
Visualizing Program Execution Using User Abstractions

Steven P. Reiss
Department of Computer Science

Brown University
Providence, RI 02912-1910

401-863-7641, FAX: 401-863-7657
spr@cs.brown.edu

Abstract

A practical system that uses visualization for understanding the
execution of complex programs must offer the user views of the
execution that are specific to the program being understood and
the particular problem at hand without significantly slowing
down or perturbing the system being examined. This paper
describes a visualization data model and its implementation that
accomplishes this. The model starts with program events that
can be instrumented efficiently and with little overhead. It uses
extended finite state automata to model program behaviors in
terms of events. It builds time-varying data structures based on
these automata. The data structures are then made available to
various visualizations through a set of mappings that let the user
dynamically control the visualization. The model and its imple-
mentation have been demonstrated on a range of specific under-
standing problems with a variety of different visualizations.

CR Categories: D.2.6 Graphical environments, D.2.5 Debug-
ging aids.

Keywords: Dynamic software visualization, run-time monitor-
ing, instrumentation.

1 Introduction

One of the principle goals of software visualization is to help pro-
grammers understand the intricacies of software systems. Many
of the complexities of today’s large, multithreaded, complex soft-
ware systems involve their run time behaviors. To address these
complexities we have long tried to develop dynamic software
visualizations that can provide the appropriate insights.

Unfortunately, this is a difficult problem and there are essentially
no visualizations today that are widely used that address the
dynamic behavior of software systems. The goal of our research
is to remedy this, to provide tools that can and will be used for
understanding the dynamic behavior of software.

1.1 A Practical Approach

There are several issues that have to be addressed in order to
make the visualization of software dynamics practical and desir-
able. These issues stem primarily from the fact that a worthwhile
dynamic software visualization system has to address real
systems and real problems.

A practical visualization system needs to address the types of
software in which difficult understanding problems actually
occur. This means that it has to be designed to handle large, mul-
tithreaded, often distributed, long-running computations and not
just simple, single-user applications. The visualization system
needs to handle these systems in real environments, which
implies that the visualization must be done with minimal over-
head and must be attachable to a running system. The visualiza-
tion also must be closely correlated with the outside events that
cause the dynamic behaviors of interest, which implies that the
visualizations should be done in real time, with the user being
able to go back and investigate any unusual situations in more
detail after they occur.

A practical system also needs to address the wide range of actual
problems that programmers face when trying to understand their
software systems. Unfortunately, there is no single problem or
even single class of problems that are commonly encountered
here. Rather, almost every instance where the programmer needs
to understand software behavior is a unique problem requiring a
specialized solution and a visualization that is very problem and
program specific. Generic solutions such as our prior work on
JIVE [35] and JOVE [36], address generic problems and are often
difficult to use in understanding the specific behaviors that pro-
grammers are actually interested in.

Based on this, we feel that a practical tool for visually under-
standing software behavior must meet certain criteria. First, it
must have a model of what should be visualized. This needs to be
problem and program specific, i.e. to be useful the visualization
must address the specific problem of interest. Second, data based
on this model needs to be gathered efficiently and with minimal
program perturbation. Third, the system needs to provide a visu-
alization that is useful for the particular data, one that not only
displays the important information contained in the data, but also
uses visual cues to highlight any unusual or unexpected data. This
has to be done in a way that is intuitive for the programmer.
Finally, the system needs to be easily configurable by the user.
The developer needs to be able to quickly define the appropriate
data model and visualization.

1.2 Sample Problems

Determining the data model for understanding specific software
behaviors requires knowledge of what types of behaviors pro-
grammers need understood. While such behaviors can be quite
varied, we have chosen a set of sample problems that illustrate
the types of issues that programmers actually need addressed
based on our several years of recording what we would have liked
to be able to visualize as we were programming. These provide
motivation for our approach and form a basis for evaluating the
resultant visualizations. Each of these problems is representative
of a broader range of problems and reflects issues that we actually
have faced in software development over the past few years. The
specific problems include:

1. In a multithreaded web crawler, we want to have some idea
how many threads to utilize. This requires understanding
what the current threads are doing in terms of the program.
Are they waiting for a web page, waiting for the robots.txt file
to be processed for a site, parsing the HTML, processing text
from the page, writing the various information to disk or the
database, waiting for garbage collection, or just waiting for
another page request. Here we need a visualization that shows
the thread states in terms of the program such as that shown in
Figure 1. Understanding thread behavior in terms of actual
program states the general form of this problem.

2. In the same crawler we noted that the default HTML parser
uses a Hashtable for looking up HTML tags. We think that
this might be a bottleneck in a multithreaded implementation
(since it is synchronized) but are not sure. Can we tell? For
this we created a visualization that showed when each of the
threads was blocking on the hashtable as seen in Figure 2.
From the visualization we determined that while most of the
time this wasn’t a problem, occasionally during the run it was
an issue. This problem is a specialization of the first problem
where we are interested in the behavior of a few particular
states of the thread.

3. In a pinball program where students write the various autom-
ata that constitute the state of the simulated pinball machine,
the students need to see the state of their different automata
and how they change when different events occur in the
game. A sample visualization of this is shown in Figure 3.
The visualization shows each of the user’s automata and their
current state. Time is represented by the X-axis and state
changes show up as changes in the colors of the bars. The
general form of this problem involves understanding the
behavior of user objects over time. This visualization is useful
both to look at states of the objects and to look at the values
associated with the objects.

FIGURE 1. Two visualizations of thread behavior in a web
crawler in terms of the programmer. The colors reflect different
program states for each of the threads. The first view reflects the
amount of time each thread spends in each state during a short
interface. The second view show the state changes over time. The
text display on the right is an example tooltip showing what the
mouse is pointing to in terms the programmer can understand.

FIGURE 2. Two views showing time spent blocking while look-
ing up HTML tags. The left view is the typical display showing
that little if any time was spent blocking. The right view shows
that there are times during the web crawler’s execution where
significant blocking occurs.

FIGURE 3. A visualization of the current states of the program-
mer’s automata in a pinball program. The visualization shows a
bar for each created automata and colors the bar by the current
state at the current time. Tooltips can be used to determine the
actual state and time of changes.

4. In a system that does program flow analysis [39], we have a
problem when a particular abstract routine is called but never
returns. What we want to see is the dynamic nesting structure
for each such routine showing what call or field access causes
the routine to never return. Our previous approach involves
generating and perusing multiple gigabyte trace files. Here
we created a visualization that shows the dependency graph
as a dot plot where the color of the dots depends on the age of
the dependency. A sample result can be seen in Figure 4. This
problem is representative of a set of problems where we want
to visualize abstract program behavior (the flow analysis sys-
tem never really builds the dependency graph), and illustrates
the need for more complex data structures than simple time-
varying values or states.

5. The specification of Iterators in Java says thathasNextshould
always be called beforenextis called. We want to check that
our application follows this protocol. One resultant visualiza-
tion uses simple boxes that show good iterators in green and
bad ones in red, while another shows the location and state of
iterators in terms of the source files. These can be seen in
Figure 5. Understanding the behavior of protocols, either
internal to an object or just exhibited by the program (or even
a distributed system overall), is the logical extension of this
type of visualization. Since protocols at all levels are impor-
tant and often complex, this type of visualization can be very
useful.

In this paper we describe a single data model that we use to
address all these problems in a practical way. In particular we
show how the model can be tied to minimal and dynamic instru-
mentation that can gather the necessary data efficiently and
without perturbing the program and how the model can be used to
drive a variety of different visualizations. We start by giving a
summary of related work in the next section. We follow this by a
description of the various parts of the model. This is followed by
a discussion of the current implementation of the model and how
visualizations should be defined. We conclude with our experi-
ences and a description of the work remaining to be done to make
this approach practical.

2 Related Work

Most visualizations of program execution today are not dynamic.
These visualizations execute a program in a controlled environ-
ment while collecting trace data. They then analyze the trace data
and create a visualization from the resultant analysis. This
approach has several advantages. First the visualization tool can
have access to a large amount of potential information by collect-
ing a broad range of detailed trace data. Second, the visualiza-
tions can be more sophisticated since they don’t have to be done
in real time as the program executes. Third, once the run is com-
plete, programmers can use the visualization at their leisure,
spending time appropriate to understanding their problem. An
industrial example of such a system is Jinsight [20-22]. Jinsight
collects traces from Java programs and uses this data to provide a
variety of displays that can be used to understand performance
issues, class and object interactions, and memory utilization
problems such as memory leaks. Among many other examples
are [7,9-11,15,41,42] and our own work with Cacti [30] and
BLOOM [31-33].

Having worked on and with such systems, we have come to the
conclusion that they are not going to work for dealing with spe-
cific understanding questions involving the dynamics of modern
software. There are several reasons for this. First, these systems
tend to generate a significant amount of trace data. The cost of
generating and storing this data means that the program under
study executes at a significant slowdown. This makes the visual-
ization difficult to use with today’s systems which are interactive
and long running. Second, because the trace files are large, the
analyses that need to be done can also take a significant amount
of time, meaning that the cost of just getting to the point of being
able to see the visualization is high and is thus discouraging to
potential users. Third, the systems typically model the whole run
and show the user the result after execution over. This makes it
very difficult for the user to correlate a particular external event
with the visualization or even to remember what was going on at
a point where the visualization might look interesting. Fourth, the
collection of large amounts of trace data tends to perturb the
behavior of the system, making problems involving timing or

FIGURE 4. Dot-plot visualization showing dependencies
between routines during flow analysis. The meaning of a
dependency is inherent to the actual program. Color is used to
show the age of the dependency. Tooltips can again be used to
get more detailed information about a dependency.

FIGURE 5. Two visualization showing the state of all the itera-
tors used up to this point in a run. The first shows the state of
each iterator, coloring one that is incorrectly used in red. The sec-
ond shows the locations where iterators are used in the source
files of the system and the corresponding states.

thread or process interaction difficult to reproduce during a trace
run.

What is required and what is helpful are dynamic visualizations
where the visualization runs along with the program and the
program runs at close to its normal speed and without perturba-
tion. Such systems require some compromise because they are
limited both in terms of graphics and the data they can collect
while still running the program at speed. However, the benefits of
being able to correlate the visualization with what is currently
going on, of being able to use the visualization on arbitrary sys-
tems, and of having the visualization overhead being relatively
low, far outweigh the drawbacks. This is especially true if the
visualization provides a history mechanism so that the user can
go back (while the program is running or after it finishes) to look
at a particular event or visualized anomaly in more detail.

There is a long history of such dynamic visualizations. The earli-
est computer-based visualizations of program execution showed
the source code as it was executed. These visualizations typically
highlighted a statement or line of code as the program was exe-
cuting that line. These visualization were sometimes combined
with other feedback information, for example execution totals or
past history. Many of the early graphical programming environ-
ments featured some form of dynamic visualization along these
lines. For example, our PECAN environment from the early
1980’s outlined the current source statement with a box [23].
Other dynamically updated execution views provided by PECAN
included a flowchart view of the program and a view of the stack
and the values of variables on it.

Along with PECAN there were algorithm animation systems
such as Balsa [2-4], Tango [40], and others that included a view
of the source code to highlight what the program was doing.
These systems all worked because the programs under consider-
ation were relatively small and execution time was not a primary
concern. The algorithm animation systems generally showed
other aspects of program execution as well. In particular, using
either an event-based model or explicit code in the program, they
displayed abstractions of the underlying data structures or the
algorithm itself.

After PECAN we tried two different approaches to handling
more realistic programs. First, the GARDEN system attempted to
do it using abstraction [24,26]. GARDEN was a programming
system that let the user define, integrate, and use new visual lan-
guages. Each language had a graphical syntax and an execution
semantics defined in terms of other languages or GARDEN prim-
itives. Programs were represented by objects that could be exe-
cuted directly. GARDEN provided the hooks to automatically
highlight execution within the visual displays of a program.

Our second approach was in the FIELD system. Here we
attempted to provide visualization of full-sized C (and later
Pascal, Object Pascal, and C++) systems [27,29]. FIELD
included source level views that updated whenever the debugger
stopped execution. Moreover, it supported automatic single step-
ping so that the user could view the program execution in the
editor. Similar views can be found in [17].

In addition to visualizing the source, FIELD provided visualiza-
tions of user data structures that were updated dynamically as the
program executed. The user was given control over when to
update the structure to keep performance reasonable. This is
similar to the displays provided by other tools [1,19] and later
commercial environments from SGI and Sun. FIELD also let the
user customize the data structure displays [25].

Since source lines are too coarse a representation to show
dynamic execution of large systems, visualizations soon moved
to more abstract forms. The idea here is to take a higher level
view of the program and then to show the execution dynamically
in terms of that view. FIELD provided several such views includ-
ing displaying execution in call graphs and a class browser, and
providing specialized views that showed performance, I/O behav-
ior in terms of files, and memory behavior. Other systems that
have provided similar performance visualizations include IBM’s
PV [14] the visualizations that accompany MPI, or the visualiza-
tions incorporated in Sun’s programming environment.

Extending this concept, out next dynamic visualization system,
JIVE, combined several abstractions into one visualization
[35,37]. One of these abstractions provides a view of execution in
terms of classes or packages, two others provide views of thread
behavior in terms of execution states. A fourth provided a estima-
tion of the program phase [38]. JIVE worked by breaking the exe-
cution into 20 millisecond intervals, accumulating data internally
during the intervals, and then visualizing the summary data in a
separate concurrent process. JIVE had low enough overhead to be
used on arbitrary Java programs

Going beyond JIVE, we built a second visualizer, JOVE, that
maintains a more complex model of program behavior [36]. It
again looks at the program in terms of small intervals. For each
interval it keeps track of how many times each basic block is exe-
cuted by each thread. The summary information is then kept over
the history of the run. Using sophisticated instrumentation, we
were able to display the resultant summary data in real time
without significantly affecting program behavior.

The problem with both JIVE and JOVE and other current
dynamic visualizers is that they provide generic solutions that do
not fit the specific problems that programmers have. We wanted
to build on previous work by ourselves [32-34] and systems such
as EVolve [41,42] that attempt to let the programmer craft visual-
izations to fit their problems. However we wanted to do so in a
dynamic rather than a static or post-mortem environment.

3 Visualization Data Model

Doing high-quality, program-specific visualization in a dynamic
environment puts strong requirements on data collection, data
analysis, and visualization. In particular, it means that

• All aspects of the system must be very efficient. The instru-
mentation must not significantly slow down the program. The
amount of data collected must be small enough to move rap-
idly from the executing program to the visualizer. The data
analysis must be done in real time. The visualization itself
must provide dynamic frames at a smooth, real-time frame

rate. Our experience has shown that typical data collection
techniques for Java (e.g. using JVMTI, JVMPI, or JVMDI)
slow the program down by a factor of at least ten and intro-
duce unnecessary thread synchronizations.

• Instrumentation should take great pains to not perturb pro-
gram execution. One has to avoid instrumentation strategies
result in inadvertent thread synchronizations or significant
slowdowns. Similarly, visualizations that are too costly to
compute or that can’t be done in real time will affect the cor-
relation between the execution and the visualization.

• The data that can be collected has to be general enough to
reflect a wide range of different problems and to provide
appropriate abstract views of program execution. The infor-
mation needed to address the examples at the start of this
paper include determining where threads change states, when
a thread is waiting on a particular monitor, how the program
implicitly builds a dependency graph, the state of internal
classes that happen to reflect automata, and the behavior of
class instances representing iterators as determined by call
sequences.

• The visualization must be determined by an analysis of this
data. This analysis can be as simple as the current state for
each thread. It can also be history dependent, for example, in
the behavior of Iterators where the sequence of calls deter-
mines what is legal or illegal. It can also be simply implicit,
for example as seen in the dependency graph that the flow
analyzer never really builds but that can be inferred from var-
ious behaviors.

Our approach is driven by these requirements. We start by using
parameterized events defined in abstract terms over the program.
These are used to specify what parts of the execution are relevant
to the problem at hand. These events are used to define and drive
finite state automata that are used to reflect the time-dependent
behavior that should be visualized. These automata are then used
to build time-aware data structures by defining data-structure
modifying actions as events on their transitions. The data struc-
tures are then used as the basis for a variety of different visualiza-
tions. These various components of the model are described in
detail in the next sections.

3.1 Parameterized Program Events

The starting point for a visualization data model for execution
needs to be rooted in the execution itself. Previous work, starting
with Balsa [5] has demonstrated the utility of using “interesting”
events as the basis for describing program behavior. While algo-
rithm animation systems such as Balsa did manual instrumenta-
tion at the source level, we needed to do more automatic
instrumentation and to work with real programs where we don’t
always have actual source code. Here we noted that the problem
of identifying interesting aspects of the execution is essentially
the same as that faced by aspect-oriented programming.

Aspect/J provides a language that lets the program specify points
in the program where aspects should be attached [12,13]. The
implementation of this involves identifying the corresponding

bytecode and inserting appropriate instrumentation calls. Our
system works much the same and could even make use of the
Aspect/J syntax and instrumentation packages. However, because
we wanted to correlate the dynamic patching and unpatching of
distributed systems, we started with a small patcher of our own
on top of JikesBT [16].

The set of program events, again similar to Aspect/J, includes
calls, returns, method entry and exit, allocations, field sets, throw-
ing and catching exceptions, and setting and releasing monitors.
Each of these events can be restricted based on location or type
information. Moreover, each is parameterized with appropriate
program data. For example, a call event can be restricted to calls
of a given method or calls from a given method, and can have as
parameters the current object, the current thread, any of the call
parameters, or any data directly accessible from one of these
items.

3.2 Event Automata

The program events drive extended finite state automata. These
automata represent an abstraction of the program behavior that is
of interest to the visualization. For example, if the programmer is
interested in the behavior of a particular protocol in the applica-
tion, the automata would describe the states of the protocol
including information as to which state transitions were valid.
Events are used here both to define the automata and to cause the
automata to change states appropriately.

Many of the interesting problems for visualization involve multi-
ple instances to be visualized. For example, we want to under-
stand the behavior of each thread in the web crawler separately
and we want to independently monitor the state of each Iterator in
the application. This means that we need to maintain multiple
automata and relate program events to the appropriate automata.
This is done using the event parameters.

Each relevant parameter for an event has an associated match set-
ting. This setting indicates whether the event should create a new
automaton with the parameter value as the key or whether it
should find an existing automaton using the parameter value. The
system supports automaton defined using multiple parameters
coming from separate events to support understanding behaviors
based on sets of objects.

The automata model that is used is extended to allow each autom-
aton to have a set of local variables and to allow conditions on the
arcs based on these variables. This makes it relatively easy to
define automata that can count (to ensure for example that the
number of pushes equals the number of pops) and to describe
most interesting behaviors in a simple manner.

The event automata are created and driven from the events. The
system associates a set of event actions with each event. These
actions can create automata with a given key, look up automata
using a parameter as key (if the problem requires multiple lookup
events, this returns a set of automata rather than the actual autom-
aton), set parameters in the current automaton, and activate the

current automaton. The event is also used to cause transitions
once the current automaton is active.

Our instrumentation system can build and maintain these autom-
ata either in the monitored process or in the visualization process.
The former is generally more efficient and allows the system to
process and summarize the data locally before sending it to the
visualizer. It is used if only summary data is required. The latter
is used when more detailed information such as every state transi-
tion is going to be visualized or if the cost of creating and main-
taining automata over the program run would be excessive.

3.3 Data Structures

The event automata provide a tractable abstraction of program
behavior. In many cases what the programmer wants visualized is
a direct representation of this behavior, and the visualization
could be derived directly from the automata. However, other
instances involve more detailed analysis of the behavior and most
visualizations require time-based data.

To accommodate these needs our model creates time-aware data
structures that reflect more directly what should be visualized.
We provide basic data structures consisting of entities and fields
and a specialized implementation of a graph with corresponding
graph operations.

For the basic data structures, each field can be either fixed or time
varying. Access to the data structure from the visualizers speci-
fies either a particular time or a time interval. For a particular
time, the implementation returns the field value at that time. For a
time interval, the implementation will return the set of values that
the field held during that interval along with information as to
how many times each value was set and how much time during
the interval the field held the value. The implementation can also
return, when desired, the sequence of value changes and times for
the particular field. Graphs are treated like basic data structures
with entities reflecting nodes and arcs that can have associated
values.

The data structure is created and maintained by defining actions
on the transitions of the event automata. These actions let the
event create entities, find entities based on parameter values, set
fields, and add or remove graph nodes and arcs. While these
actions can be defined explicitly, the implementation provides
automatic definitions for the common case where the data struc-
ture is a direct reflection of the event automata, that is where there
is one entity for each automata and that entity has fields for the
current state and each of the associated variables.

3.4 Visualization Mappings

The data structures provide access to the data that is relevant to
the problem for which the programmer wants to use visualiza-
tion. However, it is rarely the case that one can determine a priori
how that data should be displayed to make best use of the visual-
ization technology. Different fields might need to be stressed at
different times and in different ways. Value ranges might need to
be compressed or expanded to best highlight the underlying data.
With time-varying data, the number of changes may be more rel-
evant than the time spent with each value or visa versa. The visu-
alization might also only want to view values that meet a certain
criteria, for example delays greater that a given threshold or Itera-
tors derived from methods in a particular package.

To accommodate this and to make the visualization easier to
code, access to the data structures is done indirectly through a set
of mappings. Each mapping specifies the field and entity that is
being addressed, whether the program wants the actual values,
counts, or times, a value filter, and a scaling function. Each
graphical property of the visualization is associated with its own
mapping. Moreover, the system lets the mappings be changed
dynamically to give the programmer control of the visualization.

4 Implementation Framework

The visualization system is built as a suite of separate compo-
nents that communicate via sockets and an updated version of the
FIELD message server [28] as seen in Figure 6.

JAVA

VIZ VIZ

VELD

VIEWER

FIGURE 6. An overview of the visualization architecture.

DCOLVJMLIB

VJPATCH

VJMTI

The central box labeled VELD acts as the visualization control-
ler. It is responsible for creating the various system components
and provides the facilities needed to let the user define and
control the visualization. It also maintains the visualization data
model, making it accessible to the various components.

The user’s application runs as a normal Java process as seen in
the upper left of the figure. We provide two additions to that pro-
cess. The first, labeled VJMTI, uses JVMTI [18] to interface
between the Java virtual machine and the rest of the visualization
system. It provides several functions. First, it traps class loading
so that classes can be instrumented. Second, it provides the
ability to dynamically exchange instrumented and uninstru-
mented classes, thereby letting the system attach and detach visu-
alizations from the application. Third, it lets the visualization
controller control data collection by enabling or disabling collec-
tion and setting the accumulation interval dynamically. Fourth, it
lets the controller query the set of available processes that can be
visualized. Communication between the controller and VJMTI is
through the message server. This permits multiple virtual
machines running on the same or different machines to be used in
the same visualization.

The second addition to the user process, labeled VJMLIB in the
figure, is the library called by the instrumented code. This library
can operate in one of three modes depending on the requirements
of the visualization. In one mode it passes all events to the data
collector, DCOL, using a socket. In the second mode it maintains
all the event automata and passes the data structure manipulation
actions to the data collector. This mode, which is typically used,
generally results in less communication but slightly more over-
head. This overhead is reduced further by having VELD generate
visualization-specific code for maintaining the event automata.
The third mode is used when only summary data is desired. Here
the library collects statistics on field transitions for short execu-
tion intervals, typically 30ms, and only sends the summary data
to the collector. This library is crafted so that events are collected
without any thread synchronization, so that messages are buff-
ered and sent to the data collector periodically in batches, and so
that data processing and communication can overlap. This is done

by creating a separate message area for each thread, by triple
buffering these areas within the library, and by having a separate
thread in charge of communications.

The data collector is primarily concerned with providing interval-
based access to the user data structures. It maintains event autom-
ata if necessary. For each time-varying field it keeps the set of
transitions or summary data that has been sent. The visualization
can then request data for a given interval. When it gets such a
request, the data collector computes the data for the given interval
based on the raw data it had collected. Data for the computed
interval is cached to minimize recomputation.

Access to the data collector is through a view controller labeled
VIEWER in the diagram. This package is responsible for han-
dling the visualization mapping portion of the model. In addition,
it controls the various visualizations and handles time synchroni-
zation of different views. It is also responsible for providing the
user interface for visualization, letting the user view the history of
the execution or the current state, letting the user change the visu-
alization mappings, and letting the user change the parameters
that characterize each of the visualizations.

The visualizations themselves are designed as independent plug-
ins for the view controller. This makes it relatively straightfor-
ward to create new visualizations and lets the system be used
with a wide variety of different visualization strategies. The
current set of visualizations include boxes (shown on the left in
Figure 5), Dot plots (Figure 4) [6], Enumerations (top of Figure 1
and Figure 2), File-based displays akin to SeeSoft (Figure 5 on
the right) [8], and time bars (bottom of Figure 1 and Figure 3).

The different visualizations implement a simple interface defined
by the view controller and are described in an XML file. Each
visualization describes its own data model in terms of the entities
that it expects, the set of graphical properties that can be drawn
from those entities, and the set of parameters that characterize the
visualizations. For example, Figure 7 shows the description of the
enumeration visualization.

<VELD>
<VISUALIZATION NAME=’ENUM’ CLASS=’edu.brown.cs.veld.viz.VizEnum’>

<PARAMETER NAME=’ShowText’ LABEL=’Display Text’ TYPE=’BOOL’ DEFAULT=’true’ />
<PARAMETER NAME=’SortItems’ LABEL=’Sort Items’ TYPE=’BOOL’ DEFAULT=’true’ />
<ENTITY NAME=’BASE’ />
<STATISTIC NAME=’HUE’ LABEL=’Hue’ TYPE=’ENUM’ ENTITY=’BASE’ COLOR=’true’ />
<STATISTIC NAME=’SAT’ LABEL=’Saturation’ TYPE=’VALUE’ ENTITY=’BASE’ />
<STATISTIC NAME=’INT’ LABEL=’Intensity’ TYPE=’VALUE’ ENTITY=’BASE’ />
<STATISTIC NAME=’HEIGHT’ LABEL=’Height’ TYPE=’VALUE’ ENTITY=’BASE’ />
<STATISTIC NAME=’WIDTH’ LABEL=’Width’ TYPE=’VALUE’ ENTITY=’BASE’ />
<STATISTIC NAME=’TEXTURE’ LABEL=’Texture’ TYPE=’VALUE’ ENTITY=’BASE’ />
<STATISTIC NAME=’LABEL’ LABEL=’Label’ TYPE=’LABEL’ ENTITY=’BASE’ />

</VISUALIZATION>
</VELD>

FIGURE 7. The visualization description for enumerations. This first defines two visualization parameters that will be made available to the
user. It then describes the entities expected by the visualization. This visualization works with one type of entity. Finally, it describes the
various visual properties that the user can set for the visualization. These are the properties that can be associated with the visualization data
using the visualization mappings.

5 Defining Visualizations

The overall system maintains a complete model of the desired
visualization and shares that model with all the components. This
model can be saved so that the same visualization can be recre-
ated for the same or for a different application. The model is
maintained in memory by the visualization controller, VELD,
and is stored and shared between tools using an XML file. An
example of this file can be seen in Figure 8. The file provides a
description of the visualization, a listing and description of the
events that need to be instrumented in the application, a descrip-
tion of the automata, a description of the data structures, and a

description of the views associated with the visualization. In this
case it uses the default data model that shows the states of the
event automata. In addition, the model contains information
about how the data structure elements are to be used. In this case,
the model specifies that the viewer is only interested in the time
spent in each state of the event automata. Additional specification
can provide information on what program to run and what classes
to instrument or ignore.

Currently visualizations are constructed by creating this file in an
editor. We are working on several tools that will automate this
process and have designed the overall system to facilitate this.

<VELDVIZ NAME=’VeldTest02’>
 <DESCRIPTION>Track the time spend getting html tags to check for locks</DESCRIPTION>
 <EVENTS>
 <EVENT ID=’E0’ NAME=’Create Thread’ TRIGGER=’1’

TYPE=’ENTER’
METHOD=’edu.brown.cs.cs032.crawler.crawl.CrawlThread.run’>

 <MATCH ID=’THIS’ PARAM=’P1’ TYPE=’NEW’ NAME=’1’ />
 </EVENT>
 <EVENT ID=’E1’ NAME=’Lookup HTML’

TYPE=’ENTER’
METHOD=’javax.swing.text.html.HTML.getTag’>

 <MATCH ID=’FROMTHREAD’ PARAM=’P1’ TYPE=’MATCH’ />
 </EVENT>
 <EVENT ID=’E2’ NAME=’Lookup HTML’

TYPE=’EXIT’
METHOD=’javax.swing.text.html.HTML.getTag’>

 <MATCH ID=’FROMTHREAD’ PARAM=’P1’ TYPE=’MATCH’ />
 </EVENT>
 </EVENTS>
 <AUTOMATA START=’S0’>
 <STATE ID=’S0’ NAME=’Start’>

 <ON EVENT=’E0’ GOTO=’S1’ />
 </STATE>
 <STATE ID=’S1’ NAME=’Running’>

 <ON EVENT=’E1’ GOTO=’S2’ />
 <ON EVENT=’E2’ GOTO=’S1’ />

 </STATE>
 <STATE ID=’S2’ NAME=’Lookup HTML’>

 <ON EVENT=’E1’ GOTO=’S2’ />
 <ON EVENT=’E2’ GOTO=’S1’ />

 </STATE>
 </AUTOMATA>
 <DATA TYPE=’AUTOMATA’>
 <SHOW WHAT=’STATE_TIMES’ />
 </DATA>
 <VIEW NAME=”view1” TYPE=’ENUM’>
 <ENTITY NAME=’BASE’ VALUE=’Fsa’ />
 <MAP VIEW=’HUE’ ENTITY=’BASE’ FIELD=’State’ PROP=’ENUM’>

 <COLOR RGB=’0x00ffffff’ />
 <COLOR RGB=’0x0000ff00’ />
 <COLOR RGB=’0x00ff0000’ />

 </MAP>
 <MAP VIEW=’WIDTH’ ENTITY=’BASE’ FIELD=’State’ PROP=’COUNT’ />
 <MAP VIEW=’HEIGHT’ ENTITY=’BASE’ FIELD=’State’ PROP=’TIME’ />
 <MAP VIEW=’SAT’ ENTITY=’BASE’ PROP=’HIGH’ />
 <MAP VIEW=’INT’ ENTITY=’BASE’ PROP=’LOW’ />
 <MAP VIEW=’TEXTURE’ ENTITY=’BASE’ PROP=’NONE’ />
 <MAP VIEW=’LABEL’ ENTITY=’BASE’ FIELD=’Name’ />
 </VIEW>
</VELDVIZ>

FIGURE 8. Sample visualization description file. The file describes the events, the event automata, the data model, and any views that are
associated with the visualization along with their current visualization mappings.

First we are working on a tool that uses wizards to let the pro-
grammer quickly characterize their visualization and then
provide the small amount of information needed by the wizard. In
conjunction with this, we are developing a tool that lets the pro-
grammer edit each of the model components separately using an
appropriate framework. For example, events can be edited by
pointing to the appropriate source locations, a graphical editor is
provided for defining automata, and views can be selected and
parameterized through simple dialog boxes.

The model contains enough information so that once the data
structure model is provided, it can match that model and the
properties of interest with the set of available visualizations so
that visualizations could be selected automatically.

6 Experience and Future Work

The model described in this paper is necessary for a practical
dynamic visualization system. Any system that attempts to do
large-scale dynamic visualization without addressing all the
issues that the model addresses is not going to be able to provide
the necessary range of visualizations or the necessary flexibility
in adapting visualizations to meet the real understanding prob-
lems that need to be addressed.

The key components of the model include starting from program
events, modeling program behavior, particularly protocols, using
extended finite automata, providing a suite of data structures to
contain the information to be visualized, and offering access to
this data based on time intervals and through mappings that can
provide the most appropriate information for visualization.

We have used our implementation to build visualizations for the
problems listed earlier (as seen in the corresponding figures). In
each case, we are able to run the original application without
noticeable slowdown and to see the resultant visualizations in real
time. The actual slowdown depends on a variety of factors includ-
ing the number of items being monitored, the frequency of
changes to the monitored items, the type of summary data being
sent, the frequency of updates, whether the program is cpu-bound
or IO-bound, and the ability of the computer to do the necessary
graphics if the visualization is run on the same machine. In
almost all cases we tried, the program seemed to run at normal
speeds. In the worst case situation, with a CPU bound program
and high-intensive monitoring (looking at all Iterators), the slow-
down was less than a factor of 2.

Our experience with the prototype tool has been positive. We
have been able to correlate changes in the visualization to events
in the program. We have used the visualizations to understand
program behavior. For example, the visualizations of the web
crawler showed that much of the delay that we were experiencing
was while waiting to get the robots.txt information rather than
waiting for web pages. This was a result that did not show up
with the earlier generic visualizations. Overall, we have shown
through example problems and the resultant visualizations that
the model and our implementation of it is practical and has broad
applicability.

The model is necessary for practical dynamic visualization, it is
not sufficient. A truly practical visualization system needs to go
beyond the underlying framework and provide a user interface
that is both intuitive and easy to use. Without such an interface,
the work required to define and use a visualization outweighs the
benefits of using visualization rather than using traditional
approaches. There are two parts to the interface. The first
involves letting the programmer describe the problem so that a
visualization model can be built. The second involves letting the
programmer manipulate and understand the visualization itself.
We are currently working on these two aspects of the system,
confident that because we have the right underlying framework
we will be able to create a tool that will actually be used. Our
approach here should allow rapid and continual experimentation
with dynamic visualization of the arbitrary Java applications.

7 Acknowledgements

This work was done with support from the National Science
Foundation through grants CCR021897 and ACI9982266.

8 References

1. David B. Baskerville, “Graphic presentation of data structures
in the DBX debugger,” UC Berkeley UCB/CSD 86/260 (1985).

2. John Bazik, Roberto Tamassia, Steven P. Reiss, and Andries
van Dam, “Software visualization in teaching at Brown
University,” pp. 383-398 inSoftware Visualization: Programming
as a Multimedia Experience, ed. John Stasko, John Domingue,
Marc H. Brown, and Blaine A. Price,MIT Press (1998).

3. Marc H. Brown and Steven P. Reiss, “Debugging in the
BALSA-PECAN integrated environment,” ACM SIGPLAN-
SIGSOFT Symposium on Debugging (1983).

4. Marc H. Brown and Robert Sedgewick, “A system for
algorithm animation,”Computer Graphics Vol. 18(3) pp. 177-
186 (July 1984).

5. Marc H. Brown and Robert Sedgewick, “Interesting Events,”
pp. 155-172 inSoftware Visualization: Programming as a
Multimedia Experience, ed. John Stasko, John Domingue, Marc
H. Brown, and Blaine A. Price,MIT Press (1998).

6. Kenneth W. Church and Jonathan I. Helfman, “Dotplot: a
program for exploring self-similarity in millions of lines for text
and code,”Journal of Computational and Graphical Statistics
Vol. 2 pp. 153-174 (1993).

7. Mikhali Dmitriev, “Design of JFluid: A profiling technology
and tool based on dynamic bytecode instrumentation,”Sun
Microsystems Report TR_2003-125, (November 2003).

8. Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, Jr.,
“Seesoft - a tool for visualizing software,” AT&T Bell
Laboratories (1991).

9. Paul Gestwicki and Bharat Jayaraman, “Methodology and
Architecture of JIVE,”SoftVis 2005, pp. 95-104 (May 2005).

10. Dean Jerding, John T. Stasko, and Thomas Ball, “Visualizing
interactions in program executions,”Proc 19th Intl. Conf. on
Software Engineering, pp. 360-370 (May 1997).

11. Dean F. Jerding, “Visualizing patterns in the execution of
object-oriented programs,” pp. 47-48 inProceedings of ACM
CHI 96 Conference on Human Factors in Computing Systems,
(1996).

12. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold, “An Overview of AspectJ,” inEuropean
Conference on Object-Oriented Programming, (2001).

13. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John
Irwin, “Aspect-Oriented Programming,” inEuropean Conference
on Object-Oriented Programming, (jun 1997).

14. Doug Kimelman, Bryan Rosenburg, and Tova Roth,
“Visualization of dynamics in real world software systems,” pp.
293-314 inSoftware Visualization: Programming as a
Multimedia Experience, ed. John Stasko, John Domingue, Marc
H. Brown, and Blaine A. Price,MIT Press (1998).

15. Eileen Kraemer, “Visualizing concurrent programs,” pp. 237-
256 inSoftware Visualization: Programming as a Multimedia
Experience, ed. John Stasko, John Domingue, Marc H. Brown,
and Blaine A. Price,MIT Press (1998).

16. Chris Laffra, Doug Lorch, Dave Streeter, Frank Tip, and John
Field, “What is Jikes Bytecode Toolkit,”http://
www.alphaworks.ibm.com/tech/jikesbt, (March 2000).

17. Henry Lieberman and Christopher Fry, “Bridging the gap
between code and behavior in programming,”CHI ’95, pp. 480-
486 (April 1995).

18. Sun Microsystems, “JVM Tool Interface,”http://
java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html, (2004).

19. Brad A. Myers, “Displaying data structures for interactive
debugging,” Xerox csl-80-7 (June 1980).

20. Wim De Pauw, Doug Kimelman, and John Vlissides,
“Visualizing object- oriented software execution,” pp. 329-346 in
Software Visualization: Programming as a Multimedia
Experience, ed. John Stasko, John Domingue, Marc H. Brown,
and Blaine A. Price,MIT Press (1998).

21. Wim De Pauw and Gary Sevitsky, “Visualizing reference
patterns for solving memory leaks in Java,” inProceedings of the
ECOOP ’99 European Conference on Object-oriented
Programming, (1999).

22. Wim De Pauw, Nick Mitchell, Martin Robillard, Gary
Sevitsky, and Harini Srinivasan, “Drive-by analysis of running
programs,”Proc. ICSE Workshop of Software Visualization, (May
2001).

23. Steven P. Reiss, “PECAN: program development systems
that support multiple views,”IEEE Trans. Soft. Eng. Vol. SE-11
pp. 276-284 (March 1985).

24. Steven P. Reiss, Eric J. Golin, and Robert V. Rubin,
“Prototyping visual languages with the GARDEN system,”Proc.
IEEE Symp. on Visual Languages, (June 1986).

25. Steven P. Reiss and Joseph N. Pato, “Displaying program and
data structures,”Proc. 20th Hawaii Intl. Conf. System Sciences,
(January 1987).

26. Steven P. Reiss, “Working in the Garden environment for
conceptual programming,”IEEE Software Vol. 4(6) pp. 16-27
(November 1987).

27. Steven P. Reiss, “Interacting with the FIELD environment,”
Software Practice and Experience Vol. 20(S1) pp. 89-115 (June
1990).

28. Steven P. Reiss, “Connecting tools using message passing in
the FIELD environment,”IEEE Software Vol. 7(4) pp. 57-67
(July 1990).

29. Steven P. Reiss,FIELD: A Friendly Integrated Environment
for Learning and Development, Kluwer (1994).

30. Steven P. Reiss, “An engine for the 3D visualization of
program information,”Journal of Visual Languages, (December,
1995).

31. Steven P. Reiss and Manos Renieris, “Encoding program
executions,”Proc ICSE 2001, (May 2001).

32. Steven P. Reiss, “Bee/Hive: a software visualization
backend,”IEEE Workshop on Software Visualization, (May
2001).

33. Steven P. Reiss, “An overview of BLOOM,”PASTE ’01,
(June 2001).

34. Steven P. Reiss, “A visual query language for software
visualization,”IEEE 2002 Symposium on Human Centric
Computing Languages and Environments, pp. 80-82 (September
2002).

35. Steven P. Reiss, “JIVE: visualizing Java in action,”Proc.
ICSE 2003, pp. 820-821 (May 2003).

36. Steven P. Reiss and Manos Renieris, “JOVE: Java as it
happens,”Proc. SoftVis ’05, pp. 115-124 (May 2005).

37. Steven P. Reiss, “Efficient monitoring and display of thread
state in Java,”IWPC 2005, pp. 247-256 (May 2005).

38. Steven P. Reiss, “Dynamic detection and visualization of
software phases,”Proc. Third International Workshop on
Dynamic Analysis, (May 2005).

39. Steven P. Reiss, “Checking event-based specifications in Java
systems,”Proc. SoftMC 2005, (July 2005).

40. John T. Stasko, “TANGO: a framework and system for
algorithm animation,”IEEE Computer Vol. 23(9) pp. 27-39
(September 1990).

41. Qin Wang, Wei Wang, Rhodes Brown, Karel Driesen, Bruno
Dufour, Laurie Hendren, and Clark Verbrugge, “EVolve: an open
extensible software visualization framework,”Proc of SoftVis
2003, (June 2003).

42. Wei Wang, “EVolve: An extensible software visualization
framework,”McGill University School of Computer Science,
(2004).

