
Bee/Hive March 15, 2001 1

Bee/Hive: A Software Visualization Back End
Steven P. Reiss

Department of Computer Science
Brown University

Providence, RI 02912-1910
401-863-7641, FAX: 401-863-7657

spr@cs.brown.edu

1. Introduction

Software understanding is the task of answering questions and gaining insights about software systems. In some cases
it involves gathering broad-stroke information about what a system is doing; in other cases it involves understanding
a particular aspect of the system; in still other cases it involves addressing very specific issues such as why was this
routine called or what will happen if I change this input.

We are currently developing a comprehensive system, BLOOM, that uses visualization to facilitate software under-
standing. The system starts with facilities for collecting information about the software in question. It then provides
facilities for analyzing and summarizing this information. Next it provides a visual language to let the user specify
what system information and analyses are relevant to the question at hand and how these should be related. Finally it
provides a back end visualization system that is able to display the selected information in a variety of ways.

Using visualization for software understanding puts a number of requirements on the underlying visualization
system. Software understanding implies being able to view a software system from many perspectives and at many
levels of detail. It means getting overview information at times and answers to very specific questions at other times.
It requires the ability to ask a wide range of questions and get the answers to those questions reasonably fast and effi-
ciently. All this requires that a software visualization system provide:

• Multiple visualizations. No one visualization strategy can handle displaying information about the wide range of
questions that software understanding implies. Instead, different types of visualizations and different visualization
strategies are going to be most suitable for different types of data. The back end must offer a range of such strate-
gies so that the one most appropriate to the question at hand can be used.

• Browsing facilities. The questions involved in software understanding are generally broad at first and then narrow
down to specific issues. For example, one might want to know why some operation takes so long, and then narrow
this down to why a particular routine takes so long and then why a particular line in that routine is executed so fre-
quently. Software visualization should facilitate such searches. Moreover, specifying very specific questions for
visualization is often difficult; it is generally much easier to specify a more general question and then use brows-
ing facilities to isolate the particular data in question.

• Coordinated views. Many of the issues that arise in software understanding involve relationships between different
analyses and program information. While such relationships can often be expressed in a single visualization, it is
often easier to use multiple visualizations with one being used to navigate in the other. The visualization system
must allow and facilitate such coordination.

• Multiple data sources. Finally, software visualization requires acquiring and correlating data from multiple data
sources to answer the particular questions that arise. The back end system must be able to gather and combine
such sources and then organize the resultant information for visualization.

In the remainder of this paper we describe the architecture of our visualization back end and how it meets these
requirements.

2. Architecture Overview

The back end of our visualization system is composed of the five components as shown in Figure 1. The central com-
ponent, BEE, controls the visualization process. It reads a visualization description file generated by the front end.
This file describes both the data that is needed for the visualization and the visualization to be used to display the
data. BEE uses a data manager, BUD, to actually access the data from the various data sources that are available. It
then provides a user interface, APIS, that lets the user specify how to correlate the data with the visualization and

Bee/Hive March 15, 2001 2

offers the appropriate browsing and view coordination facilities. Finally, it uses a common visualization back end,
HIVE, to actually create the appropriate visualization. HIVE is a generic visualization engine that can support a wide
variety of different visualizations. The actual visualization implementations are provided as plug-ins through the
COMB package. We consider these packages in more detail in the next sections.

3. HIVE and COMB

HIVE provides a generic framework to support a wide variety of 2D and 3D visualizations. It provides facilities for
managing data objects representing information to visualize, for displaying and updating the visualization window,
for letting the user pan, zoom, and otherwise manipulate the resultant visualization, for correlating positions with
objects displayed in the window, for managing visualization parameters, and for supporting the actually drawing that
the different visualization methods require.

HIVE offers two different interfaces. The first, used by BEE, is designed to let a client program easily create and use
visualizations. This interface provides the abstractions of a visualization window and a visualization object. The
client creates an appropriate set of objects to visualize which implement the visualization object interface. This inter-
face gives HIVE a handle on the object and provides it with access to data associated with the object. It also allows
individual objects to be quickly removed from or selected by the visualization. The visualization window interface
provides the client with the ability to control the visualization. It offers facilities for editing the set of objects, for
setting and getting properties of the actual visualization, for handling events using appropriate callbacks, and for han-
dling selections.

The second interface is designed to support a variety of different plug-in visualizations. This interface provides a
basic abstract class that the visualization plug-in actually needs to support. In addition, it provides support for main-
taining the set of visualization objects, for drawing through a set of high-level primitives, for accessing parameters, f
and for managing colors and textures. This interface was designed so that creating a new visualization would be rela-
tively simple.

The actual visualization strategies are encoded in the COMB package. Actually, HIVE allows arbitrary plug-ins that
can be specified and loaded at run time. However, we have developed an initial set of visualizations that cover a broad
spectrum of software understanding problems. These include:

• Box trees. This is a tree representation where the nodes are drawn adjacent to their parents without having to dis-
play the arcs. Color, height, depth, and size can be used to represent various dimensions of data.

• File maps. This is a representation that is roughly equivalent to SeeSoft. It can be used to display information rel-
evant to a single file or a set of files. Color, height, and texture can be used to represent information that is associ-
ated with lines in the files.

• Layouts. We include the ability to display 2D or 3D graphs consisting of nodes and arcs where this is appropriate.
These typically are only effective when the number of nodes is less than a hundred.

• Point maps. These are generalized 2D or 3D scatter or dot plots. Hue, saturation, texture, size (X,Y, and Z sepa-
rately), and rotation can be used to represent arbitrary information along with two or three positional dimensions.

Description

Trace Data Analysis Data Semantic Data

BUD

BEE

HIVE

APIS

COMB

USER

FIGURE 1. Overview of the back end visualization architecture.

Bee/Hive March 15, 2001 3

If appropriate, consecutive points can be connected by parameterized lines to show time series and other related
data.

• Spirals. We use spirals to show time series data in a compact and space-efficient manner. Hue, saturation, height,
and width can be used to show information relating to time. The spiral can be formed so that equal amounts of
time are represented either by equal arcs or by equal lengths.

A set of visualizations illustrating some of the capabilities of the system is seen in Figure 2.

FIGURE 2. Sample visualizations. Clockwise, they represent a point map of a restricted set of object
allocations located by time and colored by class, a 2D file view showing real time performance in an optimizing
compiler, a 3D file view showing other performance information for the same compiler, a dot plot illustrating a
subset of class usage automata, and a spiral showing a restricted and sampled call graph of the compiler.

Bee/Hive March 15, 2001 4

4. BUD

BUD provides the ability to access and organize the various data sources needed for visualization. It provides a
common interface to data that is stored in several different forms. Some of the data is kept in databases and accessed
via OQL or SQL queries. Names and related information associated with trace data is accessed by ID through a pro-
grammatic interface to a shared memory segment. The analysis results are stored as XML files. Bud offers a common
interface to this data. In addition it provides the facilities for constraining and relating different data sources and for
creating virtual objects through such relationships. A detailed description of BUD and its entity-relationship based
data model will be presented in a later paper.

5. APIS

The user interface to the visualization display is provided through APIS. APIS provides a set of control panels for
each visualization. These include:

• Visualization Control. This panel lets the user control the visualization by both setting properties of the visualiza-
tion and by specifying what data fields are associated with what visualization properties. An example of this panel
is shown in Figure 3.

• Restriction Control. This panel provides browsing support by letting the user restrict what data objects should be
displayed and which should be elided. The panel allows the user to set upper and lower bounds for numeric data
fields and to specify regular expression patterns of items to either include or exclude for string fields. An example
of this panel is shown in Figure 3.

• Interaction Control. This panel provides support for correlating multiple visualizations using semantic informa-
tion. It lets the user specify what properties of the current visualization should be sent to other visualizations when
the visualization is clicked on. It also lets the users specify whether and how the focus and selection of the current
visualization should change when information is received from other visualizations.

• Grouping Control. This panel provides another form of browsing support. It lets the user dynamically specify
groupings of the data objects, for example grouping all data for methods by their class. The user can specify how
the various fields should be treated when grouped as well as the actual pattern-based criteria for grouping.

APIS also provides the user interfaces needed to select the system to be visualized and the particular trace to be exam-
ined as appropriate.

6. BEE

BEE is the glue that holds the above packages together. It reads a file generated by the visualization front end that
describes what data should be visualized and what visualization strategy should be used. It sets up BUD to access and

FIGURE 3. Two of the APIS control panels. The left one is the visualization control panel. The right one is the
restriction control panel.

Bee/Hive March 15, 2001 5

combine the required data sources after using APIS to let the user specify what program and trace files should be
viewed. It then uses HIVE to set up the actual visualization window, plugging in the appropriate visualization method
from COMB. Finally, it puts up and manages an appropriate APIS interface for the given data sources and the given
visualization. It also takes care of passing events from the visualization through APIS to either the display panel of
the visualization or to other visualizations.

7. Current Status and Future Work

The visualization back end described here is nearly complete. We are currently working on the underlying mecha-
nisms to support interaction and grouping both in BUD and in APIS. We are also designing and working on a small
set of additional visualization plug-ins. The current system runs on Solaris/Sparc and we are porting it to Linux.

Most of our future work on the back end will involve validating the utility of the different visualizations and the
support that the back end provides for browsing, grouping, and correlated views. We are planning to make the system
available both inside and outside of Brown this summer and, once we do so, are starting to plan some user studies.

