
Event-Based Performance Analysis

Steven P. Reiss
Department of Computer Science

Brown University
Providence, RI 02912-1910

401-863-7641, FAX: 401-863-7657
spr@cs.brown.edu

Abstract

Understanding performanceand related issuesin a
complex systemrequiresanalyzingwhereandwhythepro-
gram spendsits resources.In a reactivesystemsuch as a
interactive application or a server, it is important for
understanding that one be able to associateresource
usage with the events, be they user actions or client
requests,that triggered the correspondingexecution.As
part of our software visualizationand analysisefforts we
havedevelopeda systemthat lets the programmerdefine
what is meantby an eventand thento track theresources
used in processingthat event through the system.The
resultantdata is currently usedto producevisualizations
of event-based resource utilization.

1. Introduction

Traditional performanceanalysis and understanding
techniquesare inadequatefor complex, reactive software
systems.In a reactive systemthe importantperformance
questionsrelateto the time it takesto reactto a particular
input or request.Traditionaltechniqueslook at overall per-
formanceand are not input or request-directed.We have
developedanautomatedapproachthatcanprovidedetailed
informationdescribingthe resourcesassociatedwith each
particularinput or requestin a complex systemandthat is
capableof providing performanceinformationfor the dif-
ferent types of inputs or requests.

Traditional methodslook at where the overall system
spendsresourcessuch as execution time, real time, or
memory. They assignresourcesto particular routine or
linesof sourcecode.For example,theUNIX prof tool uses
samplingtechniquesto estimatehow muchtime is spentin
eachroutineover thefull run of theprogram.More sophis-
ticatedmethods,suchasgprof [4], assignresourcesbased
ontwo-level calls,thatis, insteadof lookingatall instances
of routineR, they separatetheseinstancesbasedon thedif-
ferentcallersof R. OthertoolssuchasHP’sCxPerf provide
a per-thread analysisof resourceutilization. Still other
toolslook atspecificitemsin acomplex system.For exam-
ple, Tmon[5] and theadmon[2] look at the behavior and

interaction of threadsin a multithreadedsystem.There
have also beena variety of frameworks for customizing
performanceanalysis[1,3], but thesehave only beenused
to do selective overall evaluationratherthanlooking at the
behavior of individual actions.

Today’s reactive systemsare typically multithreaded
andevent-driven.They wait for eventsto comeeitherfrom
user interactionsor, for a server, from client requests.
Overall performance,while important,is not ascritical as
the responsetime to theseindividual event requests.An
interactive applicationwill feel sluggishand unusableif
particularuserinteractionstake too long,wheretoo long is
typically measuredin fractionsof a second.A server will
seemunusableto a client if what areperceived assimple
requestsfrom the client actually take significantamounts
of time, where significant here is typically measuredin
milliseconds.In a long running server, the resourcesand
run time for theseindividual eventsareoften dwarfedby
the other actionsof the server such as initialization and
backgroundprocessing,andhencetraditionalanalysisdoes
not provide the necessaryinsights into if and why such
events might be perceived as slow.

What is neededis to understandresourceutilization
basedon events.That is, theprogrammerneedsto seehow
much time is usedand memory allocatedin processing
eachparticularuseror client-initiatedevent.Moreover, the
programmerneedsto understandthis both grouped by
event type and throughoutthe application.This can be
doneby a systemthat would collect and display perfor-
manceinformation for eventsand that would handlethe
complexities of event processing in real applications.

The complexities arise from several sources.The first
involvesidentifying whentheeventstartsandwhenit fin-
ishes. Events can come from multiple sources.Events
basedon inputs(asuserinterfaceandclient-requestevents
are)mightbereadatsomepoint in abufferedreadandthen
actually processedlatter on. The event might be finished
whenthenext eventstarts,whena messageis sentback,or
when the systemgoesback into an idle state.In order to
determineresourcerequirements,a formal definitionof an
event and its startandendingpoints is needed.A second
complicationis that the programis often multithreaded.

This meansthat the resourcesthat are allocatedglobally
mayor maynot reflectthoseneededby theparticularevent
andthattheanalysishasto bedoneonaper-threadbasis.A
third difficulty involvestheway that thesesystemsprocess
events.Many systemswill dosomeinitial processingof the
requestand thenput it on a queuefor a worker threadto
eventually handle. The worker thread might take some
actionandthenenqueuesomethingfor further processing
by anotherthread.Ideally, whatis neededis a way of actu-
ally assigningtheexecutionof a threadat a givenpoint in
theprogramto aparticulareventandthenaccumulatingthe
time from all such assignmentsin determining the
resources used by that event.

Someof the more recentperformancetools provide a
foundationfor event-basedanalysisbut do so by putting
the burden on the user. Thesetools let the user tell the
programwhento startcollectinginformationandwhento
stop collecting it. They then let the userbrowse over the
detailedperformanceinformation that was collected.For
example,Jinsightletstheuserspecifyamethodasatrigger
[7,8]. Tracecollection occurswhile the methodis being
executed.TheusercanthenuseJinsightto browseover the
dynamic call tree, objectsallocated,etc. JProbelets the
programmerBorland’s OptimizeIt lets you see perfor-
manceby thread,andthenexaminethedynamiccall graph
to examinethebehavior of individual events.Wily’ s Inter-
scopeagain collects enoughdata to let the programmer
specifyfilters andbrowsethe dynamiccall graphdown to
themethodlevel so that an individual event canbeunder-

stood.Sitraka’s JProbesoftwarelets theuserspecifywhat
partsof theprogramshouldbeanalyzedin detailandthen
letstheuserbrowsethedynamiccall treeof thoseportions.

The problemswith theseapproaches,andthe difficulty
we wantedto address,is that the usergenerallyneedsto
know what events are important in advanceand has to
manuallytrack the processingof eventsbetweendifferent
portions of the systemusing the various browsing tech-
niques.Moreover, it is impossibleto get informationabout
thetotal resourcesusedfor aneventwhoseprocessingwas
distributed or the total resourcesusedfor all eventsof a
given type. Our approachfollows events throughoutthe
whole application without programmer intervention.

2. Overview

To demonstratethatautomaticevent-basedperformance
analysiswas possibleand to demonstrateits utility, we
have put together a system that takes program traces
createdfor visualizationandgeneratesevent-basedperfor-
mancedata.Thesametechniquesthatwe usecouldjust as
easilybe usedto collect andproduceevent-basedperfor-
mance data dynamically as the program is run.

Our system consistsof two primary componentsas
shown in Figure1. Theprinciplecomponent,Event Track-
ing, detectsandmanagesevents.It takesasinput both the
sequenceof eventscomingfrom theprogramandafile that
defineswhat are the eventsfor this particularapplication.
The output of this componentis the notion of a current

Application
to

Profile

Event Definitions

Event
Tracking

Performance
Monitor

Event-Based Output

Curr ent Events

FIGURE 1. System overview.

event being processedby eachactive thread.The second
component,Performance Monitor, of thesystemis a more
typical performanceanalyzerwhich collects information
about run time, memory usage, etc. based on events
comingfrom theprogramandthenaccumulatesthis infor-
mation on an event basis.When the programterminates,
this information is written to an output file for either
further analysis or, in our case, for visualization.

Thekey issuesthatarosein developingthis systemand
in any event-based performance analysis included:

• How to characterizeanddefineevents.This hasto be
donein a way that capturesthe programmersintuitive
notionof whatanevent is while at thesametime being
easy to detect and track during program execution.

• How to allow eventsto be both generic(e.g.to handle
standardinput packages)andapplication-specificat the
same time.

• How to associateperformancestatisticswith an event.
While this is easyon thesurface,thefact that thesame
eventcanbeprocessedby differentthreadsat different
stagesof the executionmakesthis morecomplex. One
also has to deal with the arbitrary behaviors of real
applications.

• How to make the processof tracking eventsand then
associatingperformancewith eventsasefficient aspos-
sible.

The remainderof this paperdescribesour systemin
moredetailpayingspecialattentionto thereasonswhy the
above issuesareimportantandthesolutionswe developed
to addressthem.We startin thenext sectionby describing
what we meanby an event andhow we defineits starting
andendingpoints.The subsequentsectiondescribeshow
we track event processingthroughthe systemeven where
thesameevent is processedon multiple threadsat various
times. The next sectionsdescribethe implementationof
this analysisandtheoutputthatwe getout from it aswell
as someof the visualizationswe have provided of that
output.We concludewith a sectiondescribingour experi-
ences to date and the future work in this area.

3. Defining and Triggering Events

Weareconcernedwith reactivesystems,thatis, systems
thatwait for input from eithertheuseror anotherprogram,
andthenreactto thatinputby doingsomecomputation.An
event in this context is any of the possibleactions that
causethe systemto react.Typical events might be user
actionscomingfrom theuserinterfacemanager, messages
sent over a socket from anotherapplication, or remote
methodinvocationsfrom someclient. Eventscanalsobe
specificto an application.In somecases,time-outsmight
beconsideredevents.In othercases,theapplicationmight

needto reactto interruptsor particulartypesof exceptions.
In all thesecases,we want to be able to associatesystem
resourceswith theprocessingof theunderlyingevent.For
our purposeswe aremainly interestedin application-level
servers (ratherthan say operatingsystems)and in proce-
dural or object-oriented languages such as C/C++ or Java.

Becauseevents come in a variety of forms, it is not
alwaysclearwherethe processingof an event starts.User
interfaceeventsin Javaareprocessedinternallyin different
wayson Windows andUnix systemsandthesedifferences
are not exposedto the programmer. Does the event pro-
cessinginclude such internal processingand if so, how
much?Therearemultiplewaysthatremotemethodinvoca-
tion canoperateandtheprogrammeris usuallynotexposed
to the actual implementation.Should event performance
include the internal routines that decodeand possibly
enqueuethemessage,or shouldit only includethecostof
actuallyprocessingthemessage.Similar issuesarisewhen
dealing with socket-basedmessagesand interrupt-driven
systems.

Determining when the systemis done processingan
event may alsobe problematic.The systemmight be fin-
ishedwith an event when it moves on to a new event or
whenit becomesidle. In thecaseof a userinterfaceevent,
event processingis generally finished when the system
returnsto get the next event from the main event loop. In
thecaseof incomingmessages,it is donewhenit is ready
to read the next message.In the caseof remotemethod
invocation,it is donewhen the remotemethodreturnsor
thethreadthatwascreatedto dealwith theremoteinvoca-
tion terminates.

In order to associateperformanceinformation with
events,we first needto determinea way of indicatingthe
startandendof anevent.Takingall theabove into account
andlookingatavarietyof programsledusto defineevents
by associatingthem with particularprocedurecalls, with
theentryto thecall beingthestartandtheexit from thecall
being the finish. This is a somewhat simplistic approach
but onethat seemsto begeneralandto work. Moreover it
is similar to techniquesusedin [8] for selectingportionsof
thecodefor detailedvisualization.As anexampleof using
proceduresto defineevents,Java input eventsfor AWT or
Swing typically are processedby having the lower level
event loop call the method dispatchEvent for whatever
componenttheeventoccursin. Thus,if we look for callsto
this methodin any of the subclassesof java.awt.Compo-
nent we can find the start and stop of most input events.
OtherAWT eventscanbefoundusingthedispatch method
of java.awt.event.InvocationEvent. For Motif applications,
X eventscan be delineatedby calls to the routine XNex-
tEvent. For remotemethodcallsusingJava RMI, it is pos-
sible to find two differentroutinesthat indicatethestartof
a call. The first includesall the argumentdecodingand

encodingaswell asthe call; the secondonly includesthe
actual call.

The use of procedurecalls also applies naturally to
messagesystems,more detailed remote method invoca-
tions, and application-specificevents. For example, to
apply it to the socket-basedmessagingframework usedin
the FIELD programmingenvironment [9], we use the
routine process_message inside the messagehandling
code.For anRMI application,theprogrammercanindicate
each significant remote method as a separate event type.

While procedurecallsprovide a naturalway of viewing
events,their useraisesseveral issues.The first is that the
setof routinesthatneedto be identifiedwill differ for dif-
ferentsystems.We accommodatethis in our implementa-
tion by letting the particular routines be defined as
resourcesin a setof XML files. We provide a basicXML
file with differentgenericeventssuchasAWT andSwing
user interfacecallbacksand RMI calls. In addition, pro-
grammerscanprovide projector applicationspecificfiles
that define additional events

A portionof theglobaleventdefinitionfile is shown in
Figure2, Each of the event definitions first contains
enough information to uniquely identify a particular
routine or set of routines. For Java, this includes the

methodname,class,and the signature.1 For C or C++ it
includestheroutinename,class,signature,andsourcefile.
Each of thesecan either be specifieddirectly or wild-
carded.Moreover, the class entry can be defined either
explicitly (usingCLASS=”xxx” asin Figure2) or by spec-
ifying a set of classesor interfaces which implies all

classesthat areeithersubtypesof or implementorsof one
of the given classes or interfaces using OBJECTS= “xxx”.

Eachevent definition alsocontainsan event nameand
type.The nameis usedin the outputlater on. Event types
areusedto let the programmerselectwhich setof events
shouldbe usedfor a particularapplication.Thus,the pro-
grammercan control whetherJAVA events (in this case
AWT-basedinput events) should be consideredor not.
Moreover, theprogrammercandecidewhetherto consider
RMI eventswith or without encodingor to ignore them
completelyand rely on the actual calls that they would
specify in an application-specific file.

Finally event definitions can include a set of flags to
indicatehow they shouldbeprocessed.Thesearedescribed
in the next section since they are primarily relevant to
tracking events.

Theevent trackingsystemmaintainsefficiency through
preprocessing.It first readsin theeventdefinitionfile when
it startsup. It determineswhich eventsarerelevant based
on the event types and the programmer’s requestswhen
event profiling was started.Then it takes each relevant
eventspecificationandfindstheinternalidentity for all rel-
evant methods.This identity will be the addressof the
methodfor C or C++ andthe internalUID of the method
from JVMPI for Java.Theidentitiesfor thesetof methods
that then need to be checked is stored in a hash table.
Doing this all asa preprocessingstepensuresthattherele-
vant method can be detected quickly during execution.

4. Tracking and Maintaining Events

Ideally, knowing the routine would be sufficient for
event-basedperformanceanalysis.The systemcould just
detectwhena threadentersany of the routinesassociated
with aneventandcreatea new eventrecord.Thenit would
recordresourceusagein this recordwhile this eventwasin
progressand then output the total information when the

1. WeusethestandardJavarepresentation(asdocumented
in [6]) to differentiate overloaded methods by specifying
theirparametertypesandcreatedsimilarrepresentationfor
C and C++.

<EVENTS>
<EVENT METHOD="dispatchEvent" CLASS="java/awt/MenuComponent"

SIGN="(Ljava/awt/AWTEvent;)V" NAME="AwtMenuEvent" TYPE="JAVA" />
<EVENT METHOD="dispatchEvent" CLASS="java/awt/Component"

SIGN="(Ljava/awt/AWTEvent;)V" NAME="AwtComponentEvent" TYPE="JAVA" />
<EVENT METHOD="dispatch" CLASS="java.awt.event.InvocationEvent"

SIGN="()V" NAME="AwtInvocationEvent" TYPE="JAVA" />
<EVENT METHOD="XNextEvent" NAME="X event" TYPE="X11" />
<EVENT METHOD="RIPget_input" NAME="BWE event" TYPE="BWE" />
<EVENT METHOD="process_message" SOURCE="/pro/field/msg/src/msgclient.c"

NAME="MSG event" TYPE="BWE" />
<EVENT METHOD="run" CLASS="sun.rmi.transport.tcp.TCPTransport$ConnectionHandler"

SIGN="()V" NAME="RMI Invocation" TYPE="RMI" />
<EVENT METHOD="serviceCall" CLASS="sun.rmi.transport.Transport"

SIGN="(Ljava/rmi/server/RemoteCall;)Z" NAME="RMI Call" TYPE="RMIC" />
</EVENTS>

FIGURE 2. Sample e vent trig ger definitions.

identifiedroutinereturned.Unfortunately, programsarenot
that simple.

One problem that arises in using calls to delineate
eventsis thatof nestedcalls. It is commonin a Java event
loop for the dispatchEvent methodfor one componentto
decidethat this event is not relevant to this componentand
thento call thecorrespondingmethodon its parentcompo-
nent.To avoid this problem,we only checkfor calls that
triggernew eventswhenthecurrentthreadis not presently
processing an event.

Anotherproblemis thatwhile routinesarea convenient
andaccurateway of identifying events,they arenot suffi-
cient to detectwhen sucheventsare being processed.In
many reactive systems,when the events occur they first
causesomeinitial processingand thencausea task to be
placedon a queue.Later in the systemexecutionanother
threadwill take the taskoff thequeueanddo therequisite
processing.The resourcesspent by this secondthread
shouldalsobeattributedto theparticularevent.This situa-
tion canoccurboth with programmer-definedqueuesand
processingaswell assystemprocessing.For example,Java
Swingallows a event-processingroutineto call themethod
invokeLater to have additionalprocessingbedonedirectly
from Swing’s event loop.

We wanted to develop a generalschemethat would
catchmostof this typeof delayedprocessingandbeableto
assignresourcesappropriatelyto different threads.Based
again on the analysisof a wide rangeof different server
applications,we settledon usingobjectsandtheir usageto
track events.

To make this work we associateobjects(or blocks of
memory in a non-object-orientedsystem)with particular
events.Then,if a threadis not processingany otherevent
and startsdoing someprocessingwith an object that has
previously beenassociatedwith an event, we make the
assumptionthat the threadis again doing processingfor
that event. This canagain be doneby looking at the calls
andreturnsof particularroutines.That is, if a threadis not
currentlyprocessinganeventanda routineis calledin that
threadwith an event-associatedobjectasa key argument,
thenthe threadbecomesassociatedwith that event for the
duration of that routine call.

Oneproblemhereis identifyingwhatis meantby a“key
argument”.Thiscanbedonein avarietyof ways.First one
could let that theprogrammeridentify theappropriaterou-
tinesthatdo subsequentprocessingof objectsandidentify
which of their argumentsare the appropriateones.This
approachis themostaccurate,but it requiresbothwork on
thepartof theprogrammeranda moredetailedmonitoring
of execution than is provided by such interfacesas Java

JVMPI.2

To find a more generaland automaticalternative we
lookedatabroadrangeof server-typeprograms,bothin C/
C++ andJava andfoundout thatit wasgenerallysufficient
to detectcalls wherethe event-basedargumentis the first
parameter. For object-orientedlanguages,this meansthata
methodon the event object is being invoked. In actuality,
we foundinstanceswherethemessagecontentwaspassed
asa parameterto what was the obvious routine that indi-
catedprocessingwascontinuingratherthanbeinginvoked
directly. However, in every suchcase,therewassomesec-
ondaryroutinethatdid thebulk of theprocessingwherethe
message content was the first parameter.

Our actual implementationprovides someof both of
theseapproaches.We first let theprogrammeridentify spe-
cific routinesthatindicatecontinuedprocessingof anevent
aspart of the XML descriptionfiles. However, we restrict
this to methodson the event-associatedobject ratherthan
looking at arbitrary arguments. Alternatively and by
default, we will let any methodcalledon an event-associ-
ated object to trigger continuedprocessingof the event
provided that the threaddoing the invocation is not cur-
rently associatedwith an event. This can again be con-
trolledby theprogrammerthroughtheXML files,eitherby
specifyingspecificroutinesor event typesthat shouldnot
be handled automatically.

One other problem arises in using objects to track
events is that of falseassociations.It is conceivable that
several of the objectsallocatedaspart of an event arefor
generaluseandnot associatedwith thatparticularevent.If
theseobjectsare later used,the correspondingresources
shouldnot be associatedwith the originatingevent.How-
ever, oncea server is setup, almostall of theprocessingit
doeswill beassociatedwith oneeventor another. By only
consideringobject-basedevents when no other event is
associatedwith a thread,the systemtendsto identify the
actualevent that the threadis processing.In the various
exampleswe have tried we have never seensucha false
positiveoccur. However, wedo let theprogrammeridentify
a restrictedsetof classesfor eachevent typeandlimit the
useof associatedobjectsto theseclasses.Not only does
this provide a meansof avoiding falseassociations,but it
makes the tracking and detectionof eventsusing objects
more efficient.

Falseassociationscan also occur if objectsare shared
betweenevents.This canhappenif theapplicationdoesn’t

2. JVMPI is a standardJava interfacefor profiling. It pro-
videshooksfor detectingeventssuchasmethodentryand
exit, allocations,monitor wait, andgarbagecollection.Its
methodentry eventscaneitherpassno parametersor the
‘this’ pointer;they do not includeany of theotherparame-
ters.

reallocateobjectsthatrepresentmessagesor commandsfor
eachevent but insteadreusesexisting objects.While this
doesn’t happenoften, we have provided facilities in our
framework wherebytheprogrammercanflag routinesthat
should changethe event associatedwith their primary
objectto thecurrentevent.Sinceit is generallyeasyto find
sucha routine(theonethatreinitializestheoriginal object,
for example),this mechanismis sufficient, albeit applica-
tion specific to deal with these cases.

5. Implementation

To implementevent monitoringasdescribedabove we
needto distinguishand implementevent descriptionsand
event instances.Event descriptions representtypes of
events.Eachhasanassociatedsetof routines,aneventtype
usedto determineif the event is relevant to the program-
mer, anda setof flagsindicatinghow the event shouldbe
processed. The processing flags include:

• NO_OBJECTS.If thisflag is setthennoobjectswill be
associatedwith events of this type. This is useful to
optimize event analysisfor thoseevents that are pro-
cessedcompletelywithin the scopeof the routinecall
that creates them.

• ALLOW_REUSE. This flag indicates that the same
routine might be called multiple times for a single
event. It causesthe object associatedwith the routine
(thefirst argument,generallythethis pointer)to beused
to determine if there is a previous event or not.

• MARK_OBJECT. This flag providesa moreselective
wayof identifyingwhatobjectsarerelevantto anevent.
If theroutineassociatedwith this flag is calledwhenan
eventis beingprocessed,theobjectassociatedwith that
call will become associated with the current event.

Event instancesare created dynamically when the
systemdetectsthataneventhasoccurredfor thefirst time.
Eachinstancekeepstrackof thecurrentsetof stackframes
thathave madethis eventactive. (Notethat thesameevent
might be active in multiple threadsconcurrently.) It also
keepstrack of the event descriptorassociatedwith the
event, the start and end time of the event, and all the
resources used by the event.

Event-basedperformanceanalysisthenworksby track-
ing actionsin theprogramandmaintaininga currentevent
for eachactive thread.The four basicactionsthatarecon-
sideredaremethod(or routine)entry, methodexit, object
allocation,andobject free.We assumethat entry andexit
actions have an associatedthread, method, object, and
stack frame and that allocationand free actionshave an
associated thread and object.

Figure3 shows theactionsassociatedwith a call action.
Thesystemfirst looksto seeif thereis aneventassociated

with the current thread. At worst this involves a hash
lookup; typically it is handleddirectly sincewe cachethe
current threadand its event and the current call usually
comesfrom thesamethreadasthepreviouscall. If thereis
no current event, the system calls CheckForNewEvent.
Hereit usesahashlookupto find theeventdescriptorasso-
ciatedwith thecalledmethod.If this is defined,thenit next
looks at whetherthis routine reusesevents.If so, it finds
theeventassociatedwith theprimaryobject.If thereis no
sucheventor if theroutinedoesn’t reuseevents,thenanew
event instanceis createdand associatedwith the current
thread. If no event descriptor is found for the called
method,thenthesystemcheckstheobjectassociatedwith
thecall. If aneventinstancewaspreviouslydefinedfor that
object, then the instance is restarted.

Restartingor startinganevent instanceinvolvesassoci-
atingthecurrentstackframewith theinstance.This is done
by having each event keep a table of its current entry
frames.A table is necessaryhere to becausethe event
might bebeingprocessedin multiple threadsconcurrently,
in whichcasetherewill beoneframefor eachof theactive
threads.

Finally, if is acurrentevent,theroutineCheckForMarks
is invoked.This routineagain checksif the methodbeing
called has an associatedevent descriptor and if that
descriptor indicates that the ‘this’ parametershould be
marked as belonging to the current event instance.

Figure4 shows the actions associatedwith the other
actions.Whenan exit occursandan event is in progress,
thesystemfirst addstheresourcesfor thecall to thestatis-
tics associatedwith the event and then checksif the exit
correspondsto the call framefrom whencethe event was
activated. Allocation actions check if there is a current
event andthat event needsto dealwith objectsand,if so,
then it associatesthe currentevent with the given object.
Finally, a freeactioncausesany associationwith theobject
being freed to be removed.

Thereare a variety of techniquesthat can be usedto
trackactionsin theprogramin orderto doevent-basedper-
formancemonitoring. First, one can patch the sourceor
object code. Several profilers, including MIPS’ Pixie
[15] work in this manner. This is preferred approach
becauseit is probablythemostefficient.However it is dif-
ficult to do in general,especiallyfor multiple languages
and architectures.

A secondapproachis to useaprofiling interfacesuchas
JavaJVMPI or theprocedureentryexit callsusedin UNIX
profiling. This is probablythe simplesttechniqueto work
with becauseit shouldwork acrossmachinesandmuchof
the requiredtracingmechanismsalreadyexist. The draw-
backsherearein termsof performance(for JVMPI), andin
thepotentialneedfor theprogrammerto recompileall the
code and libraries to enable profiling.

A third approach is to generate trace data as the program
runs and analyze this data after the run to for performance
information. This approach is the most straightforward if
the trace data is already available because it isolates the
implementation of the above algorithms from the tricky
process of data collection. However, it requires that the
trace data be available, and generating trace data is gener-
ally more complex and time consuming that either of the

previous approaches and would not be worth it unless it
was to serve other uses as well.

As part of our program visualization efforts, we are
already producing relatively complete execution traces for
both C/C++ and Java programs [10,11]. These traces allow
us to do detailed analysis and to correlate a variety of dif-
ferent analysis on program runs. The underlying system
provides a convenient framework for implementing trace

ENTER[action]
Let ce = CurrentEvent[action.thread]
If ce == NULL then

Let ce = CheckForNewEvent[action]
Else if any event has mark objects set then

CheckForMarks[action,ce]
Endif

CheckForNewEvent[action]
Let ed = event descriptor associated with action.method
If ed is defined then

Let ei = NULL;
If ed allows reuse then

Let ei = the event instance associated with action.object
Endif
If ei == NULL then

Let ei = new event instance[ed,action]
Add action.frame to ei
Associate ei with action.thread

Else
Add action.frame to ei

Endif
Else if action.object is defined then

Let ei = the event instance associated with action.object
If ei != NULL then

Add action.frame to ei
Endif

Endif

CheckForMarks[action,ei]
Let ed = event descriptor associated with action.method
If ed has mark object flag set then

Associate action.object with event ei
Endif

FIGURE 3. Event processing for a call action

EXIT[action]
Let ei = event instance associated with action.thread
If (ei != NULL) Then

Add performance statistics for this call to ei
If action.frame is associated with ei Then

Set the event associated with action.thread to NULL
Endif

Endif

ALLOC[action]
Let ei = event instance associated with action.thread
If ei != NULL and not ei has property NoObjects then

Associate ei with action.object
Endif

FREE[action]
Remove any association with action.object

FIGURE 4. Event processing for exit, allocate and free actions

analyses and we used this framework for an initial imple-
mentation of event-based performance analysis.

Our event-based performance analyzer thus reads
program trace files, detects the four relevant types of
actions, and tracks events and their associated resources. It
generates an XML file that contains the particular program
events with whatever identifying information is available
along with the associated resources. An example of the
output is shown in Figure 5. The top entry is from a C
program while the bottom is a Java event. Both cases iden-
tify the event type and time. For the Java event, the particu-
lar object associated with the event is also recorded.
(Information about that object is available in other analysis
files.) After the event, the resource statistics are provided.
We provide total, average, and standard deviations for each
statistic. The different statistics shown here include
TOTAL for the total execution time spent processing the
event, REAL for the real time associated with the event,
INSTS for the number of instructions executed during the
event (for C/C++ only), ALLOCS for the number of allo-
cations associated with the event, ASIZE for the size of
allocations, UNFREES for the number of unfreed alloca-
tions, UFSIZE for the size of the unfreed allocations, and,
for Java, garbage collection statistics.

6. Reporting Event Information

The system reports events in XML format so that the
resultant information can be used by other programs,
notably our software visualization system. [12,13].
Figure 6 shows two sample visualizations of the AWT
events of a graphical editor associated with our visual
query language [14].

In the first, time is displayed along the X axis and the
run time used in processing the event along the Y. Color
encodes the number of calls associated with the event. Its

very easy to spot the two events that took most of the pro-
cessing run time and to note that these also involved the
most calls.

The second diagram shows an alternate 3D view of the
same events. Here time is shown as a spiral starting in the
center, height is the number of calls, and color indicates the
size of allocations done for the event. Again, the events that
took the most time stand out and it is easy to see that the
number of allocations correlates with the processing time
of the events since the longer events tend to have colors
that are in the blue-violet range while the shorter events are
in the red-yellow range.

7. Experiences and Future Work

The event mechanism here has been tried on a variety of
different programs and demonstrated its capability to iden-
tify relevant events and show the resources used by the
individual events. In addition to the example of Figure 6
which shows a interactive Java application, we have used it
to find both X11 and message-based events in the FIELD
programming environment [9], to find swing-based events
in several other systems, and to find RMI-based events in
different server frameworks.

The visualizations produced by the events convey the
appropriate information. They are most useful in the
context of the overall visualization system where they can
be directly related to other visualizations which show what
else is going on in the program when each event is being
processed. For example, they have been used to track down
why certain events (in particular a sequence of drag events
to change the shape of a curve) took longer than expected.
The visualization framework also allows events to be
dynamically grouped in various ways (for example, by
event type) to get summary information in more complex
visualizations.

<EVENT START=’29653564’ END=’29760619’ NAME=’MSG event’>
<STATS CALLS=’216’

TOTAL=’15921’ TOTALA=’73.70833333333333’ TOTALD=’621.077’
REAL=’321165’ REALA=’1486.875’ REALD=’12528.6’
INSTS=’2302596908657’ INSTSA=’10660170873.41204’ INSTSD=’5.17267e+10’ />

</EVENT>

<EVENT OBJECT=’X45199’ START=’37480829’ END=’97280175’ NAME=’RMI Invocation’>
<STATS CALLS=’1189578’

TOTAL=’194081343734’ TOTALA=’163151.4232223528’ TOTALD=’2.64302e+07’
REAL=’818158598’ REALA=’687.7721326386333’ REALD=’113547’
ALLOCS=’91516’ ALLOCSA=’0.07693148326549415’ ALLOCSD=’0.976547’
ASIZE=’6841000’ ASIZEA=’5.750778847624956’ ASIZED=’124.083’
UNFREES=’4648’ UNFREESA=’0.003907267955527086’ UNFREESD=’0.102475’
UFSIZE=’182592’ UFSIZEA=’0.1534930874646303’ UFSIZED=’5.81694’
GC=’8’ GCTIME=’34318480554’ GCRTIME=’0’ />

</EVENT>

FIGURE 5. Sample XML output from event-based performance analysis.

The code for our implementation is available as part of
the BLOOM software visualization and understanding
system at http://www.cs.brown.edu/research/softvis.

While these efforts demonstrate the potential for doing
event-based performance analysis and software under-
standing, there are several directions in which this can be
pursued. The particular ones that we are currently looking
at are:

• Supporting nested events as distinct. Right now we only
view a thread as processing a single event at one time.
Actually, if we allow a variety of event types, it is possi-
ble for a thread to be associated with multiple events of
different types at one time. Ideally, the underlying
framework should support this.

• Allowing event continuation to be detected using calls
that do not rely on the associated object being the first
argument. This restriction is implicit in the use of
JVMPI for Java profiling, but can be avoided with other
technologies. Moreover, there are applications where

the relevant object is not invoked directly and event
continuation cannot be detected using the existing
framework.

• Extending this framework to handle multiple process
programs. Here one would like to track an event across
applications. For example, one would like to take an
input event in the client and include in the performance
summary all the RMI calls and resources used in the
server. This requires either detailed post-processing
analysis or an slightly augmented version of RMI. It
can also be done at a lower level by tracking input and
output operations between processes, associating a
message written by one process with the current event
of that process and then transferring that event to the
other process when the same data is read back in.

Even without these extensions the current system has
demonstrated both the practicality and the utility of doing
event-based performance analysis and understanding for
reactive systems.

FIGURE 6. Example visualizations of event-based resource utilization.

8. Acknowledgements

This work was done with support from the National
Science Foundation through grants ACI9982266,
CCR9988141,and CCR9702188and with the generous
supportof SunMicrosystems.Significantadviceandfeed-
back was provided by Manos Renieris.

9. References

1. Ziya Aral and Ilya Gertner, “Non-intrusive and interactive
profiling in Parasight,” Proc. ACM/SIGPLANCOnf. onParallel
Programming, pp. 21-30 (January 1998).

2. Bryan M. Cantrill and Thomas W. Doeppner, Jr.,
“Threadmon: a tool for monitoring multithreaded program
performance,” Proc. 30thHawaii Intl. Conf. onSystemsSciences,
pp. 253-265 (January 1997).

3. Michael M. Gorlick, “The flight recorder: an architecture for
system monitoring,” ACM/ONRWorkshoponParallel and
DistributedDebugging, pp. 175-183 (DEcember 1991).

4. S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: A
call graph execution profiler,” SIGPLANNotices Vol. 17(6) pp.
120-126 (June 1982).

5. Minwean Ji, Edward W. Felten, and Kai Li, “Performance
measurements for multithreaded programs,” Proc. ACM
SIGMETRICS/Performance ’98, pp. 161-170 (August 1998).

6. Tim Lindholm and Frank Yellin, TheJavaVirtual Machine
Specification, SecondEdition, Addison-Wesley (1999).

7. Wim De Pauw and Gary Sevitsky, “Visualizing reference
patternsfor solvingmemoryleaksin Java,” in Proceedingsof the
ECOOP ’99EuropeanConferenceonObject-oriented
Programming, (1999).

8. Wim De Pauw, Nick Mitchell, Martin Robillard, Gary
Sevitsky, and Harini Srinivasan, “Drive-by analysis of running
programs,” Proc. ICSEWorkshopof SoftwareVisualization, (May
2001).

9. Steven P. Reiss,FIELD: A Friendly IntegratedEnvironment
for LearningandDevelopment, Kluwer (1994).

10. Steven P. Reiss and Manos Renieris, “Generating Java trace
data,” ProcJavaGrande, (June 2000).

11. Steven P. Reiss and Manos Renieris, “Encoding program
executions,” Proc ICSE2001, (May 2001).

12. Steven P. Reiss, “Bee/Hive: a software visualization
backend,” IEEEWorkshoponSoftwareVisualization, (May
2001).

13. Steven P. Reiss, “An overview of BLOOM,” PASTE ’01,
(June 2001).

14. Steven P. Reiss, “A visual query language for software
visualization,” IEEE2002SymposiumonHumanCentric
ComputingLanguagesandEnvironments, pp. 80-82 (September
2002).

15. MIPS Computer Systems, Inc.,RISCompilerLanguages
Programmer’sGuide. December 1988.

	Event-Based Performance Analysis
	Steven P. Reiss
	Department of Computer Science
	Brown University
	Providence, RI 02912-1910
	401-863-7641, FAX: 401-863-7657
	spr@cs.brown.edu
	Abstract
	1. Introduction
	2. Overview
	FIGURE 1. System overview.

	3. Defining and Triggering Events
	FIGURE 2. Sample event trigger definitions.

	4. Tracking and Maintaining Events
	5. Implementation
	FIGURE 3. Event processing for a call action
	FIGURE 4. Event processing for exit, allocate and free actions
	FIGURE 5. Sample XML output from event-based performance analysis.

	6. Reporting Event Information
	FIGURE 6. Example visualizations of event-based resource utilization.

	7. Experiences and Future Work
	8. Acknowledgements
	9. References

