
An Overview of BLOOM
Steven P. Reiss

Department of Computer Science
Brown University

Providence, RI 02912-1910
401-863-7641, FAX: 401-863-7657

spr@cs.brown.edu

ABSTRACT

BLOOM is a system for doing software understanding
through visualization. It provides facilities for static and
dynamic data collection. It offers a wide range of data anal-
yses. It includes a visual query language for specifying what
information should be visualized. All these are used in con-
junction with a back end that supports a variety of 2D and
3D visualization strategies.

1. INTRODUCTION

Software understanding is the task of answering questions
and gaining insights about software systems. In some cases
it involves gathering broad-stroke information about what a
system is doing; in other cases it involves understanding a
particular aspect of the system; in still other cases it involves
addressing very specific issues such as why was this routine
called or what will happen if I change this input.

Providing tools to enhance and facilitate software under-
standing has always been difficult. While there have been a
wide range of efforts, both in the reengineering community
and in the software environments community, few of these
efforts have been really successful or led to tools that are in
active use today. In particular, tools that used visualization
as a means to software understanding have been proposed
and demonstrated, but have rarely been incorporated into
successful programming environments, and, when they have
been, have not been used.

For example, a lot of work went into developing a variety of
different visual browsers as part of programming environ-
ments [8]. These provided the user with visual, often hierar-
chical views of the call graph, the module structure, the
dependency structure, or the class hierarchy. These were
included in a variety of programming environments includ-

ing FIELD, HP Tooltalk, DEC Fuse, and Sun SparcWorks.
However, they were not widely used in these environments
and have not been duplicated in current environments
except in a rudimentary form as a simple tree view.

Several years ago, we analyzed the reason why these sys-
tems, which intuitively seemed so obviously useful, were
not being used. Our analysis suggested that the primary
reason was that they failed to address the actual issues that
arise in software understanding. In particular, they provided
fixed views of a fixed set of information and were not flexi-
ble enough to let the user address the specific questions or
varying issues that actually arise. Secondary concerns were
the difficulty in using such systems, both in terms of setting
up the data for them and in understanding how to get the
desired information out of them, and the overwhelming
amount of information inherent to a real software system.

To address these problems, we started designing and devel-
oping a new visualization system that would let the user
easily address specific problems and would handle large
software systems. This system, BLOOM, offers several
capabilities that should allow it to succeed where previous
systems have not. In particular it:
• Collects a variety of program information including program

traces, structural information, and semantic information, all
unobtrusively.

• Provides a range of different analyses of this information that
both summarize and highlight its relevant aspects.

• Offers the ability to combine the different analyses in new and
potentially interesting ways.

• Presents a graphical front end for defining what analysis or
data is interesting to the problem at hand and for describing
how that data should be combined.

• Uses a powerful information visualization framework to pro-
vide multiple high-density views of the resultant information
along with the necessary browsing facilities for making use of
the information.

In the remainder of this paper we consider the current state
of BLOOM in each of these areas.

2. INFORMATION SOURCES

Because the problems of software understanding are varied
and cut across all aspects of the software, it is important for
a software understanding system to provide information
from a variety of different sources. Moreover, because the
specific problems that will arise are not known in advance, it
is important that the relevant data be either available a priori

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.

PASTE’01, June 18-19, 2001, Snowbird, Utah USA.

Copyright 2001 ACM 1-58113-413-3/01/0006...$5.00.

or that it be generated relatively rapidly. The data also
should be available without the programmer having to go to
such extremes as recompiling the whole system with differ-
ent options or using a different compiler.

We have developed several information sources that meet
these requirements. We use a program database from the
Desert [5] project for C and C++, and a similar program
database for Java that is part of the experimental Tea envi-
ronment at Brown. We also use a tracing facility, described
in [6], that provides information on calls, memory usage,
and synchronization for both C/C++ and Java programs.

3. INFORMATION ANALYSIS

Raw trace data, and even raw structural or semantic data for
a realistic system, is too large to be understood directly.
Instead, one must analyze this data to summarize it, to find
patterns, or to highlight potential problems or areas of inter-
est. To address this, BLOOM uses a facility described in [7]
that provides a variety of different data analyses.

4. COMBINING ANALYSES

While the above analyses provide lots of useful information,
real insight into the behavior or structure of a program often
requires that the various analyses be combined in new and
different ways. Realizing this, BLOOM tries to provide the
facilities necessary for creating new information through
combinations of the ones provided.

BLOOM does this through a data manager that provides
access to data in a uniform way and that lets new objects be
created from existing ones. The data manager is based on an
object-oriented view with a entity-relationship based query
language. The base data comprise the original set of entities.
Relationships among this data can either be explicit through

links (or IDREFs in the XML database), implicit through
fields in one entity that have domains that match keys in
another entity, or user-defined by associating values in one
entity with values in the second. New entities can be formed
by combining existing entities using any of these relation-
ships or restricting the entities with constraints. New rela-
tionships can be formed by combining sequences of
relationships, either directly or using various forms of tran-
sitive closure, and by restricting the relationships using con-
straints. The result is a fully-functional query language.

5. ASKING THE QUESTION

While it is important to provide a wide range of different
analyses and to permit these to be combined in order to do
realistic software understanding, it is equally important to
offer users an intuitive and easily used interface that lets
them select and specify what information is relevant to their
particular problem.

Using experiences from our previous work in this area [3,4],
BLOOM includes a front end for specifying the desired
information using a visual query language. This interface
provides several features designed to let the user select and
refine what information is relevant to the problem at hand. It
attempts to make it easy for the user to select and relate the
different trace analyses and the static data. This is all done
without having to understand the exact structure of the
underlying databases or the data. Moreover, the system pro-
vides facilities for saving useful queries so they can be
reused.

While our experience to date with the this interface has been
limited, it has proven to be as powerful as our previous
interface and a lot easier to use. A screen shot of the inter-
face can be seen in Figure 1.

FIGURE 1. The visual query interface for defining what to visualize. Here it shows three entities relating information about class
usage via finite state machines with associated static data.

6. SEEING THE RESULT

Once users have defined what information is relevant to
their immediate software understanding task, they need to
see the information in an understandable and meaningful
manner. BLOOM provides for this in a three-step process.

The first step is to let the user select an appropriate visual-
ization for the given data. The visual front end determines
which visualization methods can be used with the user-spec-
ified data and assigns each a score based on how well the
data definitions match what the visualization expects. In
doing this, the system automatically looks at all possible
ways of combining entities and relationships to get a better
match. In the end, the user is presented with a sorted list of
those methods that seem to be the best.

The second step is a visualization framework that supports a
wide range of visualizations along with an initial set of visu-
alizations geared toward the display of high-dimensional,
large data sets as well as the types of structured data that fre-
quently occurs as the result of analysis. The current set of
visualizations includes:
• Box trees. This is a tree representation where the nodes are

drawn adjacent to their parents without having to display the
arcs. Color, height, depth, and size can be used to represent
various dimensions of data. We also support a variant of 3D
tree maps [8].

• File maps. This is a representation that is roughly equivalent to
SeeSoft [2]. It can be used to display information relevant to a
single file or a set of files. Color, height, and texture can be
used to represent information that is associated with lines in
the files.

• Layouts. We include the ability to display 2D or 3D graphs
consisting of nodes and arcs where this is appropriate.

• Point maps. These are generalized 2D or 3D scatter or dot plots
[1]. Hue, saturation, size, and rotation can be used to represent
information. If appropriate, consecutive points can be con-
nected by parameterized lines.

• Spirals. We use spirals to show time series data in a compact
and space-efficient manner. Hue, saturation, height, and width
can be used to show information relating to time.

A set of visualizations illustrating some of the capabilities
of the system is seen in Figure 2. The framework is
designed to be easy to extend. New visualization methods
can be written as separately compiled entities and dynami-
cally loaded. Most of the underlying support for drawing,
picking, layout, mapping values, and retrieving information
from user objects is built-in. We have been able to create
and add new visualization methods in one to two days
depending on the complexity of the graphics and the
number of data dimensions the method is designed to sup-
port.

While the basic visualizations that are provided with this
facility are helpful and provide a useful overview of the
selected data, most software understanding problems
require some sort of drill-down to get at the details of the
data. The third step in BLOOM’s visualization pipeline pro-
vides for this. Each visualization is provided with a control

panel. This panel lets the user define and change the associ-
ations between user data fields and visualization properties,
and to change the various parameters that control the visual-
ization. The panel also lets the user restrict the data being
displayed by specifying ranges (for value fields) and regular
expression patterns (for text fields) that either describe what
data is relevant or what data should be ignored. In addition,
the system will display full details about whatever object is
under the mouse. Together these features provide a powerful
facility for obtaining the specific information that is needed.
We are currently in the process of expanding this to allow
the user to dynamically define groups of objects and to
provide automatic semantics-based correlations among mul-
tiple views.

7. CURRENT AND FUTURE WORK

BLOOM is currently in its alpha state. All the components
are there, although several are missing features that we feel
are or will be needed. Some of these features include:
• Data collection is still too inefficient and can be speeded up by

at least a factor or 2. Moreover, we need to have the ability to
collect both finer-grain data (such as basic block tracing) as
well as higher-level data such as input-output processing or
transaction and event processing.

• More data analyses will be needed for understanding more
complex systems. In particular we are considering various
analyses of thread interactions as well as event-based model-
ing.

• We are looking into various XML-based query languages and
XML-based databases as potential replacements for our spe-
cialized data manager.

• We need to do user testing on the visual query front end to
determine its usability and appropriateness. We also need to
provide additional facilities that let the user obtain information
about what data is available.

• We need to provide additional visualization approaches to
address other problems such as describing the various encod-
ings or showing interval graphs.

• We need to finish the additional browsing facilities we are cur-
rently working as well as the interface and mechanisms to sup-
port multiple connected views.

However, even with our limited experience, it appears that
BLOOM is a practical and useful system for software
understanding. As the system matures we hope to collect
user data to either verify or disprove this hypothesis.

8. REFERENCES

1. Kenneth W. Church and Jonathan I. Helfman, “Dotplot: a
program for exploring self-similarity in millions of lines for text
and code,” Journal of Computational and Graphical Statistics Vol.
2 pp. 153-174 (1993).

2. Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, Jr.,
“Seesoft - a tool for visualizing software,” AT&T Bell
Laboratories (1991).

3. Steven P. Reiss, “Cacti: a front end for program visualization,”
IEEE Symp. on Information Visualization, pp. 46-50 (October
1997).

4. Steven P. Reiss, “Software visualization in the Desert
environment,” Proc. PASTE ’98, pp. 59-66 (June 1998).

5. Steven P. Reiss, “The Desert environment,” ACM TOSEM Vol.
8(4) pp. 297-342 (October 1999).

6. Steven P. Reiss and Manos Renieris, “Generating Java trace
data,” Proc Java Grande, (June 2000).

7. Steven P. Reiss and Manos Renieris, “Encoding program
executions,” Proc ICSE 2001, (May 2001).

8. Ben Schneiderman, “Tree visualization with tree-maps: a 2-D
space-filling approach,” ACM Transactions on Graphics Vol. 11(1)
pp. 92-99 (January 1992).

FIGURE 2. Sample visualizations. From left to right, top to bottom, they represent a point map of a restricted set of object alloca-
tions located by time and colored by class, a spiral showing a restricted and sampled call graph of an optimizing compiler, a file
view showing performance information for that compiler, a simpler file view showing real time performance, a dot-plot showing
similar performance information by calls, a box tree view of gprof-like performance information, a nested tree-map view of the
same data, a SeeSoft like view of routine performance, and a dot plot illustrating a subset of class usage automata.

