing user-supplied credentials. It also supports generic devices
that periodically connect to either request information or to
indicate changes to sensor values. This is implemented using
Node.js.
Devices. This is an implementation of a set of devices that
communicate using the Cedes generic bridge to provide some
of the information we currently use to control our sign. It
includes a monitor that runs on one’s home machine to indicate
if the user is currently active, whether they are in a zoom
meeting, and whether they are in their personal zoom meeting.
Current devices are implemented in Java.
ALDS. This is a mobile app that attempts to detect the user’s
location periodically using information available from GPS
and from scanning for Bluetooth signals. It lets the user
define a set of locations and specify when they are at a
particular location. It then attempts to learn the characteristics
of the different locations in order to automatically determine
them later on. Note that locations do not have to be fixed;
for example, “Driving” might be a location, as might “In
Class” which could represent multiple classrooms. ALDS is
implemented in Flutter/Dart.

Sherpa. This serves as the main user interface for using the
overall framework. It attempts to implement much of what
we learned from experience, providing a single interface with
a fixed set of global priority levels and a smaller set of rules
within each level, all modularized to a particular output device.
It provides rule synopses on request. It provides a multiple
screen approach to defining rules to account for limited screen
space, handles differentiating trigger and continuous rules, and
offers specialized interfaces for different types of conditions.

Sherpa also provides a rule validation mechanism for use
while defining or editing rules. This mechanism will will
detail the potential conflicts of the current rule in a clear
and understandable manner. This mechanism will be invoked
automatically when the user attempts to save a rule. Sherpa is
being implemented as a mobile app using Flutter/Dart.
Evaluation. We will use the implemented system first to
control the set of available smart devices in our house (ther-
mostats, air purifier, lights, etc. and a smart sign) using various
sensors and weather and calendar information. Once we feel
the interface is practical for this purpose, we will run a
controlled user study providing users with a fixed set of input
and output devices and a number of tasks to set up. We will
also make the system publicly available and solicit feedback
from its users.
Future Work. Once the system is functional, we plan to
look into using machine learning to help users create rules;
continual improvement of the interfaces; and mechanism to
automatically handle reconfiguration and adaption as in [10].
Source Code. All components of our next generation system
are being developed open source and the source code is
available on GitHub at https://github.com/stevenreiss/iot.

REFERENCES

[1] IFTTT, “If this then that,” IFTTT, http://ifttt.com, 2014.
[2] Samsung. (2023) Smartthings. [Online]. Available: https://developer.

samsung.com/smartthings
[3] openHAB community. (2023) openhab: Welcome. [Online]. Available:

https://www.openhab.org/docs/
[4] B. Ur, E. McManus, M. P. Y. Ho, and M. L. Littman, “Practical trigger-

action programming in the smart home,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2014, pp. 803–
812.

[5] B. Ur, M. P. Y. Ho, S. Brawner, J. Lee, S. Mennicken, N. Picard,
D. Schulze, and M. L. Littman, “Trigger-action programming in the
wild: An analysis of 200,000 IFTTT recipes,” in Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, San
Jose, California, USA, 2016, pp. 3227–3231.

[6] T. J.-J. Li, Y. Li, F. Chen, and B. A. Myers, “Programming iot devices
by demonstration using mobile apps,” in International Symposium on
End User Development (IS-EUD 2017), Jun. 2017, pp. 3–17.

[7] M. Kolberg, E. Magill, D. Marples, and S. Tsang, “Feature interactions
in services for internet personal appliances,” in Proceedings of the IEEE
International Conference on Softare Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, 2002, pp. 2613–2618.

[8] S. P. Reiss, “Iot end user programming models,” in 2019 IEEE/ACM
1st International Workshop on Software Engineering Research and
Practices for the Internet of Things (SERP4IoT), 2019, pp. 1–8.

[9] N. Labs, “Nest thermostat,” Google, http://nest.com/thermostat, 2014.
[10] F. Durán, A. Krishna, M. Le Pallec, R. Mateescu, and G. Salaün, “Seam-

less reconfiguration of rule-based iot applications,” in 2021 International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2021, pp. 142–148.

https://sherpa.cs.brown.edu:3336
https://github.com/stevenreiss/iot
https://developer.samsung.com/smartthings
https://developer.samsung.com/smartthings
https://www.openhab.org/docs/

	Introduction
	Our Prior Work
	Lessons Learned
	Rule Lessons.
	Device Lessons.
	Debugging Lessons.
	User Interface Lessons.

	The Next Generation System
	References

