
The Paradox of Software Visualization

Steven P. Reiss
Department of Computer Science

Brown University
Providence, RI 02912-1910

401-863-7641, FAX: 401-863-7657
spr@cs.brown.edu

Abstract

Software visualization seems like such a logical and
helpful concept with obvious benefits and advantages. But
after decades of research and work, it has yet to be suc-
cessful in any mainstream development environment. What
is the reason for this paradox? Will software visualization
ever be actually widely used? In this paper we argue that
most past and current work in the field (our own included)
is out of touch with the reality of software development
and that new approaches and new ideas are needed.

1. The Failure of Software Visualization

When we design and develop software we draw pic-
tures. When we create data structures we draw pictures.
When we explain software we draw pictures. When we
teach software we draw pictures. When we debug software
we draw diagram what is happening. When we analyze
software we draw pictures. Pictures, diagrams, visualiza-
tions are central to the way we think about software.

Computers are good at drawing pictures. They can
render graphs with hundreds of nodes and provide ani-
mated zooming and panning over graphs of thousands or
more nodes. They can do high-density information visual-
ization using statistical diagrams, dot plots, tree maps, and
other technologies. They can create movies on the fly
showing how things change.

Computer-based visualization and software should be
an ideal match. Visualization should be central to our pro-
gramming experience. Programmers should be using it
when as they develop programs, when they analyze
systems statically, when they look at the dynamic behavior
of their systems, when they are debugging, when they are
testing, and even when they are editing or modifying exist-
ing code.

Indeed there are examples where visualization is used in
software development. Object-oriented design is generally
done today using UML which consists of a variety of
graph-based notations [3]. Developers who use UML draw

use-case diagrams, class diagrams, state charts, interaction
diagrams, etc. to describe their system. They also tend to
enter a lot of text behind the diagrams using dialog boxes
and the like to provide the necessary details. There have
also been a number of successful domain-specific visual
languages. One widely used example is LabVIEW from
National Instruments for gathering and analyzing data from
test and control instruments.

However these successful examples are relatively rare
and are quite specialized. Programmers quickly give up the
UML for header or interface files and ignore the UML
notations once the program is written. Visual languages
work well in specific domains but, despite much work,
have had little success for general programming.

The areas where we expect visualization to have the
most impact are in everyday software development and
understanding. These are the areas that are the most expen-
sive and important and where there is the biggest payoff.
Yet this is were software visualization is not widely used.

None of today’s mainstream programming environ-
ments feature visualization. None of the standard program-
ming tools used today uses visualization in anything but
the crudest way. The various experiments with visualiza-
tion, even when they appeared in production environments,
have failed; successor environments did not feel it was
worth reproducing visualization tools. Programmers don’t
use visualization tools and don’t seem to want to use them.

What is the reason for this paradox? Why have we as a
community failed to achieve what seems to be a simple and
obvious task? Is software visualization hopeless or just
misguided? Where are we heading? Whither software visu-
alization — or will software visualization wither?

These are the questions that we need to explore before
we do more work in the field. These are the questions that
should guide the future of software visualization.

2. Reasons for the Failure

We should begin by trying to understand why software
visualization has not been successful. There can be any
1

number of reasons. It can be that our work is ahead of
its time, that most programmers don’t have the graph-
ics or compute hardware needed to take advantage of
the visualizations we have produced. It can be that pro-
grammers are too fixed in their ways and won’t take the
time to learn or use new tools, even if they are shown to
be beneficial. It can be that today’s production environ-
ments are aimed at the lowest common denominator
both in terms of hardware and in terms of programmers
and thus can’t afford to incorporate expensive visual-
izations.

But it is not any of these. While they all might be a
factor, advanced programmers have been using sophis-
ticated workstations for decades and have shown great
flexibility in terms of tools, languages, and environ-
ments. Moreover, today’s programming environments
are so feature laden that visualization tools could be
incorporated without undue cost or complexity.

Others hypothesize that visualization needs to be
“roundtrip”, i.e. that the visualization should be tied
directly to the underlying data so that the data or
program being visualized can be changed by modify-
ing the visualization [1]. While a strong case can be
made for visual languages in appropriate domains,
most of the applications where visualization seems
promising and has the largest potential payoff, in par-
ticular program understanding, require views that are
by necessity too abstract to be editable [2]. If we
restrict our visualizations to views that are editable, we
are losing the real power of abstraction and of visual-
ization.

Instead, I propose that the reason that software visu-
alization has not been successful is that almost all
efforts in the field to date have and continue to be out
of touch with reality. The efforts are out of touch with
the reality of why we want to do visualization in the
first place. The efforts are out of touch with the reality
of modern software. The efforts are out of touch with
the reality of software developers. To be successful
today or in the future, software visualization needs to
be grounded in these realities and it just isn’t.

3. The Reality of Understanding

Lets first consider the motivation for doing software
visualization during programming. The basic motiva-
tion is program understanding. We want to use visual-
ization to understand our designs, our code, the
structure of our code, our data structures, the execution
of the code, the history of the code, and the uses of the
code.

Most of today’s visualization systems claim to do
some form of understanding. Take my own systems for
example. I used visualization in Pecan to show alterna-

tive views of the program control flow and to show
dynamic execution [5]. I used static hierarchical views
of the call graph and class hierarchy in FIELD to show
the program structure [6,7]. Dynamic views in FIELD
displayed memory utilization, resources, and file usage
[8,9]. BLOOM concentrated on program traces and
visualizations of data that resulted from analyzing
these traces [10,11]. My most recent systems, JIVE and
JOVE, show the dynamic behavior of software systems
in terms of class and package usage, thread states,
program phases, and basic block counts [12,13].

While these systems have made great demos and
some have even been widely used, they really do not
address the reality of program understanding.

Think of a program understanding problem that you
have had to solve recently. For example, I have a soft-
ware system that does static flow analysis of Java sys-
tems. Every now and then, generally because of the
semantics of native methods or the use of reflection
deep inside libraries, it fails to complete the analysis.
The result is its output listing the routines that were
never called or that were called and never returned con-
tains routines that should have been called or that
should have returned. To determine what is wrong in
this case, I currently analyze a multiple-gigabyte trace
file. What I really want is a visualization that would
show us the dependencies among routines that were
called and never returned or that would show blocks of
code (or just the calls) that are never executed, so that I
could quickly track down where the problems are and
which problems are the most critical ones.

But no “visualization for program understanding”
system today can even approach this problem. I could
write such a system, but it would take a lot of effort and
I would just throw it away once I found all the prob-
lems with the code or the libraries. Its just not worth
the bother.

Another recent understanding problem I experi-
enced was with a web crawler where multiple threads
are instantiated to access and process web pages. The
application runs normally most of the time, but occa-
sionally slows to a crawl. I needed to know if this is
just due to a coincidence of lots of large or slow pages,
or if there is a synchronization problem in the code. I
wanted a visualization that would tell me what the
threads where doing in terms of the application, i.e.
were they waiting for a connection, processing
rotots.txt, waiting to read, parsing the page, outputting
results, etc. My JIVE system could tell what state the
thread was in, but this was in generic terms, not in
terms of the application, and noting that a thread was
doing I/O or waiting didn’t really tell me what it was
doing.

Another example with the same web crawler
program occurred when we noted that the tag table for
the HTML class was a hash table and hence all calls
were synchronized. We wanted to know whether this
would cause problems if we have multiple threads
attempting to parse HTML simultaneously. This seems
to be a good candidate for a visualization, but no visu-
alization systems can provide this level of detailed
information without significant work by the program-
mer.

A fourth example occurred in my software engi-
neering class where the students were implementing
the finite state logic for a 3D pinball program. In order
to understand odd behaviors of their system, they
needed to understand the internal state of the various
automata that implement the pinball game. This is
something that should be easy to visualize, but no
system that I know of can provide an suitable visualiza-
tion that would let the students correlate the internal
state with the program as it runs.

The visualization systems that have been develop
address “generic” understanding problems. They look
at the program structure from the generic view of the
class hierarchy or the call hierarchy. They look at
dynamic understanding from the generic view of what
basic blocks are being executed, what resources are
being used, what is being allocated, or what states the
threads are in.

But the reality of software understanding is that pro-
grammers ask specific questions, not generic ones.
They want to know what state the threads of a system
are in not in terms of generic states, but rather in terms
of logical states from the applications point of view.
They want to understand abstractions of their specific
internal structures or the resultant execution as in the
above example. They want to understand resource
usage not globally, but rather specific to a particular
event or sequence of events and then in higher level
terms than the default system statistics.

I have argued and even demonstrated that systems
that provide generic visualizations can be used for
these specific problems. What is actually true here is
that if I know what the solution to a specific problem is,
I can find evidence in the generic visualization for that
solution. Generic tools provide generic answers. Given
the generic answer, is generally possible to guess the
specific answer, but this is often difficult to do a priori
and the result is a guess, not a definitive answer. Given
such a guess, the programmer still has to do significant
work to get the desired result. Moreover, programs are
very different from one another and what is interesting
on one program is not the same as what is interesting in

another. Generic solutions only work for generic prob-
lems, not for specific problems in specific programs.

The reality of program understanding is that under-
standing involves dealing with specific problems that
require program and task-specialized solutions and that
software visualization has not addressed these issues.

4. The Reality of Software

The second reality that software visualization needs
to address is the software itself. To be useful and incor-
porated into the mainstream of programming, software
visualization must address the real software systems
where the problems are. But what are today’s software
systems?

Today’s systems today are large. Microsoft talks of
dealing with tens of millions of lines of code in a single
application. Applications of over a million lines are
quite common and are typically the ones that have the
most problems and where software visualization would
be the most useful. Moreover these systems are dynam-
ically complex, with large numbers of dynamically
allocated objects, multiple threads of control, sophisti-
cated user interfaces, and large libraries.

Today’s systems are also structurally complex and
heterogeneous. Web applications are typical today.
These consist of html with embedded javascript, php,
java (either as server pages, servlets, applets, or a
server), SQL with a back end database system, C++
legacy systems, a variety of cgi scripts, and lots of
other possibilities.

Tomorrow’s systems, the ones being built today to
run in the future, are even more complex. These will
use web services and outside components over which
the programmer has no control nor detailed knowledge.
These systems will be highly distributed, running
unpredictably on grids of machines, sharing data using
peer-to-peer facilities, and interacting at network
speeds with other, possibly outside, systems.

Software visualization systems and solutions have
generally addressed yesterday’s problems. They do not
scale to handle today’s large systems (although they
now do scale to handle what were large systems a
decade ago). They often do not deal with multiple
threads of control even though most modern applica-
tions are multithreaded. They do not address the heter-
ogeneous nature of today’s software, instead
concentrating on a single aspect or single portion of the
system. They generally do not even think about how
they are going to be used in understanding or analyzing
tomorrow’s systems. More importantly, the visualiza-
tion solutions the community has developed really do
not easily generalize to handle these more complex
systems, and when they do, the result is often unusable

because it is overwhelming and the relevant informa-
tion for a particular problem is so hard to extract.

The reality of software is that it is complex and con-
tinually growing in complexity in a variety of ways. If
we want software visualization to be a practical tool for
the programmer, we have to develop visualization tech-
niques and systems that are designed to handle the
complexity of tomorrow’s systems, not yesterday’s.

5. The Reality of Developers

The third reality that software visualization needs to
address to be successful is the reality of how develop-
ers work and what they need to do their work. Visual-
ization will be incorporated into environments when
developers find it useful and demand it. But when will
this be?

Software developers want to do their development.
They want to do it as quickly, as accurately, and as high
quality as possible. They will use whatever means they
can to achieve these goals. This means that they will
use new tools, languages, resources, etc. if (and this is
a big if) the cost of learning that tool does not exceed
its expected rewards and the tool has been and can
easily shown to provide real benefits.

Software visualization has generally failed on both
accounts. It is rare to find a software visualization tool
that an uninformed programmer can take off the shelf
and use on their particular system immediately. Most
software visualization tools (many of mine own
included) require the programmer to do significant
work before they can receive any benefits. Some tools
require extensive configuration to get a program into an
environment and get it understood by the environment.
Some tools require recompilation with different argu-
ments. Some require a long program analysis process
with a large database. Some require that the user work
with specific languages or subsets or convert portions
of the system for compatibility.

Moreover, even when the visualization tool works
on a system, significant work is generally required of
the programmer to tune visualization to the specific
problem or task or even the particular system. For
example, the programmer might need to specify the
appropriate levels of abstraction for the different com-
ponents in a large system in order to have the resultant
display make sense. Alternatively, they might have to
understand a variety of different analysis or visualiza-
tion techniques to determine which makes the most
sense for their particular task.

The real failure, however, is that we have not dem-
onstrated the superiority of our detailed visualizations
to much simpler techniques. Consider the case of the
call graph and class hierarchy browsers that were

incorporated into SGI’s, Sun’s, Dec’s and other UNIX
programming environments in the early 1990s. These
provided pretty pictures and did a reasonable job of
showing the program’s structure. Moreover, the good
ones could handle large programs through appropriate
abstraction. However, in the next generation of pro-
gramming tools (and still today), these were replaced
by simple tree browsers that neither contain all the
information of the original views nor do a good a job of
explaining the nuances of the program’s structure.

There are several reasons for this particular visual-
ization failure. One is screen real estate — the graphi-
cal visualizations took up a lot more screen space
without providing a significant amount of additional
information. Second was how the views were used.
Almost all the use of the structural views was for navi-
gation, not for understanding [4]. If all you want to do
is navigation, then the simple tree view is a much better
interface for the programmer. The third reason is the
configuring the graphical views for a large system took
considerable programmer effort, whereas configuring a
tree view is much simpler and obvious.

Showing programmers the benefits of software visu-
alization also means dealing with the reality of
addressing specific problems rather than generic ones
and of handling real software systems. The bottom line
here is that we have not convinced programmers that
visualizations are worthwhile.

6. The Future of Software Visualization

What does all this mean for our work in software
visualization. Clearly, if we as a community want to
have a real impact on software development, we have
to change the focus of our software visualization
efforts so that they are in touch with reality. We have to
think in terms of the future and not the past. We have to
meet a variety of difficult and challenging goals. We
have to reinvent software visualization as a solution to
programmers problems rather than a generic solution
looking for a problem.

We first have to comprehend what are the under-
standing problems that software visualization should
be used to address. We shouldn’t be thinking in terms
of generic problems on yesterday’s systems, but rather
thinking about how we can make it easy for the pro-
grammer to use visualization or visualization tools to
address specific problems on future systems. More-
over, we have to continually think about cost-benefit
tradeoffs in any tools or visualizations we create.

With this in mind, we can enumerate some specific
questions that we should be asking when we approach
software visualization research or when we consider

building a new software visualization tool or system.
These include:

• Does the approach scale to handle realistically sized
systems today and in the future or is there some
inherent limit (e.g. screen space) that is going to get
in the way?

• Does the approach handle the complexities of cur-
rent and future software? It makes no sense to
develop visualizations today for single threaded
applications when many of today’s systems are and
most future systems are going to be multithreaded.
Similarly, one should ensure that the approach can
handle distributed applications, multilingual appli-
cations, libraries, external components, databases,
etc.

• Is the approach easy to use? Does the user need to
understand a lot about the visualization or the visu-
alization system in order to get anything out of the
views? Here one can consider using intelligent or
adaptable displays, very simple navigation and ori-
entation techniques, and other ways of adapting the
visualization to the task at hand.

• Does the visualization restrict itself to relevant
information? When we draw pictures, we confine
them to the information relevant to the task at hand.
To answer specific problems, a visualization has to
address these problems without irrelevant details.
As our systems get more complex, finding the
appropriate visual abstractions becomes more criti-
cal.

• Are there clear and obvious benefits of the visual-
ization that a programmer or other developer can
comprehend and appreciate? Will programmers
understand how these benefits apply to their own
systems?

• Does the approach let the programmer address very
specific problems using the programmer’s own con-
cepts? What types of problems can it deal with and
how specific can the programmer make it?

• Does the approach let the programmer address real,
relevant, and important problems in software devel-
opment or are the problems being solved second-
order? Is visualization the best way of addressing
these problems?

• Can the approach be quickly and easily customized
to deal with a particular problem? Can there be a
simple, easy-to-use tool that lets the programmer
define the problem that needs visualization? Can we

then create a visualization system that will take this
problem definition and create an appropriate visual-
ization with minimal programmer intervention?
These are the issues that we need to address if we

ever want software visualization to be successful.
These are the questions that we have to ask of our-
selves if we want our research to be used and appreci-
ated. These are the directions we need to follow if we
want software visualization to be a viable research
field.

7. References

1. Stuart M. Charters, Nigel Thomas, and Malcolm Munro,
“The end of the line for software visualization?,” Proc 2nd
VISSOFT, (September 2003).

2. U. Dayal and P. A. Bernstein, “On the updatability of
relational views,” Proc 4th Intl. Conf. on Very Large Data
Bases, pp. 368-377 (1978).

3. Object Management Group, OMG Unified Modeling
Language Specification, OMG (www.omg.org) (September
2001).

4. Scott Meyers and Steven P. Reiss, “An empirical study of
multiple-view software development,” Software Engineering
Notes Vol. 17(5) pp. 47-57 (December 1992).

5. Steven P. Reiss, “PECAN: program development systems
that support multiple views,” IEEE Trans. Soft. Eng. Vol.
SE-11 pp. 276-284 (March 1985).

6. Steven P. Reiss, “Interacting with the FIELD
environment,” Software Practice and Experience Vol. 20(S1)
pp. 89-115 (June 1990).

7. Steven P. Reiss, “Connecting tools using message passing
in the FIELD environment,” IEEE Software Vol. 7(4) pp. 57-
67 (July 1990).

8. Steven P. Reiss, FIELD: A Friendly Integrated
Environment for Learning and Development, Kluwer (1994).

9. Steven P. Reiss, “Visualization for software engineering -
- programming environments,” in Software Visualization:
Programming as a Multimedia Experience, ed. John Stasko,
John Domingue, Marc Brown, and Blaine Price,MIT Press
(1997).

10. Steven P. Reiss, “Bee/Hive: a software visualization
backend,” IEEE Workshop on Software Visualization, (May
2001).

11. Steven P. Reiss, “An overview of BLOOM,” PASTE ’01,
(June 2001).

12. Steven P. Reiss, “JIVE: visualizing Java in action,” Proc.
ICSE 2003, pp. 820-821 (May 2003).

13. Steven P. Reiss and Manos Renieris, “JOVE: Java as it
happens,” Proc. SoftVis ’05, pp. 115-124 (May 2005).

	The Paradox of Software Visualization
	Steven P. Reiss
	Department of Computer Science
	Brown University
	Providence, RI 02912-1910
	401-863-7641, FAX: 401-863-7657
	spr@cs.brown.edu
	Abstract
	1. The Failure of Software Visualization
	2. Reasons for the Failure
	3. The Reality of Understanding
	4. The Reality of Software
	5. The Reality of Developers
	6. The Future of Software Visualization
	7. References

