
A Framework for Abstract 3D Visualization

Steven P. Reiss1

Department of Computer Science, Brown University, Providence, RI 02912
(401)-863-7641, spr@cs.brown.edu
Abstract
This paper describes a package, PLUM, we have devel-

oped for visualizing abstract data in three dimensions. We
are particularly interested in visualizing information
about programs, both static and dynamic, but the package
should have a more general applicability. The package
provides a framework to support a wide variety of different
3D visualization techniques, many of which have been
implemented. The package also provides support for 3D
graph layout using a variety of different layout heuristics.

1.0 Introduction

This paper describes a package for visualizing abstract
data, particularly information about programs. Our goal is
to provide a system where the programmer can specify
what information should be displayed and how it should
be displayed with a minimal amount of work. We are
designing a framework to accomplish this, complete with
declarative visual and textual languages. This framework
is based on a package for abstract 3D visualization,
PLUM, that is the topic of this paper. This package
encompasses a wide variety of different strategies for pre-
senting program visualizations and provides an extensible
backbone for these strategies.

Program visualization is the graphical display of infor-
mation about a program. While there have been many pro-
gram visualization efforts, these have been limited in both
scope and application because the amount of information
to be included is far more than can be displayed. Practical
program visualization must provide tools to select and dis-
play just the information of interest. It must provide qual-
ity visual displays that look “nice” and offer a user-
friendly interface for browsing and querying. Finally,
practical program visualization must make use of the capa-
bilities of modern workstations including 3D graphics to
provide as much information as possible in a small dis-
play.

A practical program visualization system can be
achieved by focusing on abstractions [19]. Abstractions
can be specified as queries on a heterogeneous object-ori-

1
Support for this research was provided by the NSF under grants
CCR9111507 and CCR9113226, by DARPA order 8225 and by ONR
grant N00014-91-J-4052
ented database. The basic idea of looking at programs
through a database was explored by Linton [14]. This
work assumed a single relational database of program
information. We start with program information from vari-
ous sources. These are united using an extensible object-
oriented database schema rather than a full database. Both
textual and visual query languages are provided for this
schema. The result of the query is a set of objects. These
are stored in an in-core object-oriented database as the
source for visualization.

The visualization of program information can be
viewed as the definition of appropriate graphical output for
a set of abstraction objects. This is done in two steps. The
first step is to map the abstraction objects into objects that
represent an abstract graphical structure such as a layout
containing objects representing nodes and arcs. At this
level, no information about position, layout, routing, etc.
needs to be provided. To make these mappings declarative,
the target space of graphical objects must be well defined.
One of the tasks that we have undertaken in PLUM is to
develop a catalog of approaches to 3D presentation of
structured data to explore this space. PLUM also provides
the mechanism to integrate these approaches and to add
new approaches easily.

The second step is generating a display from the
abstract graphical structure that results. This involves
automatic layout and constraint satisfaction for each of the
graphical objects. This also involves supporting incremen-
tal modification of the display through animation.

In the next section we describe related work. Section 3
looks at the design space for 3D structured presentations,
considering the various strategies that have been imple-
mented already in PLUM as well as some that we have
considered but not yet implemented. The fourth section
looks at the structure of PLUM itself to understand how it
serves as a backbone for these presentations. The fifth sec-
tion looks at the problem of layout and routing in 3-space.
We conclude by discussing how we have been using
PLUM and the open problems.

2.0 Background

While there has been substantial work on program visu-
alization, most of this work has been directed toward pro-
viding specific visualizations such as a call graph or a
class browser, and little has been directed toward a generic

framework. The work that is closest to our approach
includes our earlier efforts on data and program visualiza-
tion, work related to the display of user data structures,
work directed at graphical editing, work on systems for
algorithm animation, and visualization efforts that attempt
to use a single paradigm for a variety of applications.

Our previous work addressed the issue of 2-D visual-
ization of abstract data [15,17]. This work supported our
work on visual languages in the GARDEN system [16]. It
was used to display a variety of different visual languages
including Petri nets, statecharts, finite automata, flow
charts, and data flow diagrams, as well as arbitrary user
data structures. The package was later used in the FIELD
environment to support browsers for call graphs, class
hierarchies, and make dependencies [18]. The package had
three parts. The first, GELO, provided a framework for
abstract 2-D displays. The application created displays by
building a hierarchy of GELO objects. There were four
basic flavors of objects, data objects to represent simple
nodes, tiled objects to represent structured composites, arc
objects to represent connections, and layout objects to rep-
resent graphs. By providing a variety of different shapes
and forms of data objects and by providing flexible heuris-
tics for layout objects, GELO could compose these objects
to form the different visual languages and most of the
desired data structure displays. The second package,
APPLE, provided an automatic mapping facility from user
data structures into GELO graphic objects. The mapping
could be specified by the user declaratively using a visual
editor. APPLE also provided reasonable default displays
for most structures. The final component, PEAR, provided
graphical editing capabilities. It offered a user interface for
manipulating the resultant diagrams, and provided call-
backs to the application for editing operations.

GELO was not the first system that attempted to display
user data structures. Early work in this area by Brad Myers
allowed the user to program a display using a graphics
library to code the display for each type [12]. Later work
by Baskerville attempted to integrate simple displays into
a debugger [1]. Recent efforts along these line include
VIPS [9], and the commercial data structure display facili-
ties provided by Centerline’s C environment and by SGI’s
Codevision. This work is all fairly specialized in that it
attempts to provide standard displays of data structures.
Myers’ efforts allowed the user to design the data structure
display, but required the user to do this design procedur-
ally.

PEAR demonstrated for us the utility of providing a
general purpose graphical editor as part of a user interface
toolkit. This has also been recognized by a number of
other groups and there have been a variety of generic
graphical editors that can display abstract program data.
One of the earliest such editors was Unidraw developed as
part of Interviews [10]. This editor used object-orientation
to provide an extensible framework for editing somewhat
similar to that we provide in PLUM. Later examples
include Go [5] and a variety of graph drawing widgets for
Motif. The Garnet environment provides a slightly differ-

ent basis for editing [13], a powerful low-level environ-
ment based on constraints that can be used to build a
higher level graphical editor.

Another area in which a general display mechanism
supports a variety of applications is algorithm animation.
The Balsa system provided a high-level graphics library
where different animations could be easily coded [2]. The
TANGO system followed this up by providing a formal
framework consisting of an animation algebra where the
animations could either be coded procedurally or by dem-
onstration [22]. More recent work on Zeus added color
and sound and is now incorporating 3D visualizations
[3,4]. While these efforts are suitable for a variety of dif-
ferent animations, they concentrate on providing high-
quality displays of smaller amounts of information and
generally expect the developer to do a substantial amount
of work in implementing the animation.

There have been other efforts aimed at providing
generic display facilities for a variety of applications.
Flynn and Maier have worked on the specification of dis-
plays for objects from an object-oriented database [8].
While this work is related to abstraction visualization,
their graphical displays are quite limited. Work at Bell lab-
oratories has applied a single file visualization technique
to a variety of different applications [7]. We have incorpo-
rated their ideas on file display into our system as one of
the presentation mechanisms we provide.

3.0 Abstract graphical objects

Abstract graphical objects provide the foundation of
our approach to visualization. They are the target of the
mappings from abstraction objects and the starting point
for generating a concrete 3D presentation. As such they
must satisfy several criteria:
• Completeness. They must be able to represent all the
different target visualizations that we want to include.
• Extensibility. Since we cannot anticipate all visualiza-
tions initially, it should be easy to add new graphical
objects to the system.
• Hierarchy. Each visualization should be broken down
into its basic components which in turn should be abstract
graphical objects. This makes for simpler objects and
more logical mappings from abstraction objects to graphi-
cal objects. It also makes combining visualizations easy.
• Parameterization. All the properties of each graphical
object should be parameterized. This allows the mapping
from graphical objects to specify these properties and sup-
ports declarative mappings.
• Abstraction. The graphical objects should be display
independent. They should not require placement informa-
tion nor should they make assumptions about their physi-
cal location or size on the display.
• Concreteness. At the same time, the objects should
allow the setting of display properties. This permits the
user to move objects around by saving the resultant place-
ment and allows location and size to represent characteris-
tics of the abstraction objects.

Abstract graphical objects are represented in PLUM as
entities with properties, constraints, and components. The
properties represent the parameters that control how the
object is to be drawn. The constraints relate objects to each
other. The components identify other objects that are con-
tained within this object.

A common set of properties is shared by all objects.
These include stylistic properties, sizing information, and
a priority setting. The priority value is a general means for
specifying that an object is important and should be
emphasized in the display. Different graphical objects treat
this differently. The style properties include color (surface,
text, line, and marker), font (family and size), line and fill
styles. The sizing properties allow the object’s size to be
scaled by a multiplier and a addend independently in the
three dimensions. This is useful for explicitly controlling
the size of the object, for example making the size propor-
tional to a value associated with the abstraction data.

As a first step toward a viable framework for visualiza-
tion, we determined the set of abstract graphics objects
that covered a representative sample of the desired visual-
izations. We drew the visualization ideas from our own
experience, from a review of the literature, and through
exchanges with other researchers.

The initial set of abstract graphics objects were drawn
from our previous experience with GELO. These are 3D
analogues of the generic objects provided by GELO:
• Data Objects. These represent a box in 3-space that
contains a shape and an optional text string. The shape can
be either 2D or 3D. Additional properties of data objects
include the basic size when no text is included (the size
with text is dependent on the size of the text string and the
font size), the ratio of width to height and width to depth
(to make squares, cubes, etc.), and the opacity of the
object. Data objects have no constraints or component
objects.

Figure 1 shows an example of a 3D call graph display
generated using PLUM. Each container box represents a
file and each smaller box represents a routine. Arcs repre-
sent call connections between functions in a file or calls
from routines of one file to those of another. In this dia-
gram data objects are used to for each of the function
boxes as well as for the labels on each of the file boxes.
• Arc Objects. These represent connections between two
objects. An arc object always appears as a component of
some other object, typically the common parent of what it
connects. The properties associated with an arc object
specify the location where the arc connects to the source
and target objects, the type and style of arrows, and
whether the arc should be splined or not. Arc objects sup-
port components in the form of labels. Each label can be
placed anywhere along the arc. Figure 1 contains several
examples of arc objects, green arcs for connections within
a file box and red group arcs for connections between files.
The line thickness of each arc denotes the number of con-
nections it represents.

• Tiled Objects. These represent connected groupings of
objects. Each tiling consists of a 3D block that is subdi-
vided into rectilinear regions or tiles. The tiling assumes
an integer coordinate space and each tile is specified by
providing the object contained in the tile and two diago-
nally opposite corners of the tile in this coordinate space.
Simple tiled objects are used in figure 1 for the file boxes.
Each file box is a tiling containing two components, a data
object containing the name of the file and a layout object
containing the routines defined in that file.

The tiled object determines the layout of the tiled com-
ponents by solving a system of constraints. These con-
straints are defined by the desired sizes of the components,
the requirement that the coordinate space represented by
the components be consistent (i.e. that all tiles that have an
X coordinate of 1 must line up), and by additional con-
straints that can be associated with the tiling. The addi-
tional constraints linearly relate two dimensions, assign a
particular dimension a constant size, or specify the degree
of flexibility for each component. The various constraints
are mapped into a set of linear equations that solve for the
positions of each tile coordinate. If the system is under
constrained (which it normally is), then additional implicit
constraints are added to make the tile coordinate space be
proportional to the resultant layout. If the system is over
constrained, then the specified constraints are prioritized
and are eliminated in groups until the system is solvable.
• Layout Objects. These represent a rectilinear region
that contains two types of components, nodes and arcs.
The object is responsible for doing a layout of the nodes
within the region using the connection information speci-
fied by the arcs. The properties supported by layout
objects control this layout. The layout is done by applying
some heuristic, settable as a property, to assign relative
positions for each component. These relative positions
correspond to a 3D array of blocks, each of which can con-
tain one object. The layout object uses this relative posi-
tioning to compute the position of each row, column, and

FIGURE 1. Call graph display showing data, arc,
tiled and layout objects

rank in the 3D matrix and uses these computed positions
to assign actual positions to the various components. The
layout heuristic is also responsible for finding pivot points
for routing the arcs. Additional properties of the layout
allow the setting of the amount of white space between
rows or columns, whether all elements of a given row, col-
umn, or rank should be the same size or not, whether
objects should be centered within their relative block or
not, and the amount of space to leave around the outside of
the layout. A variety of different heuristics are provided.
These are discussed in section 5. Figure 1 contains several
examples of layout objects. The main component of each
of the file boxes is a 2-D layout object whose components
are the local arcs and the data objects for the routines in
that file. The whole call graph is drawn using a 3D layout
object. The components here are the group arcs and the til-
ings that represent the files.

A second set of abstract data objects have been built to
handle visualizations that seemed useful but that were not
easily implemented using the above primitives. Some of
these reflect 3D visualizations that have no 2-D equivalent,
others reflect PLUM’s attempt to be more inclusive in the
coverage of potential visualizations. These include:
• Tagged Objects. These consist of a tag object, gener-
ally a label, connected to another object, the contents,
using a hinge-like mechanism. They reflect a generaliza-
tion of a visualization proposed by Wen [23]. The hinge
can have a size, can be attached either to the right or below
the tag object, and can be set at any angle, settings derived
from properties of the tagged object. An additional prop-
erty shrinks the contents object to the size of the tag.
Tagged objects are used in 3D displays to make the tag
visible to the viewer from the front while hiding tempo-
rarily the information associated with the tag. This infor-
mation can be seen by causing the contents to be rotated
forwards or by flying around in 3D space. Figure 2 shows
a call graph where tagged objects are used to represent the
files. In this case there is a small gap between the tag and

the layout object and the layout object is rotated at a 45
degree angle.
• Scatter Plots. These consist of a rectilinear region with
components placed based on three values. Scatter plot
components can be arbitrary objects. The scatter plot
object computes the range of values in each dimension and
finds the associated location for each component. It then
places the components accordingly. The properties associ-
ated with the scatter plot control the basic size of the
region and the size of the components. Figure 3 shows a
scatter plot display of a call graph that provides informa-
tion about the routines. The X dimension reflects the
amount of run time spent in the routine (as determined by
profiling), the Y dimension represents the length in lines
of the routine, and the Z dimension represents the number
of other routines that call the routine.
• Markers. These correspond to simple markers. They are
a simplified form of data object designed specifically for
use in scatter plots. The tags representing routines in figure
3 are marker objects.
• Time Sequences. One of the uses of 3D is to show the
history of execution (or any other time-based property of
programs) in the Z dimension. Time sequence objects
were one way that we have developed for doing this.
These consist of a base component which identifies an X-
Y position for each object and a set of elements. Each ele-
ment consists of an object, a from and to time, and a refer-
ence to an object in the base component. The element is
drawn using the X and Y position and size of the refer-
enced base component and using the from and to times to
set the position and size in the Z dimension. Properties of
time sequence objects specify the relative size for a given
unit of time and the direction of time. Figure 4 shows a
top-down view of a dynamic call graph display using a
time sequence object. The layout object at the front (bot-
tom) is a 2-D representation of the call graph. The boxes
behind (above) this object represent dynamic instances of
the elements of the call graph. Here time flows backwards
(from bottom to top) in Z.

FIGURE 2. Call graph display using tagged
objects

FIGURE 3. Scatter plot display of run time vs.
length vs. static entries for a call graph

• File Objects. The central focus for programming is the
source code and many visualizations relate directly to
files. Based on ideas developed at Bell Labs, a file object
presents an abstract view of a file that can be augmented
with additional information to reflect properties associated
with regions in the file. A file is represented as a planar
region where each line of the file corresponds to one line
in the region. If region is too long, it is divided into col-
umns and the columns placed side by side. The lines are
used to represent information about the corresponding
portion of the file. Each line can be drawn full width or can
be drawn to reflect the indentation and line length of the
corresponding text. The latter mode allows identification
of program structures, block comments, etc. and allows a
programmer who is familiar with the code to associate the
representation with the text. Each line can also be associ-
ated with a height and a color value, allowing both color
and depth to be used to convey information about that line
in the graphical representation. Properties associated with
file objects allow the setting the file name, the width of
each line, how the line should be drawn, the width of the
border around the lines, the number of lines in a column,
and the mapping from data values to depth and color. Fig-
ure 5 shows file objects being used in a call graph display.

The current implementation of PLUM is still expand-
ing. In addition to these generic objects, we are planning
to implement objects that reflect other three-dimensional
representations that have been proposed. These include:
• Cone Trees. This 3D representation for a tree was
developed at Xerox [20]. Here the children of a node are
arrange in a planar circle underneath their parent. Select-
ing a child node causes it to rotate to the front. Our cone
tree objects will allow the children to extend either to the
right (cam trees) or below, and will support arbitrary
objects as the root and children components. Additional
properties will be used to control the size of the children.
• Perspective Objects. These objects are reflections of
the perspective wall that was also developed at Xerox [11].

We have experimented with generalized perspective-based
transforms (for example using a flattened hemisphere) as
well as fish-eye transformations and plan to make some
implementation of these available as an abstract graphical
object that is effectively a specialized type of layout.
• Generalized Arrays. These objects reflect the need to
display array-like structures in three dimensions. While
this can be done using tilings, a generalized array object
will provide a simpler and more consistent interface. In a
standard array each component occupies the space for one
unit in each relevant dimension. A generalized array
allows each component to specify its coordinates in each
dimension so that a single components can span multiple
units. This will be useful, for example, in putting up a dis-
play of blocks in memory where the Y dimension reflects
the page of memory the block occurs in, the X dimension
reflects the location within that page, and the Z dimension
reflects the lifetime of the block.

4.0 Support for abstract graphics objects

PLUM is an object-oriented package organized around
the abstract graphics objects. There are three base classes
that represent these objects, PlumObject to represent the
graphics objects themselves, PlumComponent to represent
the components, and PlumConstraint to represent the con-
straints. Subtypes of PlumObject represent the different
type of abstract graphics objects, for example Plum-
DataObject represents a data object. Subtypes of Plum-
Component represent the different types of components.
Each component object contains the PlumObject for that
component as well as the data that is component specific.
For example, a tiled component object contains the extent
of the corresponding tile.

The interface between PLUM and an application is
based on these three classes. The application instantiates
new PlumObjects to represent the relevant abstract graph-
ics objects. Methods on these objects are then used to
relate these by creating PlumComponent and PlumCon-
straint objects. Other methods support the setting and

FIGURE 4. Dynamic call graph display using
a time sequence object

FIGURE 5. Call graph display showing file objects

retrieval of property values. There are also methods to sup-
port the layout and drawing of each object type and to sup-
port animation.

Converting the abstract graphics objects into a display
is done in three stages. The first stage computes the
desired size of each object. This is done by making a bot-
tom-up pass over the tree of graphics objects. Primitive
objects, such as data objects, compute the size they need
directly from their property values. Composite objects
determine their size using the previously computed sizes
of their components. For tiled objects this means setting
up and solving the system of constraints that reflects the
tiling. For layout objects this means computing the relative
position of each component.

The second step involves layout. This is done using a
top-down pass over the tree of graphics objects. Here each
composite object sets the position and size of its compo-
nents relative to itself. Sizing is done by allowing the com-
ponent to draw itself at its desired size and then scaling the
result to fit into the desired space.

The final step in the conversion process is drawing the
objects. Each graphics object is responsible for creating a
portion of a graphics display list. Primitive objects gener-
ate the appropriate display commands to draw their shape.
Composite objects generate display commands for the dis-
play glue that holds their components together and invoke
the drawing method for their components where appropri-
ate. The display lists are handled by a separate package,
PDLG, that is designed to provide graphics system inde-
pendence, i.e. it is possible to implement our display lists
on top of PEX, XGL on the Suns, or SGI’s GL graphics
library.

PDLG also handles interaction with the resultant dis-
play. 3D graphical displays are useless unless the user is
free to move around to get a better sense of depth and to
view the result from different perspectives. Moreover,
PLUM displays are designed to be interactive. PDLG pro-
vides two flavors of interaction. First, it directly provides
syntactic interactions such as panning, zooming, flying
around the display, and changing from orthogonal to per-
spective views. Second, it provides the facilities needed by
a higher-level tool, either a graphical browser, a graphical
query language, or a graphical editor, to allow the user to
directly manipulate the display. This includes event feed-
back as well as correlating the mouse position with objects
in the display.

The illusion of 3D on a two-dimensional display is
enhanced by movement. This is done in part by the syntac-
tic interactors that are part of PDLG. Animation provides
additional motion. Animation also serves as another chan-
nel of information in the display, highlighting changes by
drawing the user’s attention to movement. We felt that
PLUM should provide the option of animating the struc-
tured displays of program data. At the same time, we felt
that it would be difficult and would discourage the use of
animation if the animation had to be programmed by the
application. Thus we have attempted to integrate auto-
matic animation into PLUM.

Animation in PLUM is done unless it is explicitly
turned off by the application. The application first gener-
ates the initial display. An update to this display can be
defined by changing properties of the objects, by adding or
removing components or constraints, or by providing a
complete new set of graphics objects. PLUM’s support for
animation is independent of the method used.

After the application changes the display structure, it
tells PLUM that the display should be updated. At this
point PLUM compares the new display structure with the
old, matching as much of it as possible and identifying the
differences. For each object that appeared in the old dis-
play, it saves the old display information. Then the new
display is drawn using a sequence of frames where each
frame represents some fraction of the way between the
original and the new display. It is the responsibility of the
various graphics objects to draw themselves appropriately
for the frame. However, PLUM provides generic support
for these objects. It will automatically compute the proper
size and position for each object for the frame. Moreover,
it will generate style properties, such as colors, that are
appropriate for the frame. The result, when combined with
double buffered graphics support, is a smooth, automati-
cally generated transition from the original display to the
updated display.

5.0 Layout methods

Graph layout has been extensively studied in two
dimensions [6]. The problem is one of placing nodes and
arcs to produce an aesthetically pleasing graph. This is
generally translated into more specific problems such as
reducing arc length and the number of crossings or of
emphasizing symmetry. While we provide a variety of
approaches in our 2-D layout packages, the algorithm of
choice for program data has been one based on level
graphs [21] since it tends to emphasize hierarchy and since
it generally produces a reasonable looking result.

Moving graph layout algorithms from two to three
dimensions is not trivial. The first problem is determining
what “looks good” in three dimensions. Because 3D
graphics imply that the user is going to move around and
look at the graph from different perspectives, assumptions
based on the user’s view may not be valid. For example,
the heuristic of minimizing crossings is meaningless.
Given any two arcs in three space that do not intersect, we
can find a perspective where they do not cross and a sec-
ond perspective where they do cross. Since most arcs will
not physically intersect in three space, the number of
crossings will vary with the perspective.

A second problem is that three space offers many more
degrees of freedom. In two dimensions there are two alter-
natives to laying out a level graph, representing the levels
as either rows or columns, and the resulting graphs are
identical except for orientation. In three dimensions one
has three alternatives for how to represent levels. More-
over, once the leveling is done, each level can be poten-
tially represented by a plane and hence by an arbitrary 2-D

layout. One could, for example, apply a 2-D level graph
algorithm to the remaining nodes, i.e. do leveling twice.
Alternatively, the algorithm could place the nodes in a cir-
cle as in cone trees.

A third problem that arises is that we want to use the
third dimension to convey information and not just to pro-
vide more space for layout. This means that we have to
find layout methods that reflect properties of the underly-
ing objects. For example, layout methods must be able to
assign a Z coordinate to a node based on its accumulated
run time or what file its in or how distant it is from a set of
selected nodes that the user is focusing on.

In PLUM we have implemented a flexible approach to
3D layout to experiment with different algorithms and to
gain experience with what works and what does not. Our
approach allows layout methods to work in various ways.
Some methods, such as leveling, work for one dimension
and depend on another layout method to handle the
remaining dimensions. Other layout methods are compre-
hensive, working in all three dimensions at once. Still oth-
ers, such as local optimization, don’t compute the layout in
any dimension, but instead modify a layout that is already
present. All the layout methods allow values to be defined
by the application or by the user. Each coordinate can be
given a default relative or a default absolute value. Rela-
tive values identify the location in the array that is used by
layout objects. These are typically used to represent pro-
gram assigned values. Absolute values can be used to
exactly reflect user manipulations of the underlying
objects. All the layout methods are also parameterized
with properties. The initial set of 3D layout methods
includes:
• Depth first layout. This comprehensive (all dimensions)
approach is quite simple. It does a depth first search
through the graph, visiting each node once. As each node
is visited it is placed as close to its parent as possible.
Properties here determine whether arcs are considered
directional for the depth first search, whether the graph
should be laid out in two or three dimensions, and what
layout directions are preferred, i.e. down and then to the
right.
• Breadth first layout. This is similar to depth first layout
except that a breadth first search is used in place of a depth
first search.
• Averaged layout. This is a slightly more sophisticated
version of the above. The nodes are looked at in order,
either the order they were defined in or a depth or breadth
first search order. When a node is considered, the locations
of all nodes connected to it that have been previously
placed are averaged together to get a target location. Then
the new node is placed as close as possible to this target
location. The properties of this layout strategy determine
the search order, specify whether the layout should be two
or three dimensional, and determine the preferred direc-
tion for the layout.
• Level graph layout. This layout method handles a sin-
gle dimension. It computes a leveling of all the nodes that

do not have that dimension previously defined and assigns
a value in that dimension based on the leveling. Once the
leveling is done, a secondary layout method, specified as a
property, is applied to handle the remaining dimensions.
Properties specify the dimension to be used and whether
arcs should be considered directional or not. Other proper-
ties control the type of leveling. Normally leveling starts at
the root node and assigns each subsequent node a level
that is one greater than any of the nodes it is connected to.
Bottom-up leveling starts with the leaf nodes. For both of
these the level of a node is the maximum of the levels of its
predecessors. In breadth-first leveling, the level is assigned
on the first visit to the node and not changed. A final prop-
erty determines whether level heuristics should be applied
to the arcs through the insertion of pivot points for the arcs
for each level that the arc traverses.
• Level ranking layout. This method handles one dimen-
sion and assumes that some prior dimension was handled
by a level graph layout. It attempts to order the nodes
within a level by considering their position relative to the
nodes above and below it in the leveling. This is done by
making multiple passes over the leveling, alternating top-
down with bottom-up, and assigning the positions within
each level to minimize arc length. The properties of level
ranking layout specify the dimension to work on, the
dimension of the previous leveling, the layout method to
apply next for further dimensions, and the number of
passes that should be made over the graph.
• Unique value layout. This method handles one dimen-
sion, assigning a unique value to each node in that dimen-
sion using a modified depth-first search algorithm. This is
useful, for example, to assign a unique Z position for each
file grouping in a call graph layout. The properties here set
the dimension to be used, the subsequent layout method,
and the first value to be used in the dimension.
• Local optimization. This is a post-processing approach
that takes a complete layout and applies an optimization
algorithm to it. The optimization approach is to assume a
linear attractive force between connected nodes and an
inverse square repulsive force between nodes that are not
connected. Then a relaxation algorithm is employed to
find the resultant positions of the nodes. Properties here
specify the method that provides the initial layout, the
value of the attractive and repulsive forces, and the number
of passes to be made in the relaxation algorithm.

6.0 Experience with PLUM

We have been using PLUM as a basis for 3D call graph
visualization using a prototype browser and program
information provided by FIELD. The system gathers
information about the static call graph from the FIELD
cross reference database. It augments this with informa-
tion about global variables from the database, dynamic
call information from the debugger, and profiling informa-
tion from the profiling interface tool.

The prototype browser provides two basic functions.
First, it provides some semantic interactions with the gen-

erated picture. It allows the user to collapse and expand
nodes within the hierarchy, to exclude nodes from the dis-
play, and to select nodes of primary interest. This provides
a simple test of PLUM’s support for higher level interac-
tion. Second, the browser is a prototype facility for experi-
menting with different visualizations. It provides a hard
coded mapping from objects representing the gathered
information into PLUM graphics objects. This mapping is
controlled by a set of twenty-eight user settable parame-
ters to allow full experimentation with the capabilities of
PLUM. Figures 1 through 5 were all generated using this
browser with various option settings.

PLUM has been designed to handle relatively large dis-
plays with thousands of objects. Most of the internal algo-
rithms are linear or at worst n log n. The layout methods
have all been chosen for speed. GELO, its 2D predecessor,
has been successfully used to display graphs of this mag-
nitude. While our current experience with PLUM has been
limited to visualizations with only several hundred nodes,
we don’t foresee any problems in scaling up. Note that our
abstraction display methodology emphasizes the use of
hierarchy and user selection in creating the display and,
based on our experiences with GELO, we expect that most
useful displays will contain fewer than a thousand objects.

Our experiences have demonstrated that PLUM is a
flexible package that is capable of providing 3D program
visualizations. It has provided a solid foundation for
experimenting with different visualizations. It has encour-
aged us to develop new visualizations. For example,
tagged layouts were implemented using the PLUM facili-
ties in under six hundred lines of code while scatter plots
were implemented in under four hundred lines. It has
given us a good sense of what is required for 3D layout
and provided a base for experimenting with different lay-
out algorithms. It has demonstrated that automatic anima-
tion will be effective in program visualization.

There is a lot left to be done. We have to improve the
aesthetics of the generated diagrams. This includes deter-
mining how to reduce the amount of blank space between
nodes without causing nodes to intersect in perspective,
working on new layout algorithms, determining appropri-
ate routing heuristics, making text more readable, and
making more effective use of color, shape, and texture. A
second area for future work involves the specification and
generation of additional 3D presentation strategies. We
have outlined some in section 3. Additional methods
should be developed that use spatial cues more effectively
and that can provide two presentations simultaneously, one
in the X-Y plane and one in the (X,Y)-Z plane. Finally,
once PLUM is relatively robust, we plan to use it as a basis
for determining the empirical value of 3D visualizations of
program data.

7.0 References

1. David B. Baskerville, “Graphic presentation of data
structures in the DBX debugger,” UC Berkeley UCB/CSD 86/
260 (1985).
2. Marc H. Brown and Robert Sedgewick, “Techniques for
algorithm animation,” IEEE Software Vol. 2(1) pp. 28-39 (1985).
3. Marc H. Brown and John Hershberger, “Color and sound in
algorithm animation,” Computer Vol. 25(12) pp. 52-63
(December 1992).
4. Marc H. Brown and Marc A. Nojork, “Algorithm animation
using 3D interactive graphics,” DEC Systems Research Center
(1992).
5. Jacques Davy, “GoPATH programmer’s guide,” Bull Imaging
and Office Solutions (December 1992).
6. P. Eades and R. Tamassia, “Algorithms for automatic graph
drawing: an annotated bibliography,” Networks, (1993).
7. Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, Jr.,
“Seesoft -- a tool of visualizing software,” AT&T Bell
Laboratories (1991).
8. Belinda B. Flynn and David Maier, “Specification and
generation of displays for complex database objects,” Oregon
Graduate Institute of Science and Technology (1992).
9. Sadahiro Isoda, Takao Shimonmura, and Yuji Ono, “VIPS: A
visual debugger,” IEEE Software Vol. 4(3) pp. 8-19 (May 1987).
10. Mark A. Linton and John M. Vlissides, “Unidraw: A
framework for building domain-specific graphical editors,” Proc.
UIST ’89, pp. 158-167 (November 1989).
11. Jock D. Mackinlay, George G. Robertson, and Stuart K.
Card, “The perspective wall: Detail and context smoothly
integrated,” Proc. CHI’91, pp. 173-179 (April 1991).
12. Brad A Myers, “Incense: a system for displaying data
structures,” Computer Graphics Vol. 17(3) pp. 115-125 (July
1983).
13. Brad A. Myers, Dario A. Guise, Roger B. Dannenberg, Brad
Vander Zanden, David S. Kosbie, Edward Pervin, Andrew
Mickish, and Philippe Marchal, “Garnet: Comprehensive support
for graphical, highly interactive user interfaces,” IEEE Computer,
pp. 71-85 (November 1990).
14. Michael L. Powell and Mark A. Linton, “Visual abstraction
in an interactive programming environment,” SIGPLAN Notices
Vol. 18(6) pp. 14-21 (June 1983).
15. Steven P. Reiss and Joseph N. Pato, “Displaying program
and data structures,” Proc 20th Hawaii Intl Conf System
Sciences, (January 1987).
16. Steven P. Reiss, “Working in the Garden environment for
conceptual programming,” IEEE Software Vol. 4(6) pp. 16-27
(November 1987).
17. Steven P. Reiss, Scott Meyers, and Carolyn Duby, “Using
GELO to visualize software systems,” Proc. UIST ’89, pp. 149-
157 (November 1989).
18. Steven P. Reiss, “Connecting tools using message passing in
the FIELD environment,” IEEE Software Vol. 7(4) pp. 57-67
(July 1990).
19. Steven P. Reiss and Manojit Sarkar, “Generating program
abstractions using an object-oriented database,” Brown
University Department of Computer Science (1992).
20. George G. Robertson, Jock D. Mackinlay, and Stuart K.
Card, “Cone trees: Animated 3D visualizations of hierarchical
information,” Proc. CHI’91, pp. 189-194 (April 1991).
21. L. A. Rowe, M. Davis, E. Messinger, C. Meyer, C. Spirakis,
and A. Tuan, “A browser for directed graphs,” Software Practice
and Experience Vol. 17(1) pp. 61-76 (1987).
22. John T. Stasko, “TANGO: A framework and system for
algorithm animation,” IEEE Computer Vol. 23(9) pp. 27- 39
(September 1990).
23. James Wen, “A three dimensional browser for visualizing
orthogonal hierarchies,” Brown University (1992).

	A Framework for Abstract 3D Visualization
	Steven P. Reiss1
	Department of Computer Science, Brown University, Providence, RI 02912
	(401)-863-7641, spr@cs.brown.edu
	Abstract
	1.0 Introduction
	2.0 Background
	3.0 Abstract graphical objects
	FIGURE 1. Call graph display showing data, arc, tiled and layout objects
	FIGURE 2. Call graph display using tagged objects
	FIGURE 3. Scatter plot display of run time vs. length vs. static entries for a call graph
	FIGURE 4. Dynamic call graph display using a time sequence object
	FIGURE 5. Call graph display showing file objects

	4.0 Support for abstract graphics objects
	5.0 Layout methods
	6.0 Experience with PLUM
	7.0 References

