
Seeking the User Interface
Steven P. Reiss

Department of Compute r Science
Brown Univers ity

Providence , RI. 02912 USA
spr@cs .brown.edu

Yun Miao
Google

1600 Amphithea te r Parkway
Mounta in View, CA 94043 USA

yunmiao@google .com

Qi Xin
Department of Compute r Science

Brown Univers ity
Providence , RI. 02912 USA

qx5@cs .brown.edu

Abstract
User interface design and coding can be complex and messy. We describe a system that uses

code search to simplify and automate the exploration of such code. We start with a simple sketch
of the desired interface along with a set of keywords describing the application context. If neces-
sary, we convert the sketch into an SVG diagram. We then use existing code search engines to
find results based on the keywords. We look for potential Java-based user interface solutions
within those results and apply a series of code transformations to the solutions to generate deriv-
ative solutions, aiming to get solutions that constitute only the user interface and that will com-
pile and run. We run the resultant solutions and compare the generated interfaces to the user’s
sketches. Finally, we let programmers interact with the matched solutions and return the running
code for the solutions they choose. The system can be used for exploring alternative interfaces to
the initial, for looking at user interfaces in a code repository, and for generating a skeleton user
interface for an application.

1. Introduction

User interfaces are always a challenge to design and create. The coding involves understanding
complex widget sets, building multiple prototypes to try achieving the best user experience, con-
voluted, inverted-control-based code, and a variety of layout strategies. The resultant code is often
complex, bug-ridden, difficult to maintain, and not particularly transparent. Comparing alterna-

tive interfaces or exploring the design space for a task can be problematic. Testing user interfaces,
especially during development, is difficult and time consuming; testing interfaces aesthetics and
usability even more so. Yet user interfaces are a critical part of today’s applications.

The goal of our research is to simplify and eventually automate the process of exploring and even-
tually building user interfaces by letting the programmer rely on the growing repositories of
already developed and tested open source applications. Essentially we want to let the programmer
view, interact with, and explore the code of user interfaces in these repositories. Programmers
should simply sketch the user interface they want and then our tool will search the various reposi-
tories of open source applications, extract user interfaces from these applications, and return
working code that is similar to the programmer’s design.

Open source code repositories and systems are growing exponentially. OpenHub now claims over
680,000 repositories with over 35 billion lines of code. (This has doubled in the past 3 years.) For
many applications, programmers have developed and tested viable user interfaces and the results
are in the repositories. A programmer might want to build on one of these existing designs.

Our work lets the programmer start with a sketch of the user interface along with some context
information. We use the context information to search open source repositories for appropriate
Java applications using existing search engines. We extract the user interface code from these
applications, get the code to compile and run, check whether the generated interface matches the
given diagrams, and let the programmer view and check the result interfaces by interacting with
them. The actual source code for the generated interfaces can then be returned to the programmer
if desired.

This approach can return interfaces that are fully developed, that include interaction code, code to
handle different window sizes, and callback hooks. Such interfaces are more substantial than
those generated by the user interface builders common to today’s programming environments.
The approach can also be used to explore the space of interfaces for an application domain,
looking at different alternatives and filling in the gap between a preliminary sketch and a usable
interface. Finally, the approach has been used to explore user interfaces as an aid to browsing
code repositories.

The contributions of this work, in addition to showing the feasibility of using code search for user
interface design, are:

• A service for translating user sketches into structured SVG diagrams that can be more easily
understood for user interface search.

• A means for translating SVG-based user interface sketches into a form that can be used to
check if a given user interface is valid.

• Methods for gathering the appropriate code for a user interface from the simple results returned
by code search engines.

• Transformations that take the raw code returned from code search, extract the user interfaces,
and then make the code runnable outside of the original context.

• Techniques for matching a user interface sketch with an actual user interface.

• Tools that let the programmer see and interact with candidate interfaces to choose which they
want the code for.

• Integration of the user interace search facility into a code search front end.

2. Overview

Searching for user interfaces can be broken down into three stages: specifying what to search for,
generating candidate solution, and validating those solutions.

To specify a user interface, the user provides a sketch of what is desired along with a set of key-
words describing the application context of the desired interface. Our tool, SUISE, is shown in
Figure 1.

The user interface sketch is provided as an SVG file. If the user has a free-hand sketch of the user
interface, we provide a facility to convert that diagram into an appropriate SVG file. This is
described in Section 5. An SVG diagram is more structured and easier to interpret than an arbi-
trary sketch. Moreover, SVG is a common standard, works well with the web, there are many

FIGURE 1. The user interface for specifying what to search for. The specification includes keywords and an
SVG-based sketch. Search options include which code search engine to use and the scope of the search.

available tools for creating and editing such diagrams, and Apache provides a suite of Java-based
tools for SVG.

When the user completes the specification and hits the search button, we build a Java code search
request for a modified version of our S6 search engine [55]. To do this we transform the user’s
sketch into a hierarchical component description as described in Section 4. This description
includes the components that should be in the user interface and the relationships among those
components. Components can be nested. For each component, the description includes a set of
Java Swing/AWT widget types that can be used to implement this particular component. The
component description from the example shown in Figure 1 is shown in Figure 2.

Next, S6 uses the keywords to find candidate solutions from an existing code search engine such
as OpenHub, Hunter, CodeExplorer, or Github. S6 next looks for candidate user interfaces. A can-
didate solution can be a class that implements a Swing/AWT component or a non-private method
that returns such a component. Next S6 applies transformations to each solution in an attempt to
create code that is compilable, runnable, and only contains the user interface. The result of each
transformation is a new solution that can also be transformed. The end result of these transforma-
tions is a set of candidate user interfaces that might meet the user’s criteria. This process is
described in Section 6.

We validate these solutions in several ways. First, we ensure the code compiles and runs. Second,
the user interface generated by the code needs to match the hierarchical component specification.
Third, the interface needs to look and act correctly. For the first two of these, S6 compiles and
runs the code, and then matches the user interface generated in the run against the component
specification. The various constraints and values included in the specification are used to generate
a matching score which is used to rank the solutions. This is described in the first part of
Section 7.

The task of exploring user interfaces and deciding which are the most appropriate is left to the
programmer. Our tool presents the candidate solutions to the user first by showing images of the
interface as seen in Figure 3. The user can accept or reject the solutions directly, based on their
image. Alternatively, if a solution is clicked on, then the system will run the user interface along
with a viewer that lets the user investigate the widget hierarchy and the various events generated
by interaction. Once the user has selected a set of acceptable solutions, they can hit the “Show the

<COMPONENT HEIGHT=’416.7938537597656’ ID=’U_70’ TYPES=’java .awt.Conta ine r’ WIDTH=’574 X=’27’ Y=’1’’>
<COMPONENT DATA=’My Address Book’ HEIGHT=’51’ ID=’U_51’ LEFT=’U_70’ TOP=’U_70’ TYPES=’javax.swing.JLabe l’ WIDTH=’386’ X=’27’

Y=’15’ />
<COMPONENT DATA=’E-mail’ HEIGHT=’10’ ID=’U_64’ TYPES=’javax.swing.JLabe l’ WIDTH=’41’ X=’334’ Y=’233’ />
<COMPONENT DATA=’Contact Deta ils ’ HEIGHT=’20’ ID=’U_60’ TYPES=’javax.swing.JLabe l’ WIDTH=’171’ X=’321’ Y=’114’ />
<COMPONENT HEIGHT=’32 ID=’U_62’ RIGHT=’U_70’ TYPES=’javax.swing.JTextFie ld’ WIDTH=’207’ X=’393’ Y=’166’ />
<COMPONENT HEIGHT=’291’ ID=’U_52’ LEFT=’U_70’ TYPES=’javax.swing.JLis t,javax.swing.JTextArea ,javax.swing.JEditorPane’ WIDTH=’245

X=’34’ Y=’97’ />
<COMPONENT DATA=’Name’ HEIGHT=’10’ ID=’U_61’ TYPES=’javax.swing.JLabe l’ WIDTH=’39’ X=’337’ Y=’178’ />
<COMPONENT HEIGHT=’33’ ID=’U_67’ RIGHT=’U_70’ TYPES=’javax.swing.JTextFie ld’ WIDTH=’207’ X=’392’ Y=’283’ />
<COMPONENT BOTTOM=’U_70’ DATA=’Crea te a New Contact’ HEIGHT=’29’ ID=’U_58’ LEFT=’U_70’

TYPES=’javax.swing.JButton,javax.swing.JMenuItem’ WIDTH=’250’ X=’32’ Y=’403’ />
<COMPONENT DATA=’Phone’ HEIGHT=’11’ ID=’U_69’ TYPES=’javax.swing.JLabe l’ WIDTH=’41’ X=’333’ Y=’292’ />
<COMPONENT HEIGHT=’33 ID=’U_65’ RIGHT=’U_70’ TYPES=’javax.swing.JTextFie ld’ WIDTH=’207’ X=’392’ Y=’222’ />

</COMPONENT>

FIGURE 2. Hierarchical component specification generated from the diagram shown in Figure 1. Each
component includes a position and size.

Code” button to get a display of the resultant code. This is shown in Figure 4 and explained in
Section 7.

FIGURE 3. The resultant display showing potential solutions for the address book sketch of Figure 1. Each
solution can be accepted or rejected by the user. Moreover, the user can experiment with the solution by
clicking on it.

In the next section we describe S6 and other related work. Section 8. describes our experiences to
date and offers an evaluation of the work. Section 9. then concludes by describing our on-going
work.

3. Related Work

Creating graphical user interfaces has been a difficult problem since the 1980’s when such inter-
faces starting to become common. While most interfaces then and now are still hand-coded, there
have been a wide variety of tools developed to assist and even attempt to automate the process. A
good summary of the state of the art in 2000 is provided by [44].

3.1 User Interface Generation

Modern development environments such as NetBeans, Visual Studio, and Eclipse support user
interface generation. They let the developer drag and drop widgets into containers and to set the
various properties of the widgets. Once a user interface is designed, the basic code for the inter-
face can be generated. The programmer can modify this code to interact correctly with other por-

FIGURE 4. Final display showing the code for the user interfaces the user accepted.

tions of the application. These tools provide some simplification of the process, but are not ideal
in that a) they don’t handle interaction, data validation, or other interface dynamics; b) they often
use absolute positions and it is complex to generate easily resizable interfaces; c) they don’t
handle dynamically generated interfaces where the interface depends on external files or the state
of the application; d) the code that is generated may not be in a style or form the programmer
desires; and e) once the code is modified it becomes difficult to use the support to update or
change the user interface. The latter is a problem because user interface design often involves the
rapid iterative design, exploration and comparison of different interface implementations [23].

There are some tools that attempt to generate user interfaces without actually writing code. Some
of these involve using non-procedural specifications such as Mozilla’s XUL [17]. Others involve
developing various models representing the underlying data and the presentation and then gener-
ating the interface from these models [41,52,61]. The model driven tools have been more success-
ful when applied to specialized environments [19,47]. There has also been work on automatically
adapting user interfaces based on device or user constraints [16,48].

There are also tools that let users take sketches as input for generating user interfaces. JavaS-
ketchIt allows creating user interfaces through hand-drawn geometric shape identified through
gesture recognition [8]. SILK lets designers quickly sketch a graphical user interface using an
electronic pad and stylus and then recognizes widgets and other interfaces elements as the
designer draws them [30]. [59] lets users take a picture of a sketch and maps the sketch elements
into mobile widgets. More sophisticated sketch-based tools can generate GUI code. MobiDev
provides users with a set of predefined elements to draw sketches of applications and then gener-
ates the application based on those elements [60]. REMAUI infers mobile interface code from
screen shots of conceptual drawings using OCR and computer vision techniques but only supports
the top three Android widgets [46].

3.2 Basic Code Search

There has been significant work done on code search. Early work in this area demonstrated that
keywords from comments and variable names were often sufficient for finding reusable routines
[15,36]. Later work did query refinement either directly [65], by looking at what the programmer
was doing [76,77], using class signatures [26], using an appropriate ontology [75], using the sur-
rounding context [24,73], using learning techniques [12], using natural language [10], using an
execution trace [35], using topic graphs [72], using associations [66], using typestates [43], or
using collaborative feedback [70]. Recent approaches, such as Assieme [25], Sorcerer [2,3], Cod-
ifier [4], Exemplar [18] and Portfolio [40] expand basic keyword search to consider program
structure and semantics. Other recent work has looked at more sophisticated IR techniques [67]
and on automatic query reformulation [20,21,62]. More sophisticated search techniques use
theorem proving techniques [63,64]. These are in addition to commercial tools such as Krugel
(krugel.org), Github (www.github.com) and the currently unavailable OpenHub and Google code
searches.

While code search shows much promise, it has not caught on extensively. To some extent, this is
because the various code search engines are not particularly effective. However, even with an
effective search, the programmer still has to do a significant amount of work in order to use the
result. This includes checking whether the code actually does what is desired, adapting the code to

their particular project, possibly debugging the code, and converting the code to their style and
formatting standards.

3.3 Semantic Search with S6

Our prior work on code search is the semantic code search engine S6. S6 attempts to address
several of the problems with current code search technology by effectively automating the multi-
ple tasks the programmer has to do manually in order to use the output of a code search tool
[55,56].

S6 can be used to search for either Java classes or methods. It provides a web-based interface that
asks the user to first provide a description of what is wanted in terms of keywords and the seman-
tics of the target code. The latter includes the signature for the target class or method, one or more
test cases, and optionally contracts (preconditions and postconditions) and security specifications
(e.g. the returned code should not do any file I/O).

Once this data is entered, S6 processes the request. It first uses the keywords with an existing code
search engine (Ohloh, Krugle, Github, GrepCode, or Sourcerer [2]) to get a starting set. It gener-
ally takes the first 100-200 files from the search results to build an initial set of solutions. The next
step is to apply transformations to each solution to generate new solutions. This is done repeatedly
until no more transformations are applicable and no new solutions are generated. These transfor-
mations include relatively simply ones such as change the name of the method to match the name
in the specified signature or reordering the parameters; moderately complex ones such as replac-
ing a parameter with an appropriate assignment; and complex ones such as extracting functional-
ity from a method by finding a top-level statement computing a value of the return type, doing a
backward slice of the code until the only free variables are of the parameter types, and then
extracting the resultant code into its own function.

The system next takes all the resultant candidate solutions and does a dependency check. This
check adds other code fragments such as field declarations and auxiliary methods from the initial
file that might be needed to make the candidate compile. It removes candidate solutions with
unmet dependencies that will not compile. For each passing candidate the system generates a test
program that tests that candidate against the user’s original test cases, contracts, and security con-
straints. This test program is compiled and run using Apache Ant and JUnit. The system does an
additional pass looking at the output from the tests, and will try additional transformations as
appropriate, for example, transformations that handle off-by-one or uppercase/lowercase errors.

Finally, the system takes the candidate solutions that pass all the test cases and passes the resultant
code back to the user. It gives the user the option of different formatting styles [54] and different
orderings for the results (e.g. fastest to slowest, smallest to largest, least to most complex). It also
provides license information for each of the fragments. The user can then take the result, cut and
paste it into their program and use it with the confidence it actually compiles and passes their test
cases.

S6 provides a general framework for using code search for different purposes. It starts with key-
words to identify a set of initial candidate files. Next, it uses a set of transformations that convert
these candidate files into initial candidate solutions. Next it transforms the candidate solutions so
that they are likely to compile and run. These transformations are limited by applying an interme-

diate check as to whether the solution is feasible or not. Finally, it needs to compile and validate
the resultant solutions. Our search tool implements and specializes this framework for user inter-
faces.

3.4 Other Search Tools

Another semantic approach involved defining the behavior to searched for. This was originally
given as input-output pairs [51], and then generalized to allow slightly more flexible specifica-
tions [9,22]. More recent work in this area includes PARSEWeb that does static analysis on code
fragments found by a text-based code search engine and then looks at input-output types [68].
Other techniques such as program patterns [49,71] and keyword programming [34] are designed
to work at the level of a code fragment.

Several search-based systems use test cases as input. CodeGenie [31,32] lets the user define tests
as part of the development process in Eclipse and then uses the method names and signatures
from the test to build a query. It uses an internal search engine that understands program structure
to find code to test and then presents the result to the user. Other recent code search work on test
cases includes [1,27,33] and our S6. Test cases and semantics have also been used in a similar
fashion for finding web services [14,53], but have the problem that the user must know exactly
what is being searched for [28].

4. Specifying User Interfaces

Our goals in specifying a user interface for code search were three-fold. First, we needed to
provide an appropriate starting point for the search process. Second, we wanted to use a natural
metaphor, starting with sketches as designers typically do. Third, we wanted to be able to check
the result against the specification so we could test if a generated search solution was appropriate.

There are two aspects to identifying a starting point for the search. The first is the set of keywords
that will be used in conjunction with an existing code search engine to find initial files. The
second specifies if the solution should be within a single file, within a single package, or spanning
multiple packages.

User interfaces can be implemented in a variety of ways. Simple interfaces and interfaces devel-
oped using user interface builders are often implemented within a single file. More complex inter-
faces, where the user creates custom components, uses custom models for tables or lists, or
implements complex internal functionality, are often implemented in multiple classes within a
single package. Applications that have multiple user interfaces may use a common user interface
package for support code while implementing the actual interface in a separate package within the
system.

In order to accommodate these different user interface implementation styles, we support initial
solutions that are either file-based, package-based, or system-based. For package based solutions
we start with the initial file returned from the code search engine, search for other classes in the
same package, and merge the results into a single virtual file for further processing. This merger
yields a single Java file containing multiple classes that would typically not compile directly.
However, we retain enough information to separate this into multiple files when we need to

compile it. The merger also takes into account the different imports for the different files, yielding
a common set of imports by replacing simple names with qualified names where necessary.

In the case where the user interface might span packages, we start with the initial file, add the
other files for the package as above, and then use the import clauses and qualified names in the
result to identify packages that share a common prefix with the original one. All the classes in
these packages are merged with the original file as well and the process is repeated until no new
packages are identified. The merging here moves all the files to a single package, updating names
and import statements accordingly.

The remainder of the specification is an SVG sketch of the desired interface. We assume that the
user either creates the sketch using an SVG editor or makes use of our SVG conversion facility
described in the next section. SVG is web-friendly, matching the current S6 web interface. More-
over, there are several tools available for creating and editing SVG files such as Inkscape and the
web-based svg-edit. The edit image button on the bottom of the interface will bring up an appro-
priate editor, either Inkscape if it is installed on the system or GLIPS Graffiti. Finally, the search
button at the bottom right of the interface starts the whole user interface search process.

The SVG-based user interface sketch addresses our second criteria, letting the user start with a
sketch.To make this usable by S6 we analyze the sketch and translate it into a hierarchical compo-
nent description in stages.

The first stage finds potential components. We use Apache’s Batik package to map the SVG
diagram into drawable components, either shapes (rectangles, rounded rectangles, ellipses or
general paths) or text. We further characterize shapes as either boxes, input regions, lines, sym-
bols, icons, rounded regions, or text. Input regions are boxes that are either lightly filled or that
have a thicker than normal border. Lines are either lines or are boxes that have essentially one
dimension. Symbols are shapes that are small and can represent either a simple button (e.g. a radio
button), an icon, or an arrow (for a scroll bar). Icons are larger two dimensional symbols and can
represent larger icons or general drawings. Squiggly paths that are long and narrow are taken to
represent potential text. Text regions are further characterized as containing single or multiple
lines.

The next stage creates a hierarchy of the candidate components. This is done by looking at the
bounding boxes of each component and seeing what other components are nested inside. Here we
use an approximation to actual nesting to accommodate minor errors in the sketch. For example,
if a string happens to lie mostly inside a rectangle, but extends outside slightly, we consider the
string to be nested. Once we determine all such nestings, we build a hierarchy by finding the
innermost nesting for each component. Finally, if there is no unique top-level component, we
create one.

The next stage attempts to merge logical groups of components and to characterize the compo-
nents so that we can assign potential widget types for checking. This is done with a series of hand-
coded checks that assign properties to the components and clean up the hierarchy. The actual
checks done here include:

• Looking for components containing only text subcomponents. This characterizes components
as buttons if the text is a simple string and is generally centered or if the enclosing region is cir-
cular; or as single line or multiple line text (input) regions otherwise. If text is present we check

for asterisks to indicate a password or hidden field and for only numbers to indicate a numeric
field. Where components are further characterized, the text subcomponents are removed from
the result hierarchy.

• Looking for combo boxes (buttons with a choice of options). These are text boxes with a sym-
bol on the right. If one is found, the symbol and text are removed.

• Looking for toggle buttons such as radio buttons and check boxes. These are buttons or text
components with an adjacent symbol. Where these are found, a new component is created
spanning both the original components which are removed.

• Looking for menu and tool bars. These are long, narrow regions containing a one or more sym-
bols, buttons or text strings.

• Looking for tables, trees and lists. Tables are characterized as boxes containing both vertical
and horizontal lines and possible text elements. Lists can contain horizontal lines or multiple
text items. Trees can contain vertical lines and have text areas that are properly offset. Any
internal subcomponents are removed.

• Looking for scroll bars. These are either long or narrow regions that contain symbols at the top
and bottom and possibly a box or symbols in the middle. Any internal symbols and boxes are
removed if a scroll bar is identified.

• Looking for spinners. These are numeric fields with one or two symbols immediately to the
right.

• Looking for sliders. We look for a long narrow component with additional symbols on top of it
and with potential text immediately above or below. If a slider is identified, all the internal
components are replaced with a single slider component.

• Looking for drawing areas. These are characterized as a component containing multiple sym-
bols and shapes but no buttons.

The checks here are designed to be forgiving in order to accommodate minor errors in the original
sketch. For example, the checks involving aspect ratios accept an overly broad range of values;
checks for horizontal and vertical lines allow ease; and extra marks or boxes that are small or
seem irrelevant are ignored.

The fourth stage of component processing takes the resultant set of components and computes a
set of relative positional constraints that can be used for checking. Each component can identify
another component that is immediately above it, one that is immediately below, one to the left,
and one to the right. Nested components can also be assigned a position relative to their parent,
for example, a component that is at the top of its parent has the parent identified as the component
immediately above it.

The final stage assigns potential widget types to each component. This uses the properties set by
the above drawing analysis to create a list of candidate AWT/Swing widgets for each component.
This is the only part of the specification stage that is dependent on the user interface being gener-
ated for Java AWT/Swing.

The resultant component hierarchy for the input shown in Figure 1 is shown in Figure 2. The box
on the left is identified as either a JList, JTextArea or JEditorPane; the three boxes on the right are

identified as JTextFields, and the box at the bottom as a JButton or JMenuItem. The remaining
elements are either JLabels or the outermost Container.

Our user interface for specifying what to search for can be seen in Figure 1. The top three boxes
define the starting point for search. The top box contains the keywords; the second box identifies
the type of search; the third box selects the search engine to be used. The sketch, selected from a
file, is displayed below.

5. Generating SVG Diagrams from User Sketches

For the purpose of UI search, we developed a basic image to SVG converter by building a shape
detector and converter. This lets the user start with a free-form sketch of the interface they are
interested in, convert it into an appropriate SVG diagram, and then use the converted diagram as
input into the search process. The converter can start with an jpeg, or png image.

In order to convert from a sketch into a structured diagram, the tool needs to identify the various
user interface components in the original sketch. To do this, the converter uses techniques from
machine learning and computer vision. The components that are needed for the search process are
text and shapes such as circles, ellipses, rectangles, triangles, and tables. We use a gradient based
method to find points or interest to shapes and to infer shape information. A variation of the
Hough Transform [13] is used to detect tables. A number of simplifying assumptions are made:
each hand-drawn shape or table is closed; the boundaries of the shapes and tables have the thick-
ness of a ball point pen trace; and there is at most one table in the image.

5.1 Text Detection

We use a simple contour based text localization method to detect text in the user images. We use
four weak features to train four different linear support vector machines (SVMs), and use adaptive
boosting (AdaBoost) to combine the classifiers to detect contours that are likely to be text. The
four features are: compactness, defined as the ratio of bounding rectangle perimeter over contour
perimeter; solidity, defined as the ratio of contour area over convex hull area; contour area; and
horizontal crossings [45]. We first convert text into contours, then we get a list of text regions by
merging adjacent contours based on the classification results. Text regions are then excluded from
later shape detection. This is similar to other approaches to text recognition in hand-drawn dia-
grams [7,11,50,74]. Figure 5 shows sample detection results before and after merging positive
contours.

5.2 Shape Detection

We develop a novel gradient-based method to detect interest points in an image, and then use the
interest points to infer shape types. By using gradients, our method is scale invariant and can
detect shapes of all sizes.

We first find inflection points using gradients. We compute a gradient vector for each point on a
contour. We use this to compute the gradient angle change at each point. We then choose the local
maximum gradient angle change in a two point window. This effectively filters the contour points
by suppressing points with non-maximal local gradient change. This strategy works well because
rectangles and the triangles have straight edges. The gradient change between two points on a

straight line is close to zero. The gradient only changes significantly at the corner. This observa-
tion helps us eliminate a many unhelpful contour points. The above three steps give us a list of
interest points which are potential corner points on a contour, see Figure 6.

We next obtain contour points by calculating the gradient angle change again among the identi-
fied points. This gives us the corner points on the contour. These corner points are then used to
determine the shape types and table parameters [69].

5.3 Table Detection

Identifying tables is slightly more complex. A table usually build from a set of overlapping rect-
angles. After the shape information is inferred, we use the list of rectangles to find if there exists a
table in the sketch. This is done by finding if there are two or more rectangles that are adjacent
either horizontally or vertically. When a table exists, we collect the corner points from all rectan-
gles and use the corner points to determine the position of rows and columns in the table. We use
a simplified version of the Hough Transform to find the rows and columns in a table by assuming
that our table contains only horizontal and vertical lines. An example is shown in Figure 7.

FIGURE 5. Text detection results for a sample diagram. The boxes on the left indicate the individual text
coutours identified using machine learning. The boxes on the right show the result after merging positive
contours.

FIGURE 6. A shape detection example. The image on the left shows the original image. The center image
shows the points of interest detected using gradiants. The image on the right shows the corner points that are
detected based on the points of interest.

5.4 Converting the Image into SVG

During shape and text detection, we obtain a list of shapes and text regions. Each shape contains
necessary parameters for SVG generation. For example, a line shape contains its two end points
while an ellipse shape contains its center, width, height and its X-axis rotation angle. We generate
SVG diagrams using the python library svgwrite. When generating text regions in SVG files, we
made the decision to use the general word `text’ to represent any text content in the user input,
since we currently do not implement character recognition, although this could be done in the
future. Instead, we leave it to the user to replace the placeholder text in the generated SVG
diagram with the proper text. . Figure 8 shows two sample initial images (on the left) with the
identified shapes marked. The result, with generic text, is shown in the center. The right-hand
images show the resultant SVG diagram with the proper text.

6. Generating Solutions

Once we have an SVG diagram, either directly or indirectly, we are ready to search for similar
interfaces. To do the actual work of searching for a user interface, we substantially modified the
S6 search engine. The modifications generally fall into three categories. The first is handling
packages and systems rather than individual functions or classes. These were described in the pre-
vious section. The second involves restricting the code to that relevant to the user interface by
eliminating unnecessary elements. The third involves getting the resultant code to compile and
run, effectively duplicating what a programmer might do when extracting the interface from the
code.

S6 for user interface search starts with the code generated from either files, packages, or multiple
packages based on the initial code search. Each of these code files (with the latter ones being con-
sidered single files after all the code has been merged), is considered a candidate solution.

FIGURE 7. Sample figure showing what is detected from a figure showing a table with some text.

The next step is to identify potential user interfaces in each solution and generate separate solu-
tions for each. This is done using S6 code transforms. We first convert the package name to a stan-
dard one for the user interface. Next we find all candidate interfaces. These are non-private
constructors for any class that extends java.awt.Container and any non-private methods of a class
that return an object that extends Container. For each such candidate, we create a new solution by
creating a new class with a standard name that either calls the appropriate constructor or first
builds the class and then calls the identified method. Where there are multiple possible construc-
tors, we generate separate solutions for each, using logical default values for any parameters on
the constructor. If the identified methods take parameters, we generate separate solutions using
different default values for those parameters.

Each potential user interface solution is restricted by a transformation that eliminates any code
that cannot be reached from the class added for the solution. The result of this is a set of candidate
solutions that implement a potentially relevant user interface and that are restricted to the code
needed for that interface.

The next step uses existing S6 transforms along with Swing-specific transforms to take these solu-
tions and build new solutions that have a greater possibility of compiling and meeting the user’s
needs.

The transformations that we have added for handling multiple classes, user interfaces and Swing
include:

FIGURE 8. Examples of the overall process converting a hand-drawn sketch into an appropriate SVG
diagram.

6.1 Swing-Specific Transforms

The first set of transforms try to modify the code to compile while preserving the resultant user
interface. These attempt to replace uncompilable code that involve Swing or AWT calls with
equivalent generic code that will compile.

The first transform looks at AWT or Swing method calls and class instance creations (new
expressions) for AWT or Swing classes that involve invalid expressions. Invalid expressions can
arise from field, method or type references to classes that are not included in the search solution,
e.g. are outside of the file, package or system or that are in non-standard libraries the project uses.
The transform replaces each invalid parameter the original statements with an appropriate value.
Any undefined string parameter is replaced with a unique string; integer and Boolean parameters
are replaced with a 0 or false respectively; color parameters are replaced with a valid color; image
and icon parameters are replaced with a known image or icon; parameters that are subtypes of
java.awt.Component are replaced with a simple label; and other parameters are replaced with null.
An example of such a call would be a method that sets the text associated with a widget based on
the result of an external call. In this case, the transform would effectively change the string shown
in the user interface to some S6-specific string but would otherwise preserve the interface.

A second transform deals with anonymous classes that inherit from or implement a Swing or
AWT interface that would not compile because they contain invalid or undefined expressions.
This transform either removes the offending internal methods or replaces them with methods that
will compile by returning default values.

A third transformation looks for calls that use resources by checking for reference to the
java.util.ResourceBundle interface. Since the retrieved code does not include resource files or the
local resources, calls to standard resource routines will compile correctly but would eventually
produce run time errors. Moreover, these are frequently used in user interfaces to internationalize
the code. We replace calls to ResourceBundle with calls to an mplementation of a resource bundle
in our test framework that will return valid values for all requests at run time. We also remove
calls to java.util.Properties.load which would fail because of the non-existent resource files.

A fourth transformation looks for calls that would cause the user interface to hang or become
untestable. For example, if the application attempts to run a modal dialog, the test code, the
method returning the component that needs to be checked would never return. Our test code
would not be able to access the resultant widget hierarchy. Moreover, the test case will eventually
time out and fail, even though a valid interface might be built. Here we remove statements that
contain calls to the various javax.swing.JOptionPane methods. We also remove calls to
java.awt.Dialog.setVisible and System.exit where possible.

A fifth transformation replaces list, tree, and table models offered by the user with simple internal
models provided by our test framework. Many of the compilation and run time problems that are
encountered when trying to run the retrieved code arose because the code attempted to use incom-
plete or unavailable models. This occurs frequently because such models are themselves inte-
grated with the application and not the user interface. They may be built from external files or
from an external database. They might involve classes outside the package or subsystem that was
retrieved. Note that this transformation adds additional potential solutions to be considered. It
does not remove the original solutions. Thus if the original models would work in the returned

code, that solution would still be accepted. The new solutions handle the cases where the original
models would not work.

6.2 General Transformations

In addition to the Swing-specific transformations, there are several generic transforms provided
by S6 that are useful in generating a working user interface from the retrieved code. These gener-
ally are designed to clean up the code and ensure it will compile and be testable.

The first relevant transform handles undefined types or variables. It removes any code that refer-
ences such variables by removing the corresponding statement when possible. There are cases,
however, where this is not possible. For example, if one were to remove a return statement at the
end of a method, the result would not compile. In these special cases, the undefined value is
replaced with a default value, with both 0 and 1 (for numerics), true and false (for Booleans), and
null and non-null (for objects) being tried. The transformation works repeatedly, so that if a decla-
ration is removed a later pass will remove all references to the now-undefined variable. The trans-
formation also removes empty statements and private methods that have no remaining statements.
Note that the AWT/Swing repair transforms cited above are run before this transformation so that
this does not remove any direct user interface code.

Removing code to get it to compile can have various side effects. Additional transformations
attempt to handle these. For example, if a variable assignment was removed, the compiler might
detect an error in that the variable might be used before it is assigned to. Similarly, removing a
statement that might have thrown an exception could make a try-catch block be no longer needed.
Additional transformations check for these and similar cases and clean up the code. For example,
they will add an initial assignment in the declaration of variables that might be used before
assigned to, and remove unneeded try-catch blocks.

Other transforms attempt to clean up the class structure. A simpler class hierarchy will sometimes
allow code to compile that otherwise would fail. One transformation here converts inner classes to
stand-alone classes, adding additional fields (for the implicit this) and changing the constructor as
appropriate. Another transformation removes unneeded implements clauses. A third class-struc-
ture related transform merges a subclass with it superclass to form a single standalone class. In
addition to handling potential future compilation problems, these transformation tend to yield
simpler resultant code.

6.3 Filtering Solutions

To keep the number of solutions reasonable, the system applies a filter that eliminates solutions
that cannot be transformed to match. In the case of user interfaces, it checks to see if the code has
a reference to one of each of the sets of component types needed by each of the user-specified
components. This reference can either be direct or indirect (i.e. might be to a subclass rather than
the class itself). If there is some user component that cannot possibly be implemented by the solu-
tion, the solution is discarded. For example, if the user diagram contains a list, the solution would
have to contain either component of type javax.swing.JList, java.awt.List, or javax.swing.JTable.
The check ignores labels since these are not critical to the resultant interface.

The number of candidate solutions can vary considerably, but generally doesn’t become exces-
sive. For example, the search involved with Figure 1 considered 116 files derived from the
OpenHub search engine, generated 236 initial user interface solutions, and found 569 solutions to
test out of a total of 4,122 that were generated by the various transformations, and tested the first
500 of those to produce the results shown in Figure 3. The ordering of solutions to determine
which to test is a part of S6 and is a function of the initial rank returned by the search engine, the
number of transforms done, and a random value to encourage breadth.

7. Validating Solutions

The next step involves testing whether the code that was extracted as a potential user interface
solution actually matches the user’s sketch and meets their needs.

We take a two-step approach here. First, we match the generated user interface against the user’s
sketch. This match first checks that all the components of the user’s sketch appear in the gener-
ated interface. If they do, then the match computes a score describing the quality of the match.
The second step is to present the interfaces to the programmer, first by showing a screen shot of
the interface, and second by actually running the interface and letting the programmer interact
with it, explore its widget hierarchy and callbacks, and do some simple editing.

To match a generated user interface against the user’s sketch, we run the generated solution and
investigate the widget hierarchy that results. The code generated for each potential user interface
solution returns a user interface object (instance of java.awt.Container) from which we extract the
hierarchy using the basic methods of Container.

In addition to looking at the hierarchy, we ensure that the display is runnable and supports interac-
tion. This includes putting non-window widgets inside a frame and ensuring that dialogs are non-
modal. It also involves determining and setting a reasonable size for the resultant window, check-
ing if the window can be resized and making sure the top level user component is visible.

Both the generated widget hierarchy and the user’s hierarchy are trees. We use a modified form of
tree matching to compare the two. The comparison is loose in that the generated hierarchy is
likely to have many additional components and hierarchy levels. For example, it might be orga-
nized as multiple panels to effect a better layout; a widget might be contained in a scrolled region
(which adds the scroll pane, the viewport, the scroll bars); or the top level might be a root pane
with all its associated components. In addition, the actual implementation might include addi-
tional widgets that the user’s sketch didn’t account for. For example, in the address book example,
there might be additional fields (e.g. telephone or office address) that other implementations
included but the user hadn’t thought of (and might want). We also allow a little leeway in the
match by permitting a small set of original components (one or two, depending on the total
number of components), to not be matched explicitly.

The tree matching we do effectively considers all logical assignments of the user specified com-
ponents to actual widgets in the implementation. Matches need to satisfy four criteria:

• Each component has to be matched with a widget. This constraint can be relaxed to allow a
small number of non-matched components.

• The top-level component needs to match the top-level widget.

• The widget matched with the component must be an object of a class that is either one of the
types associated with that component (in the last stage of the user interface specification), or
must be a subclass of that type. Java reflection is used to check subtypes.

• The hierarchy specified by the user’s components must be reflected in the widgets. If compo-
nent A is a child of component B in the specification, then the widget associated with A must
be a child, either directly or indirectly, of the widget associated with B.

Because there can be an exponential number of matches (consider 20 user labels that can match
20 actual labels), the search is designed to find a reasonable match fast and will stop once a
maximum number of solutions (currently 1000) have been found.

Once a match is found, we compute a heuristic score for that match. For each specified compo-
nent this score takes into account

• Whether the component matched. The score is increased by 200 if so.

• How close the width and height of the component matches that of the widget. For both the
width and height, if the actual value is within 100 of the user sketch value, the score is
increased by 100 minus the delta.

• If text is associated with the component, the editing distance of that text versus any text associ-
ated with the wizard. Here we use reflection to call the getText method of the widget. The score
is increased by a value between 0 and 100 depending on the quality of the match and the length
of the text.

• If left, right, top, or bottom positional constraints are specified for the component, the distance
in the implementation between this widget and the widget associated with the constraint. For
each specified relationship, if the actual widgets are within 10 pixels, the score is increased by
50.

• Actual components that are not matched by a widget are penalized. We subtract 20 from the
score for each extra label, 40 for each extra button or combo box, and 60 for each text field,
list, table or tree.

The scoring tries to take into account the relative importance of each factor in assessing the
match. It is designed so that obvious matches will have the highest score and be shown to the user
first. Because the number of matches to date has not been excessive, the particular values chosen
for scoring are not that important.

The next step is to get the user’s opinion and validation for each of the matched interfaces. For
each solution that matches the specification, S6 creates two results for further matching. The first
is an image of the widget as a PNG file and the second is a runnable JAR file that can be used to
explore the widget. These are passed back to the front end along with a unique identifier and the
score for each solution.

The interface for asking the programmer about the interfaces is shown in Figure 3. The program-
mer is shown the static images of each of the candidate solutions along with an Accept and a
Reject button for each. The solutions are ordered according to their score. In addition, by clicking
on the solution itself, the programmer will bring up two windows, one containing the solution that
the user can interact with, and a second one that displays a tree showing the widget hierarchy of
the solution at the top and a display of all the events that occur when the user interacts with the

window at the bottom. An example can be seen in Figure 9. The interaction window provides the
user with the option of accepting or rejecting the given solution.

Once the user is done perusing the returned solutions, they can hit the button at the bottom of the
panel in Figure 3 to get corresponding code for any accepted solutions. If no solutions are
accepted, then the back end will attempt to continue the search to find additional solutions. If
solutions are accepted, the code will be returned in a browsable window such as that shown in
Figure 4. The user can cut and paste the code from here into their application. Along with the
actual code, information is available about the license under which the code is released.

8. Experience

To test and evaluate our approach for generating user interfaces using code search, we first
obtained sketches of user interfaces. We did this by doing a web search for images using “user
interface sketch”. We then culled the result for usable sketches that represented potential Java
applications (as opposed to web pages or phone applications) and manually converted those
sketches into SVG files. In addition to the address book example shown in Figure 1, we used the
sketches shown in Figure 10. The test cases then were:

• Login: a sample login screen with a remember me button.

• Pizza: an interface for ordering a pizza with different options.

• Pizza1: similar to Pizza except we only have one list for ingredients rather than two.

• Phone: an interface for making a phone call.

• Mail: a mail reader interface.

• Student: a front end to a student information system.

• Comment: an interface for entering comments in a guest book.

FIGURE 9. A sample solution in an interactive window on the left and the exploration window showing the
widget hierarchy at the top and the events from interaction.

• Address: an interface for maintaining an address book

For each example we tried appropriate keywords. Finding the right set of keywords required some
trial and error and we eventually developed a front end for code search that made this easier [58].
We also attempted to find the interface within a file where possible, but did some experiments
with larger scopes. For each case we looked at the results that were returned and verified that at
least one of the results was a relevant good match for the initial sketch. A summary of the experi-

FIGURE 10. User interface sketches used for testing in addition to the address book of Figure 1. From left to
right these are Login, Pizza, Phone, Mail, Student, and Comment.

ments is shown in Table 1. (Note that OHLOH was renamed OpenHub and is was recently taken
off-line.)

The first column of the table indicates the test name. The second column shows the keywords
used in the test and the third and fourth indicate the search engine and search scope respectively.
The keywords basically describe the application and then include the name of one or more of the
expected widgets. This type of search worked will, with the descriptive keywords narrowing the
search to appropriate applications and the widget keywords eliminating non-Swing applications.
Moreover, where we were doing a file-scoped search, requiring both to occur in the same file
gave better results.

The fifth column (Potential Solutions) provides some indication of the work done in the search.
The first number is the number of starting solutions derived from the returned search results. This
is generally the number of unique files found by the search engine. The second number is the total
number of solutions that were generated during the search. The third number is the number of
solutions that could be compiled and tested while the fourth is the number of solutions that were
judged acceptable. The sixth column reports the number of distinct images that were generated
and hence the number of distinct passing tests. This is generally not the same as the number of
acceptable solutions since there are often solutions that are variants of the same original source
and that generate essentially the same user interface. In this case only one is shown to the user ini-
tially (although if that is deemed acceptable, the code for all solutions is returned).

The seventh column (Time) of the table indicates the wall time (in minutes and seconds) that the
search and testing took. The search was run using eight cores of a sixteen core machine. The
process is highly parallelizable and these numbers are dependent on the number of threads being
used by the search. The time generally does not include wait time in accessing the underlying

Table 1: Experimental Results

Test Keywords Engine Scope
Potential Solutions

Initial/Total/
Runnable/Tested

 Found Time

Login login jcheckbox jpassword OHLOH FILE 138/2014/453/101 45 3:00
Login login jcheckbox jpassword GITHUB FILE 89/977/231/44 18 1:42
Pizza jlist jbutton jtextfield

jcombobox restaurant
GITHUB+
OHLOH

FILE 15/1284/142/38 17 2:38

Pizza1 jlist jbutton jtextfield
jcombobox restaurant

GITHUB FILE 8/415/20/9 7 0:43

Mail tree text editor button mail GITHUB FILE 88/626/48/15 5 1:02
Mail tree text editor button mail GITHUB PACKAGE 96/46502/351/2 2* 226:33
Mail tree text editor button mail GITHUB SYSTEM 100/47415/340/2 2* 303:27
Phone phone jbutton OHLOH FILE 127/1077/184/9 8 1:15
Phone phone jbutton GITHUB FILE 109/1067/199/14 14 1:23
Student student jbutton jtext jtable OHLOH FILE 91/499/500/47 47* 3:52
Comment feedback jtextfield jtable OHLOH FILE 112/4977/500/178 114* 8:02
Address name email phone jlist OHLOH FILE 133/4122/500/79 131* 4:16
Address name email phone jlist GITHUB FILE 121/3902/500/154 66* 5:48
Address name email phone jlist GITHUB PACKAGE 115/24650/371/25 19* 69:15

search engine since we are caching the initial search results in order to lessen the load on the
search engines.

The items which are starred in the sixth (Found) column indicate that there might be additional
solutions, but that S6 stopped looking because an initial set of solutions were found. S6 orders
solutions based on their initial ranking from the search engines, the number of transforms used,
and a random value, and limits the number of solutions it considers at each stage using this rank-
ing. The unchecked solutions are held in abeyance to be checked later if no other solutions are
found. The limits include a maximum of 500 solutions to test and a maximum of 2000 active
intermediate solutions.

This can be seen most readily when doing searches at the PACKAGE and SYSTEM levels where
there are many more potential solutions to consider. This is the reason that these searches returned
fewer solutions than the corresponding FILE searches. These searches also take considerable
longer. This is due first to the much large set of solutions considered and second to the fact that
each of these solutions is substantially larger and hence requires more processing.

While the approach has some problems, it also shows a lot of promise. Using code search it is
possible to return working code for a user interface based solely on a sketch and a set of key-
words. We see three primary uses for a tool like this.

8.1 Generating User Interface Code

The obvious use is to produce an actual working interface that is similar to the user’s original
sketch. While this could be done using a user interface builder as is common in many of today’s
development environments, using existing code as a starting point has several potential advan-
tages. First, user interfaces in the repository have typically been used and tested including user
testing in real applications. Second, such interfaces cover conditions that might not have been
anticipated by the original sketch. For example, a sample sketch we did for addresses did not have
a zip code field while the generated ones did. Third, many interfaces in the repository handle
window resizing appropriately, something that many of today’s user interface builders have diffi-
culty with. Fourth, interfaces in the repository typically are more consistent with other interfaces
and thus with user expectations. Fifth, the generated can often supports interactivity, both
between elements of the sketch and with other pieces of the user interface, for example buttons
that are only enabled when fields are completed. For example, in a returned phone interface,
pushing the buttons entered digits into the display and allowed typing into the display area; one of
the returned Pizza1 examples automatically updated the prices as items were added to the order.
Sixth, the code that is returned is often more sophisticated and functional that which would be
generated by a user interface builder. In particular, the generated code often included proper
layout techniques, more sophisticated hierarchies, scrolling where needed, correct adaptation to
changing window sizes, etc. Moreover, the returned interfaces often provide validation code that
highlighted missing or erroneous fields and that only activated buttons when the inputs needed for
them were correct.

While generating user interface code might be a worthwhile goal, actually doing so is problem-
atic. The main issue is the quality and nature of the code that is returned. The system returns com-
pilable, running code that can be copied and pasted into a user project and used directly. However,
the quality of user interface code in the repositories varies widely and some of it should probably

not be propagated. Moreover, the code only includes the user interface and hence will need to be
modified in order to integrate it into the rest of the system. Many programmers would prefer that
code they will have to work on be written in the style and with the conventions they are used to.
While some of this can be taken into account by our search tools (they are able to reformat code in
standard styles using [54]) or by formatting commands in the user’s programming environment,
the result will still be code that the users would not want to use in their project.

8.2 Browsing Potential User Interfaces

A more important use for the tool is as a means for exploring user interfaces. User interface
sketches, especially those done in the early stages of a project, are usually exploratory rather than
definitive. Users often have one or more ideas that they might want to later fill out and complete.
The approach taken in SUISE supports this.

First, the user can take a sketch and then view other, existing user interfaces that are similar to the
sketch. This lets the user see what might be missing (for example, the zip code field mentioned
above), see the range of applications with similar interfaces, and look at alternative layouts and
presentations. For example, Figure 3 shows several different layouts for address book informa-
tion.

Second, the user can interact with the interface representing the sketch and check whether the
interaction is appropriate to the application. This can show some of the additional features that are
included in the code. It also lets the programmer get a better sense of how the interface might be
used. Interaction can also show how the interface deals with different window or screen sizes,
how fields and buttons interact, etc.

Third, the tool can be used as a starting point for exploring a broader range of applications for a
potential application. The matching algorithm used by SUISE insures that most of the functional-
ity specified by the user is provided, but allows other functionality to be included as well. It also
allows considerable leeway on the layout and positioning. The user can sketch a simple form of
the interface they are interested in and then use the tool to understand a range or alternatives based
on that form.

This is seen in the simplified Pizza interface example. Here the sketch included only the minimum
that would be needed for a pizza-ordering interface. The interfaces that match this are typically
going to be more sophisticated and include additional functionality. Some of the matching inter-
faces, for example, are shown in Figure 11. While these don’t match the original sketch, they all
are functional interfaces for ordering a pizza, include other components beyond what was initially
specified (e.g. thick or thin crust) which the user might have overlooked, and illustrate different
approaches that the eventual pizza interface could take.

8.3 Browsing User Interfaces

A third use for the tool is as a part of a front end for exploring code repositories. While GitHub
and other search engines let the user explore the code in the repository, they do not show the user
interfaces that result from that code. The technology included in SUISE can potentially take a user
interface code file and transform it into a running example that the user can either simply view or
eventually interact with.

In a related project, we developed a front end for searching code repositories based on the Code
Bubbles programming environment [58]. The goal of this project was to provide a better environ-
ment whereby the programmer can explore and work with code from existing repositories. We
wanted to provide all the navigation features offered by a programming environment such as
Code Bubbles in an environment for browsing code repositories. We also wanted to offer an envi-
ronment that would provide the feedback and editing necessary for the programmer to extract and
reuse code from the repository.

Code Bubbles typically runs as a separate tool on top of Eclipse using a message-based plug-in
mechanism [57]. It includes a small Eclipse plug-in which connects to a message bus that the
main environment talks to. Integration is achieved using command messages from Code Bubbles
to Eclipse and informational messages from Eclipse to Code Bubbles. Code Bubbles uses Eclipse
to handle file access and editing, semantic and syntactic searching, compilation, and execution.

Our approach was to replace the Eclipse plug-in with a repository browsing plug-in. This plug-in
handles the same basic set of commands that the Eclipse plug-in does except for those related to
debugging. The back end also supports a small set of additional search-oriented commands such
as initiate a code search against a set of repositories, augment an existing file with other files from
same package or project, find a definition of a name in a given project, return the next set of
results for a code search, mark a package, file, or section of a file as accepted, and output all
accepted definitions to a given directory.

The back end handles going out to various search engines, extracting the source files, and then
simulating the corresponding file hierarchy for Code Bubbles. For each source file, it supports
editing and both text and semantic-based search. For each project, it supports compilation on
demand (as well as after any edits) with feedback of errors. The back end does its own error-toler-
ant compilation, necessary because individual files separated from their original package and
libraries, will generally not compile cleanly.

FIGURE 11. Different Pizza ordering interface found by code search for example Pizza1.

Code Bubbles [5,6] is an attempt to redesign the user interface to programming, making the pro-
gramming environment conform to the programmer’s working model. It does this by displaying
and manipulating complete working sets, collections of task-relevant fragments including code,
documentation, test cases, notes, bug reports, and other aspects of programming [29,42]. The
fragments in a working set may be contained in multiple files, classes, or other modules, so quick
and easy viewing of all these at once is complicated in traditional IDEs. Code Bubbles presents
fragments in fully manipulatable interface elements in order to provide an intuitive arrangement
of working sets. The fragments returned from code search, be they methods, classes or files, are a
good match for this type of exploratory environment.

Code Bubbles includes a variety of features to simplify and support navigation in addition to what
is typically provided by development environments such as Eclipse or NetBeans. It provides a fast
search facility that can be used to look at the code hierarchically or to quickly find classes and
methods with given name fragments. It supports popping up bubbles for definition, references,
and implementations by pointing at a name and either hitting a function key or selection off a
context menu. It provides class overviews that include comment fragments and can be easily
refined. It provides typical environmental facilities to show errors and quickly navigate to them.
Our search framework was designed to make use of all these facilities, letting users explore repos-
itory code just as they would explore their own projects.

We augmented this interface with a facility to show pictures of the user interfaces that might be
implemented by a given file. The user selects the class or file in question and right clicks to select
Show User Interfaces. The repository version of Code Bubbles knows the original source of the
file or class from the repository and sets up a User interface search request similar to what SUISE
would do but specific to that particular source. This request includes a very simple hierarchical
component specification consisting of a single empty component. The back end then will access
the original code from the repository, apply the various transforms to get it to represent a runnable
user interface, and then test it. Any user interfaces that match (regardless of the scores) are then
returned to the front end as images. A bubble in the front end then can display the different user
interfaces in turn. An example of such a bubble is shown in Figure 12.

FIGURE 12. User interface bubble showing the user interfaces inside a repository file.

8.4 Weaknesses

While the approach works in many cases, it still has weaknesses. The first is that the results are
sensitive to the initial selection of keywords. This is due to the fact that the search facilities pro-
vided by existing code search engines are primitive by modern standards both because of the
search techniques used and the difficulty of mapping keywords to programs. Substantial work has
been and continues to be done on code search which should address these problems in the future.
Code Exchange at UCI, for example, can give very good results initially [37-39]. We expect that
these new approaches will find their way into repository search engines over time and that code
search will improve significantly. Since our tool is built on top of existing search engines, we can
easily piggy back on these improvements. Moreover, the time our tool takes is small enough when
doing file-based search so that a programmer can afford to run it multiple times with different
keywords.

A second problem is the time taken to do the search, especially if the search is at the PACKAGE
or SYSTEM scope. The three cases we considered here took hours to complete. There are several
difficulties here. First, they tend to yield a large number of potential solutions that need to be
explored. Second, the size of these solutions (500k-5M characters), and the complexity of analyz-
ing and transforming solutions of this size, means that each solution takes significantly longer to
evaluated. Moreover, the large number of candidates from each solution means that solutions
returned early by the initial search tend to dominate and solutions that are returned later are not
considered fully or sometimes at all. These are problems that can be addressed by doing a better
job of restricting the solutions initially and during the search.

A third problem involves the use of user interface libraries. Our efforts to date have concentrated
on code that uses Swing and AWT directly. Complex applications often use a third party user
interface library, of which there are quite a few. Code that uses such libraries generally can not be
made to compile in a useful manner. It would be relatively simple to extend our tool to let the user
indicate which if any third party libraries should be allowed and to incorporate those into the
search process.

A fourth problem is that more complex interfaces tend to be tightly integrated with the rest of the
application and the rest of the application often depends on external packages or external systems
such as databases. For example, mail applications would typically be built using a table model
that is tied either to a database of mail messages, to a cache front end, or to a sophisticated imap
interface. While we have developed a number of transformations to extract user interface code,
additional, more sophisticated transformations would let us find and return more running exam-
ples.

8.5 Threats To Validity

In addition to the weaknesses cited, there are several things we should note that might affect the
utility and efficacy of the approach and the results of the study. These include:

• The set of sketches chosen might not be representative of what programmers are actually inter-
ested in. Sketches available on the web tend to be for sample applications, not for real world
code.

• The results are dependent on the set of keywords chosen and it is not clear that other users
would be able to choose the proper keywords to get appropriate results for a search.

• Our results only look at Java programs with Swing/AWT interfaces. For other languages and
user interface libraries the repositories might not have enough samples to let the system find
runnable code. Moreover, different and additional transformations would be needed in these
cases.

• We have shown that we can return interfaces from code repositories, not that the interfaces that
are returned are actually useful, either as starting points or as runnable code. This would
require a very different and much more extensive study and is more appropriate after the tool
has been further developed.

9. Conclusions

Our work demonstrates that it is possible to generate a complete, working, interactive user inter-
face from a sketch using code search. We have developed the techniques needed to translate a
sketch into something checkable, to extract the proper code from existing code search engines, to
transform that code into a program that compiles and runs and includes only the user interface,
and then to let the user interact with and select the results of interest.

Some of the lessons learned in the process that will be applicable to future work in this area
include:

• With existing code search engines, the results returned are very dependent on the selection of
search terms.

• The performance of these techniques is acceptable for interfaces that are contained in a single
file; where the necessary code is spread across multiple files, improved performance will be
needed.

• Additional transforms would yield additional solutions.

• More flexibility in matching the specifications to the generated user interface lets the technique
be used for exploration.

• Similarly, it is often better to have the user under specify the interface, both for finding solu-
tions and to facilitate exploration.

• The code returned is interactive and generally does more than the code that would be generated
by a simple user interface builder.

• Additional work is required to transform the resultant code into something that programs
would feel comfortable including directly into their applications.

The code for our implementation of user interface generation by code search is available as part of
the S6 code search tool and can be found at ftp://ftp.cs.brown.edu/u/spr/s6.tar.gz. The test cases
(SVG files) are available upon request.

10. Acknowledgments

This work is supported by the National Science Foundation grant CCF1130822. Additional
support has come from Microsoft and Google.

11. References

1.Marat Akhin, Nikolai Tillmann, Manual Fahndrich, Jonathan de Halleux, and Michal Moskal, “Search by example
in touch develop: code search made easy,” Proceedings SUITE 2013, pp. 5-8 (June 2012).

2.Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre Baldi, and Cristina Lopes,
“Sourcerer: a search engine for open source code supporting structure-based search,” Proceedings ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications 2006, pp. 682-
682 (October 2006).

3.Sushil Bajracharya, Joel Ossher, and Cristina Lopes, “Sourcerer: an infrastructure for large-scale collection and
analysis of open-source code,” Science of Computer Programming 79 pp. 241-259 (2014).

4.Andrew Begel, “Codifier: a programmer-centric search user interface,” Workshop on Human-Coputer Interaction
and Information Retrieval, (October 2007).

5.Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri, William Cheung, Joshua Kaplan,
Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola, Jr., “Code bubbles: rethinking the user interface
paradigm of integrated development environments,” ACM/IEEE International Conference on Software
Engineering 2010, pp. 455-464 (2010).

6.Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri, William Cheung, Joshua Kaplan,
Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola, Jr., “Code bubbles: a working set-based interface
for code understanding and maintenance,” Proceedings SIGCHI Conference on Human Factors in Computing
Systems, pp. 2503-2512 (2010).

7.Geoff Bull and Junbin Gao, Classification of hand- written digits using choriograms2011.

8.Anabela Caetano, Neri Goulart, Manuel Fonseca, and Joaquim Jorge, “JavaSketchIt: issues in sketching the look of
user interfaces,” AAAI Srping Symposium on Sketch Understanding, pp. 9-14 (2002).

9.Shih-Chien Chou, Jen-Yen Chen, and Chyan-Goei Chung, “A behavior-based classification and retrieval technique
for object-oriented specification reuse,” Software Practice and Experience 26(7) pp. 815-832 (July 1996).

10.Shih-Chien Chou and Yuan-Chien Chen, “Retrieving reusable components with variation points from software
product lines,” Information Processing Letters 99 pp. 106-110 (2006).

11.Adam Coates, Blake Carpenter, Carl Case, Sanjeev Satheesh, Bipin Suresh, Tao Wang, David J. Wu, and Andrew
Y. Ng, “Text detection and character recognition in scene images and unsupervised feature learning,” IEEE
International Conference on Document Analysis and Recodngition, (2011).

12.Christopher G. Drummond, Dan Ionescu, and Robert C. Holte, “A learning agent that assists the browsing of
software libraries,” IEEE Transactions on Software Engineering 26(12) pp. 1179-1196 (December 2000).

13.R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,”
Communications of the ACM 15 pp. 11-15 (January 1972).

14.Michael D. Ernst, Raimondas Lencevisius, and Jeff H. Perkins, “Detection of web service substitutability and
composability,” WS-MaTe 2006: International Workshop on Web Services -- Modeling and Testing, pp. 123-135
(June 2006).

15.William B. Frakes and Thomas P. Pole, “An empiracal study of representation methods for reusable software
components,” IEEE Transactions on Software Engineering 20(8) pp. 617-630 (August 1994).

16.Krzysztof Z. Gajos, Daniel S. Weld, and Jacob O. Wobbrock, “Decision-theoretic user interface generation,” In
Proceedings of the 22nd AAAI Conf. on Artificial Intelligence (AAAI-08}, (2008).

17.Ben Goodger, Ian Hickson, David Hyatt, and Chris Waterson, “XML user interface language (XUL) 1.0
Specficiation,” http://www.mozilla.org/projects/xul/xul.html (2003).

18.Mark Grechanik, Chen Fu, Qing Xie, Collin McMillan, Denys Poshyvanyk, and Chad Cumby, “A search engine
for finding highly relevant applications,” Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, (May 2010).

19.Saul Greenberg, “Toolkits and interface creativity,” Journal on Multimedia Tools and Applications 32 pp. 139-159
(2007).

20.Sonia Haiduc, Gabriele Bavota, Rocco Oliveto, Andrian Marcus, and Andrea De Lucia, “Evaluating the
specificity of text retrieval queries to support software engineering tasks,” Proceedings of the 2012 International
Conference on Software Engineering, pp. 1273-1276 (2012).

21.Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia, and Tim Menzies, “Automatic
query reformulations for text retrieval in software engineering,” Proceedings of the 2013 International
Conference on Software Engineering, pp. 842-851 (2013).

22.Robert J. Hall, “Generalized behavior-based retrieval,” Proceedings International Conference on Software
Engineering‚93, pp. 371-380 (May 1993).

23.Bjorn Hartmann, Leith Abdulla, Manas Mittal, and Scott R. Klemmer, “Authoring sensor based interactions
through direct manipulation and pattern matching,” Proceedings of chi 2007: ACM Conference on Human
Factors in Computing Systems, pp. 145-154 (2007).

24.Emily Hill, Lori Pollock, and K. Vijay-Shanker, “Automatically capturing source code context of NL- queries for
software maintenance and reuse,” International Conference on Software Engineering 2009, (May 2009).

25.Raphael Hoffmann and James Fogarty, “Assieme: finding and leveraging implicit references in a web search
interface for programmers,” Proceedings UIST 2007, pp. 13-22 (October 2007).

26.Oliver Hummel, Werner Janjic, and Colin Atkinson, “Code Conjurer: pulling resusable software out of thin air,”
IEEE Software 25(5) pp. 45-52 ().

27.Werner Janjic, Dietmar Stoll, Philipp Bostan, and Colin Atkinson, “Lowering the barrier to reuse through test-
driven search,” SUITE‚09, pp. 21-24 (May 2009).

28.Werner Janjic and Colin Atkinson, “Leveraging software search and reuse with automated software adaptation,”
Proceedings SUITE 2013, pp. 23-26 (June 2012).

29.Andrew J. Ko, Htet Aung, and Brad A. Myers, “Eliciting design requirements for maintenance-oriented IDEs: a
detailed study of corrective and perfective maintenance tasks,” Proceedings of the 27th International Conference
on Software Engineering, pp. 126-135 (2005).

30.J. A. Landay and B. A. Myers, “Sketching interfaces: toward more human interface design,” Computer 34(3) pp.
56-64 (March 2001).

31.Otavio Lemos, Sushil Bajracharya, Joel Ossher, Ricardo Morla, Paulo Masiero, Pierre Baldi, and Cristina Lopes,
“CodeGenie: using test-cases to search and reuse source code,” ASE ‚07, pp. 525-526 (November 2007).

32.Otavio Lemos, Sushil Bajracharya, Joel Ossher, Paulo Masiero, and Cristina Lopes, “Applying test-driven code
search to the reuse of auxiliary functionality,” Proceedings ACM Symposium on Applied Computing, pp. 476-482
(2009).

33.Otavio Augusto Lazzarini Lemos, Sushil Bajracharya, Joel Ossher, Paulo Cesar Masiero, and Cristina Lopes, “A
test-driven approach to code search and its application to the reuse of auxiliary functionality,” Information and
Software Technology 53(4) pp. 294-306 (April 2011).

34.Greg Little and Robert C. Miller, “Keyword programming in Java,” Proceedings ASE 2007, pp. 84-93 (November
2007).

35.Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich, “Feature location via information retrieval
based filtering of a single scenario execution trace,” Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pp. 234-243 (2007).

36.Yoelle S. Maarek, Daniel M. Berry, and Gail E. Kaiser, “An information retrieval approach for automatically
constructing software libraries,” IEEE Transactions on Software Engineering 17(8) pp. 800-813 (August 1991).

37.L Martie, T. D. LaToza, and A. van der Hoek, “CodeExchange: supporting reformulation of code queries in
context,” Proceedings of the 30th International Conference on Automated Software Engineering, (2015).

38.Lee Martie and Andre Van der Hoek, “Toward social- technical code search,” 6th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE), pp. 101-104 (2013).

39.Lee Martie and Andre Van der Hoek, “Sameness: an experiment in coe search,” K mhsamen, pp. 76-87 (2015).

40.Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu, “Portfolio: finding relevant
functions and their usage,” Proceeding of the 33rd International Conference on Software engineering, (May
2011).

41.Gerrit Meixner, Fabio Patern, and Jean Vanderdonckt, “Past, present, and future of model-based user interface
development,” i-com 10(3) pp. 2-11 (2011).

42.B. A. Meyers, A. J. Ko, M. J. Coblenz, and H. H. Aung, “An exploratory study of how developers seek, relate, and
collect relevant information during software maintenance tasks,” IEEE Transactions on Software Engineering
32(12) pp. 971-987 (2006).

43.Alon Mishne, Sharon Shoham, and Eran Yahav, “Typestate- based semantic code search over partial programs,”
SIGPLAN Notices 47(10) pp. 997-1016 (2012).

44.Brad Myers, Scott E. Hudson, and Randy Pausch, “Past, present and future of user interface software tools,” ACM
Transactions on Computer-Human Interaction 7(1) pp. 3-28 (March 2000).

45.Lukas Neumann and Jiri Matas, “Real-time scene text localization and recognition,” IEEE Conference on
Computer Vision and Pattern Recognitioin, (2012).

46.T. A. Nguyen and C. Csallner, “Reverse engineering mobile application user interfaces with REMAUI,”
Proceedings of Automated Software Engineering, pp. 248-259 (November 2015).

47.Jeffrey Nichols and Andrew Faulring, “Automatic interface generation and future user interface tools,” ACM CHI
2005 Workshop on The Future of User Interface Design Tools, (2005).

48.Stina Nylander, “Semi-automatic generation of device adapted user interfaces,” UIST conference companion,
(October 2005).

49.Santanu Paul and Atul Prakash, “A framework for source code search using program patterns,” IEEE Transactions
on Software Engineering 20(6) pp. 463-475 (June 1994).

50.Rejean Plamondon and Sargur N. Srihari, “Online and off-line handwriting recognition: a comprehensive survey,”
IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1) pp. 63-84 (2000).

51.Andy Podgurski and Lynn Pierce, “Retrieving reusable software by sampling behavior,” ACM Transactions on
Software Engineering and Methodology 2(3) pp. 286-303 (July 1993).

52.David Raneburger, Roman Popp, and Jean Vanderdonckt, “An automated layout approach for model-driven
WIMP-UI generation,” Proceedings of the 4th ACM SIGCHI symposium on Engineering interactive computing
systems (EICS ‚12), pp. 91-100 (2012).

53.Steven P. Reiss, “A component model for Internet-scale applications,” Proceedings ASE 2005, pp. 34-43
(November 2005).

54.Steven P. Reiss, “Automatic code stylizing,” Proceedings ASE ‚07, pp. 74-83 (November 2007).

55.Steven P. Reiss, “Semantics-based code search,” International Conference on Software Engineering 2009, pp.
243-253 (May 2009).

56.Steven P. Reiss, “Specifying what to search for,” Proceedings SUITE 2009, (May 2009).

57.Steven P. Reiss, “Plugging in and into Code Bubbles,” Proceedings Workshop on Developing Tools as Plug-ins
2012, pp. 55-60 (June 2012).

58.Steven P. Reiss, “Browsing software repositories,” Unpublished manuscript available at http://www.cs.brown.edu/
people/spr/rebuspaper.pdf, (2014).

59.Marco de Sa, Lums Carrigo, Lums Duarte, and Tiago Reis, “A mixed-fidelity prototyping tool for mobile
devices,” Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 225-232 (2008).

60.Julian Seifert, Bastian Pfleging, Elba del Carmen Valderrama Bahamndez, Martin Hermes, Enrico Rukzio, and
Albrecht Schmidt, “Mobidev: a tool for creating apps on mobile phones,” Proceedings of the 13th International
Conference on Human Computer Interaction with Mobile Devices and Services, pp. 109-112 (2011).

61.Paulo Pinheiro da Silva, “User interface declarative models and development environments: a survey,”
Proceeding of the 7th International Conference on Design, Specficiation, and Verification of Interactive Systems,
pp. 207-226 Springer-Verlag, (2000).

62.Bunyamin Sisman and Avinash C. Kak, “Assisting code search with automatic query reformulation for bug
localization,” Proceedings of the 10th Working Conference on Mining Software Repositories, pp. 309-318
(2013).

63.Kathryn T. Stolee and Sebastian Elbaum, “Toward semantic search via SMT solver,” Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering, pp. 1-4 (2012).

64.Kathryn T. Stolee, Sebastian Elbaum, and Daniel Dobos, “Solving the Search for Source Code,” ACM Trans.
Softw. Eng. Methodol. 23(3) pp. 1-45 (2014).

65.Vijayan Sugumaran and Veda C. Storey, “A semantic-based approach to component retrieval,” Advances in
Information Systems 34(3) pp. 8-24 (2003).

66.Watanabe Takuya and Hidehiko Masuhara, “A spontaneous code recommendation tool based on associative
search,” Proceedings of the 3rd International Workshop on Search-Driven Development: Users, Infrastructure,
Tools, and Evaluation, pp. 17-20 (2011).

67.Stephen W. Thomas, “Mining Unstructured Software Repositories using IR Models,” Ph.D. Dissertion from
Queen‚s University, Canada, (2012).

68.Suresh Thummalapenta and Tao Xie, “PARSEWeb: a programmer assistant for reusing open source code on the
web,” Proceedings ASE‚07, pp. 204-213 (November 2007).

69.Alexander Toshev, Ben Taskar, and Kostas Danillidis, “Shape-based object detection via boundary structure
segmentation,” International Journal of Computer Vision 99(2) pp. 123-146 (2012).

70.Taciana A. Vanderlei, Frederico A. Durao, Alexandre C. Martins, Vinicius C. Garcia, Eduardo S. Almeida, and
Silvio R. de L. Meira, “A cooperative classification mechanism for search and retrieval software components,”
Proceedings SAC‚07, pp. 866-871 (March 2007).

71.Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen, Tao Xie, and Dongmei Zhang., “Mining succinct and high-
coverage API usage patterns from source code,” Proceedings of the 10th Working Conference on Mining
Software Repositories (MSR 2013), pp. 319-328 (May 2013).

72.Shaowei Wang, David Lo, and Lingxiao Jiang, “Code search via topic-enriched dependence graph matching,”
18th Working Conf. on Reverse Engineering, pp. 119-123 (2011).

73.Doug Wightman, Zi Ye, Joel Brandt, and Roel Vertegaal, “SnipMatch: using source code context to enhance
snippet retrieval and parameterization,” Proceedings of the 25th annual ACM symposium on User Interface
Software and Technology, pp. 219-228 (2012).

74.Victor Wu, Raghavan Manmatha, and Edward M. Riseman, “Textfinder: an automatic system to detect and
recognize text in images,” IEEE Transactions on Pattern Analysis and Machine Intelligence 22 pp. 1224-1229
(1999).

75.Haining Yao and Letha Etzkorn, “Towards a semantic- based approach for software reusable component
classification and retrieval,” ACMSE‚04, pp. 110-115 (April 2004).

76.Yunwen Ye and Gerhard Fischer, “Supporting reuse by delivering task relevant and personalized information,”
Proceedings International Conference on Software Engineering‚02, pp. 513-523 (May 2002).

77.Yunwen Ye, “Programming with an intelligent agent,” IEEE Intelligent Systems 18(3) pp. 43-47 (May 2003).

	Seeking the User Interface
	Steven P. Reiss
	Department of Computer Science Brown University Providence, RI. 02912 USA spr@cs.brown.edu

	Yun Miao
	Google 1600 Amphitheater Parkway Mountain View, CA 94043 USA yunmiao@google.com

	Qi Xin
	Department of Computer Science Brown University Providence, RI. 02912 USA qx5@cs.brown.edu
	Abstract
	1. Introduction
	2. Overview
	FIGURE 1. The user interface for specifying what to search for. The specification includes keywords and an SVG-based sketch. Search options include which code search engine to use and the scope of the search.
	FIGURE 2. Hierarchical component specification generated from the diagram shown in Figure 1. Each component includes a position and size.
	FIGURE 3. The resultant display showing potential solutions for the address book sketch of Figure 1. Each solution can be accepted or rejected by the user. Moreover, the user can experiment with the solution by clicking on it.
	FIGURE 4. Final display showing the code for the user interfaces the user accepted.

	3. Related Work
	3.1 User Interface Generation
	3.2 Basic Code Search
	3.3 Semantic Search with S6
	3.4 Other Search Tools

	4. Specifying User Interfaces
	5. Generating SVG Diagrams from User Sketches
	5.1 Text Detection
	FIGURE 5. Text detection results for a sample diagram. The boxes on the left indicate the individual text coutours identified using machine learning. The boxes on the right show the result after merging positive contours.

	5.2 Shape Detection
	FIGURE 6. A shape detection example. The image on the left shows the original image. The center image shows the points of interest detected using gradiants. The image on the right shows the corner points that are detected based on the points of interest

	5.3 Table Detection
	FIGURE 7. Sample figure showing what is detected from a figure showing a table with some text.

	5.4 Converting the Image into SVG
	FIGURE 8. Examples of the overall process converting a hand-drawn sketch into an appropriate SVG diagram.

	6. Generating Solutions
	6.1 Swing-Specific Transforms
	6.2 General Transformations
	6.3 Filtering Solutions

	7. Validating Solutions
	FIGURE 9. A sample solution in an interactive window on the left and the exploration window showing the widget hierarchy at the top and the events from interaction.

	8. Experience
	FIGURE 10. User interface sketches used for testing in addition to the address book of Figure 1. From left to right these are Login, Pizza, Phone, Mail, Student, and Comment.
	Table 1: Experimental Results
	8.1 Generating User Interface Code
	8.2 Browsing Potential User Interfaces
	FIGURE 11. Different Pizza ordering interface found by code search for example Pizza1.

	8.3 Browsing User Interfaces
	FIGURE 12. User interface bubble showing the user interfaces inside a repository file.

	8.4 Weaknesses
	8.5 Threats To Validity

	9. Conclusions
	10. Acknowledgments
	11. References

