
Visualization for Software Engineering -- Programming Environments May 31, 1995 1

Visualization for Software
Engineering -- Programming

Environments

Steven P. Reiss
Department of Computer Science

Brown University
Providence, RI 02912

spr@cs.brown.edu
(401)-863-7641, fax (401)-863-7657

Abstract

This chapter describes the visualizations provided by the FIELD pro-
gramming environment. This system, developed between 1986 and
1992, offered a variety of program visualizations ranging from diagram-
matic visualizations of the program structure, to user-definable data
structure visualizations, to more abstract visualization of program exe-
cution. In this chapter we describe some of the techniques we used to
make these visualizations effective and to allow them to be used for
large systems. These include a variety of browsing and information
encoding techniques that were designed to make maximal use of screen
space and to let the user focus on the appropriate information of inter-
est. We also provide our prospective on the effectiveness of these visual-
izations.

1.0 Overview

The Friendly Integrated Environment for Learning and Development, FIELD,
was developed from 1986 through 1992 as an attempt to use workstations effectively
for UNIX-based programming. It integrated a wide variety of UNIX tools into a
common framework. This framework was enhanced with new tools developed for the
environment, both tools for programming support and tools for program
visualization.

FIELD integrated the various programming tools using a message-based
integration mechanism. This mechanism uses a central message server that the
tools (or appropriate tool wrappers) talk to. When the tool starts up, it registers with
the message server patterns that describe the messages it is interested in. As it

Visualization for Software Engineering -- Programming Environments May 31, 1995 2

runs, messages are sent to the message server and are redistributed according to
these patterns to all interested tools. Messages are typically of two types, commands
that request action from another tool, and information that provide data from one
tool that might be of potential interest to other tools.

To augment the existing set of UNIX programming tools and to provide a basis
for program visualization, FIELD provided several new tools or extended tool
wrappers that offered data about a program to other tools through the message
server. The primary such tool was the cross-reference database. This tool gathered
information about the syntax and semantics of a program and stored it in a
relational database for querying by other tools. The information, gathered either by
scanning the source or using compiler-generated data, included references,
definitions, scopes, calls, include dependencies, function descriptions, class hierarchy
links, and class member data. Other tools included a wrapper around both
configuration management (make) and version control (rcs) tools that offered query
facilities, and a generic wrapper for the various UNIX profiling tools that again
allowed querying by other tools.

In addition to these tools for analyzing static data, FIELD provided a library-
based monitoring facility that utilized the message server to provide information
about a program’s execution while the program was running. This tool worked by
inserting its own library between the application and the system libraries to catch
calls related to memory allocation or to input/output. It then sent messages
describing each allocation or input/output event so that other tools, primarily
dynamic visualizations, could display the program in action.

2.0 FIELD’s Visualization Tools

In addition to demonstrating how the computation power of workstations could
be used to integrate a wide variety of programming tools, FIELD attempted to
demonstrate the power and possibilities of program visualization opened up by their
graphical capabilities. It offered program visualizations both to provide a better
interface to existing and newly developed tools and to offer the programmer insights
into program structure and behavior.

The earliest visualization tool provided by FIELD was the annotation editor.
The FIELD annotation editor provided a common front end to the program source for
both editing a visualization. It was a full-function text editor augmented with an
annotation window to the left of the text as can be seen in Figure 1. Annotations
were displayed in this window as a descriptive icon. Text associated with an
annotation could be displayed at the user’s request. Annotations were derived from
messages received from the message server so that tools could request an annotation
by sending an appropriate message. The editor could be set up to automatically
display the line containing the annotation, changing files or position as needed to do
so. It could also be set up to display a particular type of annotation by highlighting
the corresponding line rather than using an icon. The annotation editor provided

Visualization for Software Engineering -- Programming Environments May 31, 1995 3

both static and dynamic visualizations. Static visualizations included a display of
where breakpoints were located in a file and information about errors and warnings
from compilation. Dynamic visualization showed the program executing either by a
moving icon or by continually highlighting the currently executing line.

The next set of visualization tools offered by FIELD were diagrammatic based
on a general purpose structure visualization package originally developed for the
GARDEN programming system [GARDEN]. This package, GELO, was designed to
as a generic means for displaying 2D structured diagrams. It provided a simple
framework based on simple boxes, arcs, rectilinear tilings, and arbitrary layouts. It
included constraint satisfaction methods for managing tilings and a variety of
placement and routing algorithms for handling layouts. Three FIELD tools were
written using GELO directly: the call graph browser flowview, the class hierarchy
browser cbrowse, and the make dependency browser formview.

The flowview tool provided a hierarchical view of a program’s call graph as seen
in Figure 2. This tool gets information about functions and calls from the cross-
reference database. It organizes the information in a hierarchical fashion by
grouping functions into files, files into directories, and directories into their parent
directory. It provides a variety of browsing techniques aimed at allowing the
programmer to focus on particular items of interest. If offers detailed information
through a textual information window. It also provides a dynamic view of the
program by highlighting nodes as they execute. For example, in Figure 2, the
currently executing node is shown in red and the other nodes active on the call stack
are shown in green.

FIGURE 1. FIELD annotation editor

Visualization for Software Engineering -- Programming Environments May 31, 1995 4

The second diagrammatic visualization displays the class hierarchy for C++ or
Object Pascal programs as shown in Figure 3. This tool also obtains its information
from the cross-reference database. It displays information about both the
relationships between classes and the methods and fields of each particular class. It

FIGURE 2. Dynamic call graph display

FIGURE 3. Class Hierarchy Display

Visualization for Software Engineering -- Programming Environments May 31, 1995 5

provides a variety of browsing techniques to allow the user to focus on a particular
class or member. It uses different visual encodings to illustrate the contents of a
class and the different relationships. For example, color is used to indicate the
selected member and the relationship of that member in related classes — whether
it is inherited, redefined, etc. This tool also provides a textual information window
with detailed information about the selected class and dynamic highlighting of
methods as they are executed.

The third visualization tool provided by FIELD used the wrapper around make
and rcs to gather information about file and build dependencies and put up a
corresponding display. This display, as shown in Figure 4, showed the dependencies
and the current state of each file. It uses color to indicate which files are out of date
and which targets need to be rebuilt. The type of border around a file box indicates
the current check-out state of the file. Different shape nodes indicate different types
of targets. The window is interactive in that the user can browse to select targets of
interest and can initiate check-in, check-out, and build operations from the display.

A fourth visualization tool in FIELD that uses GELO displays user data
structures. This tool comes in two pieces; in addition to the actual display of the data
structure, there is a visual editor that allows the user to define how the data should
be displayed. For example, Figure 5a shows the default display of a linked tree
structure while Figure 5b shows the display after the user has used the visual editor
to cause the structure to be displayed as a tree. The data for this display was
obtained from the system debugger through the message server. This view of the

FIGURE 4. Make dependency display

Visualization for Software Engineering -- Programming Environments May 31, 1995 6

data structure also served as an editor, allowing the user to change the data while
the program was being debugged.

In addition to the diagrammatic visualizations based on the GELO package, we
introduced several more abstract visualizations to illustrate program execution.
Three such visualizations were developed, a view of the memory allocation and the
heap, a view of file input and output, and a graph of various performance statistics.
The heap visualizer, shown inFigure 6a, provided a color-coded map of user-allocated
memory. Colors could be used to show block size, when the block was allocated, or
where the block was allocated from. By clicking on a block, the user could get
detailed information about when and where it was allocated. This view has been
used to find memory leaks and other anomalous program behavior in a variety of
programs. The second tool offered a view of file I/O. In addition to showing the status
of all attempted opens, it showed how files were read and written. Colors were used
to show either I/O time or block size; fill patterns were used to differentiate reads
from writes. An example is shown in Figure 6b.

3.0 Browsing Techniques

While diagrammatic visualizations are common in describing software, they
are not particularly good at displaying large amounts of data. The binary for the
bulk of the FIELD system, for example, consists of about 7,000 functions and 22,000
calls. It is almost impossible to put up a meaningful display of the resultant graph on
a small screen. The effectiveness of the diagrammatic visualizations for moderate-to-
large scale software systems then depends on providing effective techniques for
providing the “right” display. This means allowing the programmer to easily focus on
the part of the overall graph that is of interest to the current situation and providing

a) Default display of a tree b) User-defined display of a tree

FIGURE 5. Data structure visualization tool

Visualization for Software Engineering -- Programming Environments May 31, 1995 7

as much information as practical within the limits of the display. FIELD’s GELO-
based browsers attempt to do both. The former is done by providing a range of
powerful browsing capabilities. The latter is done through a variety of information
encodings.

Browsing in the three diagrammatic visualization tools is based on three
techniques: exploiting hierarchy, using names and name patterns, and considering
only connected graphs.

Of these techniques, exploiting hierarchy is the most effective, allowing the
programmer to quickly focus on the items of current interest. Most large software
visualizations can be view hierarchically. The class graph hierarchy was derived
directly from the superclass-subclass relationship. The call graph hierarchy was
derived by grouping functions into the file they are defined in, files into their
directory, and directories up the UNIX directory hierarchy. The dependency
hierarchy was determined by the use of recursive invocations of make. Where there
hierarchies are not unique (as in a class graph where multiple inheritance is used),
the tool used depth-first search to identify a hierarchy that was then used. In
addition to these natural hierarchies, the call graph browser allowed the user to
define new hierarchies on the fly. These hierarchies were defined by name patterns,
one pattern to identify candidate names and a second pattern to determine the
parent of a given node. These were used to group all methods or to group all methods
with the same method name.

Once a hierarchy is established, the various browsers provided the ability to
easily collapse and expand nodes. In general three techniques were provided. The

FIGURE 6. FIELD visualization tools

a) Heap visualizer b) Input/Output visualizer

Visualization for Software Engineering -- Programming Environments May 31, 1995 8

mouse could be used to expand or collapse a particular node. This was typically done
by having control-Right button collapse a node and selecting an already selected
node expand that node. Secondly, one or more dialog boxes were provided where the
user could browse over the various nodes being displayed and choose which should
be expanded or compacted. The call graph browser presented these options using the
hierarchy; the other browsers just presented the nodes directly. Finally, the user
could specify as part of the drawing options that all nodes should be expanded.

The system also provided automatic means for managing the hierarchy. When
the initial display is computed, all nodes are assumed to be compacted. The system
then expands nodes one at a time until an appropriate number of objects exist on the
display. When a node is selected, which can be done by name or from another tool
through an appropriate message, the system insures that all parents of that node
are expanded so the node can be displayed.

The second technique we use, allowing the user to select which nodes should be
displayed and which should be ignored, is also quite effective, especially when
combined with the use of hierarchy. The system provides three mechanisms whereby
the user can eliminate or include nodes. First, nodes can be eliminated from the
display using a shift-left button click on the node. If the node represents a hierarchy,
the whole hierarchy is removed. Secondly, the user can pick and choose which nodes
should be displayed or ignored using the same sequence of dialog boxes used for
indicating which should be expanded or compacted. Finally, the user can provide
regular expression patterns of names to include and exclude. These patterns can be
applied additively (i.e. a name is included if it matches the pattern, but not excluded
if it doesn’t match) or completely.

The tools provide several convenience functions for managing whether nodes
are displayed or not. It will insure that any current selections and their parents are
not ignored so that the selections will be displayed. It also provides menu buttons to
include all nodes and to exclude or include system nodes (i.e. those that come from
system libraries and not the user’s application).

The final browsing option allows the user to focus on a subgraph of the overall
display that is induced by the current set of selections. Here the user can specify the
number of levels to consider and whether paths leading into the selected nodes, out
of the selected nodes, or both should be used. If the user asks for the local graph, the
tools will start with the selected nodes, identify all nodes that are reachable using
only the given number of links, and display the resultant subgraph. This allows the
user use the overall browsing techniques to find the nodes of interest and then to see
subgraph induced by those nodes. A special case of this technique is used in the call
graph display. Here, an additional option of only displaying nodes that are reachable
from the main program is provided. This is useful when there are significant
numbers of nodes that are defined but not used that would otherwise clutter up the
display.

Visualization for Software Engineering -- Programming Environments May 31, 1995 9

The overall effectiveness of these browsing techniques can be seen in Figure 7.
This is a call graph display of the main FIELD binary and represents about 200,000
lines of C code. The initial display consisted of two nodes, one representing the
FIELD directory hierarchy and the other representing the X11 toolkit used by
FIELD, BWE. The bwe node in the display was left untouched (it represents about
five-eighths of the code). The field node was expanded to get the various directories
shown in the display. Note that where the directory only contained one file (as in
pmatmatch.c), the system automatically expanded the directory into the file. Next
we selected the main program to cause the corresponding directory to be expanded
down to the file level and the main file down to the function level. We then manually
removed the other files and functions from this directory. Finally, we selected the
node representing the FIELD message server, msg/src, and restricted the display to
the induced subgraph. The resultant display provides a good overview of the
structure of FIELD relevant to the message server. On the left are the various
FIELD tools, each of with uses both the message server for communications and the
BWE toolkit for its display. The pattern matcher, central to the use of selective
broadcasting in the message server, is used by the message server as well as some of
the tools.

FIGURE 7. Call graph display of FIELD

Visualization for Software Engineering -- Programming Environments May 31, 1995 10

4.0 Information Encodings

In addition to providing the user with the tools needed for identifying the
information of current interest, the FIELD visualization tools attempt to provide as
much information as possible through information encodings and associated
windows.

Textual information is provided both in the visualization display and in a
separate information window on the class and call graph browsers. The status line at
the bottom of the diagrammatic visualizers contains two names: the one on the left
represents the currently selected item while the one on the right designates what the
cursor is currently pointing to. This latter is updated continually as the user moves
around the display. The information window is updated each time the user makes a
new selection to contain a description of the current selection. This window is active
in that the user can click on relevant parts of the display to get additional
information or select objects.

Other information is encoded in the shapes of nodes, the line styles and
thickness of arcs, using colors, and with text as part of the display. The class browser
shown in Figure 3 shows several of these encodings. Color is used both to show the
selected classes (light blue) and the selected member (systemCost in EMPLOYEE,
green). Color is also used to show the relationship of this member to the
corresponding member in other classes. Here pink indicates a redefinition, yellow a
inherited instance, thistle (light purple), an instance between this member and its
definition in a superclass, orange the defining instance of the member if it is
inherited from a superclass, and cyan represents a redefinition. Where a class has
been collapsed to only show the name and not the members (as is done here at the
user’s option for all non-selected classes), the member encoding is used to color the
class. The fill style for the class or the class name if the class is expanded, provides
additional information. If the class is abstract then it has a halftone fill. If the class
represents a collapsed hierarchy, a solid fill is used. The triangles on the left of the
member names indicate either method (pointing right) or data (pointing left) and the
protection, with solid indicating private, shaded protected, and hollow public. Friend
and static members are indicated by a box with an X rather than a triangle. Arc
styles indicate either public or private inheritance via arc thickness and friend
relationships via dashed lines. Virtual inheritance would be indicated by an
arrowhead with a bar. Member names that begin with a double colon indicate
inherited members.

Additional information would be encoded and displayed if desired. Different arc
styles are used to express the client-supplier relationship, the type relationship, the
calls relationship. Members can be displayed with an additional textual field that
contains one or more of the key letters I for inline, V for virtual, v for implicitly
virtual, P for pure, C for const, S for static, and F for friend. If the user wants
members display for all classes, then the selected classes are indicated both by color
and by increasing their size.

Visualization for Software Engineering -- Programming Environments May 31, 1995 11

The other diagrammatic editors used similar techniques to encode the
information that is particular to their display. Similarly, the heap and input/output
visualizer displays use color and fill patterns. In the heap display, color can encode,
at the user’s option, the size of the block, the time the block was allocated, the type of
the block (if the information is available), or the source of the allocation. In the
input/output visualizer, color can denote either block size or the time the input/
output operation was done. Here fill patterns distinguish reads and writes in such a
way that overlapping I/O operations can be easily detected.

5.0 Visualization Effectiveness

The visualizations provided by FIELD were designed to accomplish several
goals. The simplest was to provide a reasonable, visual interface to the underlying
UNIX tools. This is best seen in the formview browser which serves as a front end to
both make and rcs (i.e. commands to both of these tools can be issued through the
graphical interface). Similarly, the call graph and class hierarchy browsers provided
a front end to the cross-reference database, while the data structure display tool
provided a partial debugger interface. This goal, to the extent it was attempted, was
quite successful.

A second goal was to provide program understanding. This can be divided into
two parts -- understanding the dynamic behavior of a system and understanding the
static structure. The views that offered insights into the dynamic behavior, have
been successfully used and valued for a variety of systems, both large and small.
Heapview has been used to find memory leaks, allocation anomalies, and related
memory problems in large (200K line) systems as well as in understanding the
memory behavior of system libraries (Sun’s XGL). The data structure display tool
has been widely used in introductory programming classes both to provide an
understanding of the student’s data structures and to facilitate object-oriented
debugging.

The tools have not been as successful at providing insight into the static
structure of a system. While the class browser and call graph displays have been
used, they have not been widely used for program understanding. An experiment we
ran to evaluate their effectiveness for program understanding showed only a
marginal improvement from using the tools. This unintuitive result can be explained
several ways. A large part of the problem was speed -- the time it took to generate
the data for the visualizations (especially for C++ programs) was such that they
could not be used for one-shot questions. Moreover, the time needed to become
comfortable with all the features of the tools was a significant barrier. A second
problem was the lack of resolution on a 2D display of a large system and the
difficulty in achieving the “proper” visualization for a given question. Another
problem is that the information conveyed by the diagrammatic browsers was known
to the programmer a priori (since it was typically used on their own program), and
did not offer much in the way of insights.

Visualization for Software Engineering -- Programming Environments May 31, 1995 12

The diagrammatic tools were not unsuccessful, however. They have been widely
used and relied on as a browsing mechanism within the environment. The tools
provide a convenient way of locating code for a particular routine or method — in
FIELD, whenever the user clicked on a node in the call graph or the class browser or
a file in the dependency display, the corresponding code would be brought up in an
editor. This became the primary means for the student programmers for navigating
around their programs.

6.0 Conclusions

Visualizations for programming environments are many and varied. FIELD
demonstrated a wide variety of visualizations for different applications: as front
ends to existing UNIX tools, as visualizations to show the static structure of a
system, and as visualizations to show a system in action. FIELD demonstrated the
effectiveness of such visualizations and pointed out their weaknesses. It illustrated a
variety of techniques for using the limited screen space to display the large
quantities of information inherent to a programming environment, both in terms of
browsing and in terms of information encoding.

Work on visualizations for programming environments is continuing. Current
work by this researcher and others includes efforts aimed at providing a high quality
textual and graphical hyper-linked interface to all software artifacts, from design
documents, to code, to user interface diagrams, to static and dynamic visualizations.
Other work involves extending the 2D visualization framework offered by FIELD to
three dimensions, both to make more effective use of the display and to convey
additional information through depth and the additional spacial relationships that
are available in 3-space. Another effort is aimed at addressing one of the weakness of
the diagrammatic visualization tools of FIELD by providing the programmer with a
high-level, interactive visual query interface for quickly defining both what
information should be visualized and how it should be displayed.

