Event-Based Performance Analysis

Steven P Reiss
Department of Computer Science
Brown University
Providence, R1 02912-1910
401-863-7641, &kX: 401-863-7657
spr@cs.bran.edu

Abstract

Understanding performanceand related issuesin a
compl systenrequiresanalyzingwhee andwhythe pro-
gram spendsdts resouces.In a reactivesystensuc as a
interactive application or a server it is important for
undestanding that one be able to associateresouce
usage with the events, be they user actions or client
requeststhat triggered the correspondingexecution.As
part of our softwae visualizationand analysisefforts we
havedevelopeda systenthat lets the programmerdefine
whatis meantby an eventandthento track the resouces
usedin processingthat event through the system.The
resultantdata is currently usedto producevisualizations
of event-basedesouce utilization.

1. Introduction

Traditional performanceanalysis and understanding
techniquesare inadequatefor comple, reactive software
systems.n a reactive systemthe importantperformance
guestiongelateto thetime it takesto reactto a particular
input or requestTraditionaltechniquedook at overall per-
formanceand are not input or request-directedWe have
developedanautomateapproachhatcanprovide detailed
information describingthe resourcesssociatedvith each
particularinput or requestn a complex systemandthatis
capableof providing performanceanformationfor the dif-
ferent types of inputs or requests.

Traditional methodslook at where the overall system
spendsresourcessuch as execution time, real time, or
memory They assignresourcesto particular routine or
linesof sourcecode.For example,the UNIX prof tool uses
samplingtechniquego estimatehowv muchtimeis spentin
eachroutineover thefull run of the program.More sophis-
ticatedmethods suchasgprof [4], assignresourcedased
ontwo-level calls,thatis, insteadof looking atall instances
of routineR, they separatéheseinstancedbasedn thedif-
ferentcallersof R. OthertoolssuchasHP’s CxRerf provide
a perthread analysisof resourceutilization. Still other
toolslook at specificitemsin a complex systemFor exam-
ple, Tmon[5] andtheadmon2] look at the behaior and

interaction of threadsin a multithreadedsystem. There
have also beena variety of frameavorks for customizing
performanceanalysis[1,3], but thesehave only beenused
to do selectve overall evaluationratherthanlooking at the
behaior of individual actions.

Todays reactive systemsare typically multithreaded
andevent-driven. They wait for eventsto comeeitherfrom
user interactionsor, for a sener, from client requests.
Overall performancewhile important,is not ascritical as
the responsdime to theseindividual event requests An
interactive applicationwill feel sluggishand unusableif
particularuserinteractiongake too long, wheretoo longis
typically measuredn fractionsof a secondA sener will
seemunusableto a client if what are perceved as simple
requestdrom the client actually take significantamounts
of time, where significant here is typically measuredn
milliseconds.In a long running sener, the resourcesand
run time for theseindividual eventsare often dwarfed by
the other actionsof the sener such as initialization and
backgroundrocessingandhencetraditionalanalysisdoes
not provide the necessarynsightsinto if and why such
events might be peroesd as slw.

What is neededis to understandresourceutilization
basedon events.Thatis, the programmeneedgo seehow
much time is used and memory allocatedin processing
eachparticularuseror client-initiatedevent. Moreover, the
programmerneedsto understandthis both grouped by
event type and throughoutthe application. This can be
done by a systemthat would collect and display perfor-
manceinformation for events and that would handlethe
compleities of event processing in real applications.

The compleities arise from several sources.The first
involvesidentifying whenthe event startsandwhenit fin-
ishes. Events can come from multiple sources.Events
basedon inputs(asuserinterfaceandclient-requesevents
are)mightbereadatsomepointin abufferedreadandthen
actually processedatter on. The event might be finished
whenthenext eventstarts whena messagés sentback,or
whenthe systemgoesbackinto anidle state.In orderto
determineresourcaequirementsa formal definition of an
event andits startand endingpointsis neededA second
complicationis that the programis often multithreaded.

Event Definitions

Event

Tracking

Application

Curr ent Events

Performance
Monitor

FIGURE 1. System overview.

This meansthat the resourceghat are allocatedglobally
may or may notreflectthoseneededy the particularevent
andthattheanalysishasto bedoneon a perthreadbasis A
third difficulty involvesthe way thatthesesystemsrocess
events.Many systemswill dosomeinitial processingf the
requestandthenput it on a queuefor a worker threadto
eventually handle. The worker thread might take some
actionandthenenqueuesomethingfor further processing
by anotherthread.ldeally, whatis neededs away of actu-
ally assigninghe executionof a threadat a given pointin
theprogramto a particulareventandthenaccumulatinghe
time from all such assignmentsin determining the
resources used by thatemt.

Someof the more recentperformancetools provide a
foundationfor event-basedanalysisbut do so by putting
the burden on the user Thesetools let the usertell the
programwhento startcollectinginformationandwhento
stop collectingit. They thenlet the userbrowse over the
detailed performanceinformation that was collected.For
example Jinsightletsthe userspecifya methodasatrigger
[7,8]. Trace collection occurswhile the methodis being
executed.Theusercanthenuselinsightto browvseoverthe
dynamic call tree, objectsallocated,etc. JProbelets the
programmerBorlands Optimizelt lets you see perfor-
manceby thread andthenexaminethe dynamiccall graph
to examinethe behaior of individual events.Wily’ s Inter-
scopeagain collects enoughdatato let the programmer
specifyfilters andbrowsethe dynamiccall graphdown to
the methodlevel sothatanindividual eventcanbe under-

Event-Based Output

stood.Sitrakas JProbesoftware lets the userspecifywhat
partsof the programshouldbe analyzedn detailandthen
letsthe userbrowsethe dynamiccall treeof thoseportions.
The problemswith theseapproachesandthe difficulty
we wantedto addressjs that the usergenerallyneedsto
know what events are importantin adwnce and hasto
manuallytrack the processingf eventsbetweendifferent
portions of the systemusing the various browsing tech-
nigues.Moreover, it is impossibleto getinformationabout
thetotal resourcesisedfor aneventwhoseprocessingvas
distributed or the total resourcesusedfor all eventsof a
given type. Our approachfollows events throughoutthe
whole application without programmer intention.

2. Owerview

To demonstrat¢hatautomaticevent-basegberformance
analysiswas possibleand to demonstratats utility, we
have put togethera systemthat takes program traces
createdor visualizationandgenerategvent-basegerfor-
mancedata.The sametechniqueghatwe usecouldjust as
easily be usedto collect and produceevent-basedgerfor-
mance data dynamically as the program is run.

Our system consistsof two primary componentsas
shavn in Figurel. The principle componentEvent Track-
ing, detectsand manage®vents.It takesasinput boththe
sequencef eventscomingfrom the programandafile that
defineswhat are the eventsfor this particularapplication.
The output of this components the notion of a current

event being processedy eachactive thread.The second
componentPerformance Monitor, of the systemis a more
typical performanceanalyzerwhich collects information
about run time, memory usage, etc. based on events
comingfrom the programandthenaccumulateshis infor-
mation on an event basis.When the programterminates,
this information is written to an output file for either
further analysis qiin our case, for visualization.

The key issueghatarosein developingthis systemand
in ary event-based performance analysis included:

» How to characterizeand defineevents. This hasto be
donein a way that captureshe programmersntuitive
notion of whataneventis while at the sametime being
easy to detect and track during progratacaition.

» How to allow eventsto be both generic(e.g.to handle
standardnput packagesandapplication-specifiat the
same time.

» How to associatgerformancestatisticswith an event.
While this is easyon the surface,the factthatthe same
eventcanbe processedby differentthreadsat different
stagef the executionmakesthis morecomplex. One
also hasto deal with the arbitrary behaiors of real
applications.

» How to make the processof tracking eventsand then
associatingperformancevith eventsasefficientaspos-
sible.

The remainderof this paperdescribesour systemin
moredetail payingspecialattentionto the reasonsvhy the
above issuesareimportantandthe solutionswe developed
to addresghem.We startin the next sectionby describing
whatwe meanby an eventandhow we defineits starting
and endingpoints. The subsequensectiondescribeshow
we track event processinghroughthe systemeven where
the sameeventis processean multiple threadsat various
times. The next sectionsdescribethe implementationof
this analysisandthe outputthatwe getout from it aswell
as some of the visualizationswe have provided of that
output. We concludewith a sectiondescribingour experi-
ences to date and the futurenkin this area.

3. Defining and Triggering Events

We areconcernedvith reactve systemsthatis, systems
thatwait for input from eitherthe useror anothemprogram,
andthenreactto thatinputby doingsomecomputationAn
event in this contet is ary of the possibleactionsthat
causethe systemto react. Typical events might be user
actionscomingfrom the userinterfacemanagermessages
sent over a soclet from anotherapplication, or remote
methodinvocationsfrom someclient. Eventscan also be
specificto an application.In somecasestime-outsmight
be consideredvents.In othercasesthe applicationmight

needto reactto interruptsor particulartypesof exceptions.
In all thesecaseswe wantto be ableto associatesystem
resourcewith the processingf the underlyingevent. For
our purposesve are mainly interestedn application-leel
seners (ratherthan say operatingsystems)and in proce-
dural or object-oriented languages such as C/C++var. Ja

Becauseevents comein a variety of forms, it is not
alwaysclearwherethe processingf an event starts.User
interfaceeventsin Java areprocessedhternallyin different
wayson Windows andUnix systemsandthesedifferences
are not exposedto the programmerDoesthe event pro-
cessinginclude such internal processingand if so, how
much?Therearemultiple waysthatremotemethodinvoca-
tion canoperateandthe programmeis usuallynot exposed
to the actualimplementation.Should event performance
include the internal routines that decode and possibly
enqueudhe messageor shouldit only includethe costof
actuallyprocessinghe messageSimilar issuesarisewhen
dealing with soclet-basedmessagesnd interrupt-driven
systems.

Determining when the systemis done processingan
event may also be problematic.The systemmight be fin-
ishedwith an eventwhenit moveson to a new event or
whenit becomesddle. In the caseof a userinterfaceevent,
event processingis generally finished when the system
returnsto getthe next eventfrom the main eventloop. In
the caseof incomingmessagest is donewhenit is ready
to readthe next messageln the caseof remote method
invocation,it is donewhenthe remotemethodreturnsor
the threadthatwascreatedo dealwith the remoteinvoca-
tion terminates.

In order to associateperformanceinformation with
events,we first needto determinea way of indicatingthe
startandendof anevent. Takingall the above into account
andlooking atavariety of programded usto defineevents
by associatinghem with particular procedurecalls, with
theentryto the call beingthe startandthe exit from the call
being the finish. This is a someavhat simplistic approach
but onethat seemgo be generalandto work. Moreover it
is similarto techniquesisedin [8] for selectingoortionsof
the codefor detailedvisualization.As anexampleof using
proceduredo defineevents,Java input eventsfor AWT or
Swing typically are processedy having the lower level
event loop call the method dispatchEvent for whatever
componentheeventoccursin. Thus,if we look for callsto
this methodin ary of the subclasse®sf java.avt.Compo-
nentwe canfind the startand stop of mostinput events.
OtherAWT eventscanbefoundusingthedispatch method
of java.awnt.event.InvocationEent. For Motif applications,
X eventscan be delineatedby calls to the routine XNex-
tEvent. For remotemethodcalls usingJava RMI, it is pos-
sibleto find two differentroutinesthatindicatethe startof
a call. The first includesall the agumentdecodingand

<EVENTS>

<EVENT METHOD="dispatchEent" CLASS="jaa/ant/MenuComponent"
SIGN="(Ljava/anvt/AWTEvent;)V"' NAME="AwtMenuEent" TYPE="AVA" />

<EVENT METHOD="dispatchEent" CLASS="jaa/ant/Component"
SIGN="(Ljava/avt/AWTEvent;)V" NAME="AwtComponentEent" TYPE="AVA" />

<EVENT METHOD="dispatch" CLASS="jea.avt.event.InvocationEent"
SIGN="()V" NAME="AwtInvocationEent" TYPE="AVA" />

<EVENT METHOD="XNextEvent" NAME="X event" TYPE="X11" />

<EVENT METHOD="RIPget_input" MME="BWE event" TYPE="BWE" />

<EVENT METHOD="process_message" SOURCE="/prof/field/msg/src/msgclient.c"

NAME="MSG event" TYPE="BWE" />

<EVENT METHOD="run" CLASS="sun.rmi.transport.tcp.TCRhsport$ConnectionHandler"
SIGN="()V" NAME="RMI Invocation" TYPE="RMI" />

<EVENT METHOD="serviceCall" CLASS="sun.rmi.transpomafnsport"
SIGN="(Ljava/rmi/sener/RemoteCall;)Z" RME="RMI Call" TYPE="RMIC" />

</EVENTS>

FIGURE 2. Sample e vent trig ger definitions.

encodingaswell asthe call; the secondonly includesthe
actual call.

The use of procedurecalls also applies naturally to
messagesystems,more detailed remote method invoca-
tions, and application-specificevents. For example, to
applyit to the soclet-basednessagindgramenork usedin
the FIELD programmingernvironment [9], we use the
routine process message inside the messagehandling
code.For anRMI application the programmecanindicate
each significant remote method as a sepavatet ¢ype.

While procedurecalls provide a naturalway of viewing
events,their useraisesseveral issues.The first is that the
setof routinesthat needto beidentifiedwill differ for dif-
ferentsystemsWe accommodatehis in our implementa-
tion by letting the particular routines be defined as
resourcesn a setof XML files. We provide a basicXML
file with differentgenericeventssuchas AWT and Swing
userinterface callbacksand RMI calls. In addition, pro-
grammerscan provide projector applicationspecificfiles
that define additionalvents

A portion of the global event definitionfile is shavn in
Figure2, Each of the event definitions first contains
enough information to uniquely identify a particular
routine or set of routines. For Java, this includes the

methodname,class,and the signaturel. For C or C++ it
includestheroutinename class,signatureandsourcefile.
Each of thesecan either be specifieddirectly or wild-
carded.Moreover, the classentry can be defined either
explicitly (usingCLASS="xxx" asin Figure2) or by spec-
ifying a set of classesor interfaceswhich implies all

1. We usethestandardlavarepresentatiofasdocumented
in [6]) to differentiate werloaded methods by specifying
their parametetypesandcreatedsimilar representatiofor
C and C++.

classeghat are either subtypesof or implementorsof one
of the gien classes or interes using OBJECTS= “xxx”.

Eachevent definition also containsan event nameand
type. The nameis usedin the outputlater on. Eventtypes
are usedto let the programmerselectwhich setof events
shouldbe usedfor a particularapplication.Thus,the pro-
grammercan control whether JAVA events (in this case
AWT-basedinput events) should be consideredor not.
Moreover, the programmercandecidewhetherto consider
RMI eventswith or without encodingor to ignore them
completelyand rely on the actual calls that they would
specify in an application-specific file.

Finally event definitions can include a set of flags to
indicatehow they shouldbe processedlhesearedescribed
in the next sectionsince they are primarily relevant to
tracking eents.

The eventtracking systemmaintainsefficiency through
preprocessingt first readsn the eventdefinitionfile when
it startsup. It determineswvhich eventsarerelevant based
on the event types and the programmes requestswhen
event profiling was started.Then it takes each relevant
eventspecificatiorandfindstheinternalidentity for all rel-
evant methods.This identity will be the addressof the
methodfor C or C++ andthe internalUID of the method
from JVMPI for Java. Theidentitiesfor the setof methods
that then needto be checled is storedin a hashtable.
Doing this all asa preprocessingtepensureghattherele-
vant method can be detected quickly durirgogition.

4. Tracking and Maintaining Events

Ideally, knowing the routine would be sufiicient for
event-basedperformanceanalysis.The systemcould just
detectwhena threadentersary of the routinesassociated
with aneventandcreatea new eventrecord.Thenit would
recordresourcausagen this recordwhile this eventwasin
progressand then output the total information when the

identifiedroutinereturned Unfortunately programsarenot
that simple.

One problem that arisesin using calls to delineate
eventsis that of nestedcalls. It is commonin a Java event
loop for the dispatchEvent methodfor one componento
decidethatthis eventis not relevantto this componentnd
thento call the correspondingnethodon its parentcompo-
nent. To avoid this problem,we only checkfor calls that
trigger new eventswhenthe currentthreadis not presently
processing anvent.

Anotherproblemis thatwhile routinesarea corvenient
andaccurateway of identifying events,they are not suffi-
cientto detectwhen sucheventsare being processedin
mary reactve systemswhen the events occur they first
causesomeinitial processingandthen causea taskto be
placedon a queue.Later in the systemexecutionanother
threadwill take thetaskoff the queueanddo the requisite
processing.The resourcesspent by this secondthread
shouldalsobe attributedto the particularevent. This situa-
tion canoccurboth with programmedefinedqueuesand
processingaswell assystemprocessingkor example Java
Swingallows a event-processingoutineto call themethod
invokel ater to have additionalprocessinge donedirectly
from Swings esent loop.

We wantedto develop a generalschemethat would
catchmostof thistypeof delayedporocessingndbeableto
assignresourcesappropriatelyto differentthreads.Based
again on the analysisof a wide rangeof different sener
applicationswe settledon usingobjectsandtheir usageto
track events.

To male this work we associateobjects(or blocks of
memoryin a non-object-orientegystem)with particular
events.Then,if athreadis not processingary otherevent
and startsdoing someprocessingwith an objectthat has
previously beenassociatedvith an event, we make the
assumptiorthat the threadis again doing processingfor
that event. This canaggain be doneby looking at the calls
andreturnsof particularroutines.Thatis, if athreadis not
currentlyprocessinganeventanda routineis calledin that
threadwith an event-associatedbjectasa key agument,
thenthe threadbecomesassociatedvith thateventfor the
duration of that routine call.

Oneproblemhereis identifying whatis meantby a“key
argument”.This canbedonein avariety of ways.Firstone
couldlet thatthe programmeidentify the appropriateou-
tinesthatdo subsequenprocessingf objectsandidentify
which of their agumentsare the appropriateones. This
approachs the mostaccuratebut it requiresbothwork on
the partof the programmeanda moredetailedmonitoring
of executionthanis provided by suchinterfacesas Java

JVMPI 2

To find a more generaland automaticalternatve we
lookedat a broadrangeof senertype programspothin C/
C++andJava andfoundoutthatit wasgenerallysufficient
to detectcalls wherethe event-basedargumentis the first
parameteror object-orientedanguagesthis meanghata
methodon the event objectis beinginvoked. In actuality
we found instancesvherethe messageontentwaspassed
asa parameteto what was the obvious routine that indi-
catedprocessingvascontinuingratherthanbeinginvoked
directly. However, in every suchcase therewassomesec-
ondaryroutinethatdid the bulk of the processingvherethe
message contentag the first parameter

Our actual implementationprovides some of both of
theseapproachesNefirst let the programmeidentify spe-
cific routinesthatindicatecontinuedprocessingf anevent
aspartof the XML descriptionfiles. However, we restrict
this to methodson the event-associatedbjectratherthan
looking at arbitrary amguments. Alternatively and by
default, we will let any methodcalledon an event-associ-
ated object to trigger continuedprocessingof the event
provided that the threaddoing the invocationis not cur-
rently associatedvith an event. This can again be con-
trolled by the programmethroughthe XML files, eitherby
specifyingspecificroutinesor event typesthat shouldnot
be handled automatically

One other problem arisesin using objectsto track
eventsis that of falseassociationslt is concevable that
several of the objectsallocatedas part of an eventarefor
generaluseandnot associateavith thatparticularevent. If
theseobjectsare later used,the correspondingesources
shouldnot be associatedvith the originating event. How-
ever, oncea sener is setup, almostall of the processingt
doeswill beassociatedvith oneeventor anotherBy only
consideringobject-basedevents when no other event is
associatedvith a thread,the systemtendsto identify the
actual event that the threadis processingln the various
exampleswe have tried we have never seensucha false
positive occur However, we do let the programmeidentify
arestrictedsetof classedor eacheventtype andlimit the
useof associatedbjectsto theseclassesNot only does
this provide a meansof avoiding falseassociationshut it
malkes the tracking and detectionof eventsusing objects
more eficient.

Falseassociationgan also occurif objectsare shared
betweenavents.This canhapperif the applicationdoesnt

2. JVMPI is a standardlava interfacefor profiling. It pro-

videshooksfor detectingeventssuchasmethodentry and
exit, allocations,monitor wait, and garbagecollection. Its

methodentry eventscan either passno parameteror the
‘this’ pointer;they do notincludeary of the otherparame-
ters.

reallocateobjectsthatrepresenmessagesr commandgor
eachevent but insteadreusesexisting objects.While this
doesnt happenoften, we have provided facilities in our
framavork wherebythe programmeicanflag routinesthat
should changethe event associatedwith their primary
objectto the currentevent. Sinceit is generallyeasyto find
sucharoutine(the onethatreinitializesthe original object,
for example),this mechanisnis sufficient, albeit applica-
tion specific to deal with these cases.

5. Implementation

To implementevent monitoring as describedabove we
needto distinguishand implementevent descriptionsand
event instances.Event descriptions representtypes of
events.Eachhasanassociatedetof routines,aneventtype
usedto determineif the eventis relevantto the program-
mer, anda setof flagsindicatinghow the event shouldbe
processed. The processing flags include:

 NO_OBJECTSIf thisflagis setthenno objectswill be
associatedvith events of this type. This is useful to
optimize event analysisfor thoseeventsthat are pro-
cesseccompletelywithin the scopeof the routine call
that creates them.

« ALLOW_REUSE. This flag indicatesthat the same
routine might be called multiple times for a single
event. It causeghe objectassociatedvith the routine
(thefirstagumentgenerallythethis pointer)to beused
to determine if there is a prieus e/ent or not.

» MARK_OBJECT This flag provides a more selectve
way of identifying whatobjectsarerelevantto anevent.
If theroutineassociatedavith thisflagis calledwhenan
eventis beingprocessedhe objectassociateavith that
call will become associated with the currevera.

Event instancesare created dynamically when the
systemdetectghataneventhasoccurredfor thefirst time.
Eachinstancekeepsrackof the currentsetof stackframes
thathave madethis eventactive. (Note thatthe sameevent
might be active in multiple threadsconcurrently) It also
keepstrack of the event descriptorassociatedwith the
event, the start and end time of the event, and all the
resources used by theemnt.

Event-basegerformancenalysisthenworks by track-
ing actionsin the programandmaintaininga currentevent
for eachactive thread.The four basicactionsthatarecon-
sideredare method(or routine) entry, methodexit, object
allocation,and objectfree. We assumehat entry and exit
actions have an associatedthread, method, object, and
stack frame and that allocation and free actionshave an
associated thread and object.

Figure3 showvs the actionsassociatedvith a call action.
The systentfirst looksto seeif thereis aneventassociated

with the current thread. At worst this involves a hash
lookup; typically it is handleddirectly sincewe cachethe
currentthreadand its event and the current call usually
comesfrom the samethreadasthe previouscall. If thereis

no current event, the system calls CheckForNewEvent.

Hereit usesahashlookupto find theeventdescriptorasso-
ciatedwith thecalledmethodf thisis definedthenit next

looks at whetherthis routine reusesevents.If so, it finds
the eventassociatedvith the primary object.If thereis no

sucheventor if theroutinedoesnt reuseevents,thenanew

event instanceis createdand associatedvith the current
thread. If no event descriptoris found for the called
method,thenthe systemchecksthe objectassociatedvith

thecall. If aneventinstancewvaspreviously definedfor that
object, then the instance is restarted.

Restartingor startingan eventinstanceinvolvesassoci-
atingthecurrentstackframewith theinstanceThisis done
by having each event keep a table of its current entry
frames. A table is necessaryhere to becausethe event
might be beingprocessedn multiple threadsconcurrently
in which casetherewill be oneframefor eachof theactive
threads.

Finally, if is a currentevent,the routine CheckForMarks
is invoked. This routine again checksif the methodbeing
called has an associatedevent descriptor and if that
descriptorindicatesthat the ‘this’ parametershould be
marked as belonging to the curreneat instance.

Figure4 shaws the actions associatedwith the other
actions.Whenan exit occursandan eventis in progress,
the systenfirst addstheresourcedor the call to the statis-
tics associatedvith the event and then checksif the exit
corresponddgo the call frame from whencethe eventwas
activated. Allocation actions check if thereis a current
eventandthat event needsto dealwith objectsand,if so,
thenit associateshe currentevent with the given object.
Finally, afreeactioncausesry associatiowith the object
being freed to be remmed.

Thereare a variety of techniquesthat can be usedto
trackactionsin the programin orderto do event-baseger-
formancemonitoring. First, one can patchthe sourceor
object code. Several profilers, including MIPS’ Pixie
[15] work in this manner This is preferred approach
becausdt is probablythe mostefficient. However it is dif-
ficult to do in general,especiallyfor multiple languages
and architectures.

A secondapproachs to usea profiling interfacesuchas
Java JVMPI or theprocedureentry exit callsusedin UNIX
profiling. This is probablythe simplesttechniqueto work
with becauset shouldwork acrossmachinesandmuchof
the requiredtracing mechanismslreadyexist. The draw-
backsherearein termsof performancdfor JVMPI), andin
the potentialneedfor the programmetto recompileall the
code and libraries to enable profiling.

ENTER]action]
Let ce = CurrentEvent[action.thread]
If ce==NULL then
Let ce = CheckForNewEvent[action]
Elseif any event has mark objects set then
CheckForMarks[action,ce]
Endif

CheckForNewEvent[action]
Let ed = event descriptor associated with action.method
If ed is defined then
Letel = NULL;
If ed alows reuse then

Let e = the event instance associated with action.object

Endif
If é == NULL then
Let e = new event instance]ed,action]
Add action.frameto el
Associate ei with action.thread
Else
Add action.frame to ei
Endif
Elseif action.object is defined then
Let e = the event instance associated with action.object
If e = NULL then
Add action.frameto el
Endif
Endif

CheckForMarks[action,ei]
Let ed = event descriptor associated with action.method
If ed has mark object flag set then
Associate action.object with event ei
Endif

FIGURE 3. Event processing for a call action

EXIT[action]

Let e = event instance associated with action.thread

If (el '=NULL) Then
Add performance statistics for this call to ei
If action.frame is associated with ei Then

Set the event associated with action.thread to NULL

Endif

Endif

ALLOC]action]
Let e = event instance associated with action.thread
If el I= NULL and not e has property NoObjects then
Associate e with action.object
Endif

FREE[action]
Remove any association with action.object

FIGURE 4. Event processing for exit, allocate and free actions

A third approach is to generate trace data as the program
runs and analyze this data after the run to for performance
information. This approach is the most straightforward if
the trace data is already available because it isolates the
implementation of the above algorithms from the tricky
process of data collection. However, it requires that the
trace data be available, and generating trace data is gener-
ally more complex and time consuming that either of the

previous approaches and would not be worth it unless it
was to serve other uses as well.

As part of our program visuaization efforts, we are
already producing relatively complete execution traces for
both C/C++ and Java programs [10,11]. These traces allow
us to do detailed analysis and to correlate a variety of dif-
ferent analysis on program runs. The underlying system
provides a convenient framework for implementing trace

<EVENT START='29653564" END='29760619° NAME="MSG event'>

<STATSCALLS="216'

TOTAL="15921" TOTALA='73.70833333333333' TOTALD='621.077"

REAL="321165" REALA="1486.875 REALD="12528.6'

INSTS="2302596908657" INSTSA="10660170873.41204' INSTSD='5.17267e+10’ />

</[EVENT>

<EVENT OBJECT="X45199' START="37480829' END="97280175' NAME="RMI Invocation’>

<STATS CALLS="1189578'

TOTAL="194081343734 TOTALA="163151.4232223528 TOTALD="2.64302e+07’
REAL='818158598 REALA="687.7721326386333 REALD="113547
ALLOCS="91516" ALLOCSA='0.07693148326549415 ALLOCSD="0.976547’
ASIZE="6841000" ASIZEA="5.750778847624956" ASIZED="124.083
UNFREES="4648" UNFREESA="0.003907267955527086° UNFREESD="0.102475’
UFSIZE="182592" UFSIZEA="0.1534930874646303' UFSIZED='5.81694’

GC="8" GCTIME="34318480554'" GCRTIME="0' />

</EVENT>

FIGURE 5. Sample XML output from event-based performance analysis.

analyses and we used this framework for an initial imple-
mentation of event-based performance analysis.

Our event-based performance analyzer thus reads
program trace files, detects the four relevant types of
actions, and tracks events and their associated resources. It
generates an XML file that contains the particular program
events with whatever identifying information is available
along with the associated resources. An example of the
output is shown in Figure5. The top entry is from a C
program while the bottom is a Java event. Both cases iden-
tify the event type and time. For the Java event, the particu-
lar object associated with the event is aso recorded.
(Information about that object is available in other analysis
files) After the event, the resource statistics are provided.
We provide total, average, and standard deviations for each
statistic. The different statistics shown here include
TOTAL for the total execution time spent processing the
event, REAL for the real time associated with the event,
INSTS for the number of instructions executed during the
event (for C/C++ only), ALLOCS for the number of allo-
cations associated with the event, ASIZE for the size of
allocations, UNFREES for the number of unfreed alloca-
tions, UFSIZE for the size of the unfreed allocations, and,
for Java, garbage collection statistics.

6. Reporting Event Information

The system reports events in XML format so that the
resultant information can be used by other programs,
notably our software visualization system. [12,13].
Figure 6 shows two sample visudizations of the AWT
events of a graphical editor associated with our visual
query language [14].

In the first, time is displayed along the X axis and the
run time used in processing the event along the Y. Color
encodes the number of calls associated with the event. Its

very easy to spot the two events that took most of the pro-
cessing run time and to note that these also involved the
most calls.

The second diagram shows an alternate 3D view of the
same events. Here time is shown as a spiral starting in the
center, height isthe number of calls, and color indicates the
size of allocations done for the event. Again, the events that
took the most time stand out and it is easy to see that the
number of alocations correlates with the processing time
of the events since the longer events tend to have colors
that arein the blue-violet range while the shorter events are
in the red-yellow range.

7. Experiencesand Future Work

The event mechanism here has been tried on avariety of
different programs and demonstrated its capability to iden-
tify relevant events and show the resources used by the
individual events. In addition to the example of Figure 6
which shows ainteractive Java application, we have used it
to find both X11 and message-based events in the FIELD
programming environment [9], to find swing-based events
in severa other systems, and to find RMI-based events in
different server frameworks.

The visualizations produced by the events convey the
appropriate information. They are most useful in the
context of the overall visualization system where they can
be directly related to other visualizations which show what
else is going on in the program when each event is being
processed. For example, they have been used to track down
why certain events (in particular a sequence of drag events
to change the shape of a curve) took longer than expected.
The visualization framework aso alows events to be
dynamically grouped in various ways (for example, by
event type) to get summary information in more complex
visualizations.

—i| bee

| |

ThilterEvent
event_name = AwtInvocationEvent
start_time = 128623617
end_time = 136501727
mumber_of calls = 1035243
total time = 129274720
total real time = 24537320
munhexr_of allocations = 10664
size_of_allocations = 212304
wnfreed_allocations = 10664
size_of wnfreed_allocations = 219304

numbex_of_calls = 1035243 A
total time = 129274720

total real time = 94537320
mmher_of allocations = 10664
size_of_allocations = 219304
wnfreed_allocations = 10664

size_of wnfreed_allocations = 219304

|-

%

N

FIGURE 6. Example visualizations of event-based resource utilization.

The code for our implementation is available as part of
the BLOOM software visuaization and understanding
system at http://www.cs.brown.edu/research/softvis.

While these efforts demonstrate the potential for doing
event-based performance anaysis and software under-
standing, there are several directions in which this can be
pursued. The particular ones that we are currently looking
at are:

» Supporting nested events as distinct. Right now we only
view a thread as processing a single event at one time.
Actually, if we allow avariety of event types, it is possi-
ble for athread to be associated with multiple events of
different types at one time. ldedly, the underlying
framework should support this.

» Allowing event continuation to be detected using calls
that do not rely on the associated object being the first
argument. This restriction is implicit in the use of
JVMPI for Java profiling, but can be avoided with other
technologies. Moreover, there are applications where

the relevant object is not invoked directly and event
continuation cannot be detected using the existing
framework.

e Extending this framework to handle multiple process
programs. Here one would like to track an event across
applications. For example, one would like to take an
input event in the client and include in the performance
summary all the RMI calls and resources used in the
server. This requires either detailed post-processing
analysis or an dightly augmented version of RMI. It
can also be done at alower level by tracking input and
output operations between processes, associating a
message written by one process with the current event
of that process and then transferring that event to the
other process when the same dataiis read back in.

Even without these extensions the current system has
demonstrated both the practicality and the utility of doing
event-based performance analysis and understanding for
reactive systems.

8. Acknowledgements

This work was done with supportfrom the National
Science Foundation through grants ACI9982266,
CCR9988141,and CCR9702188and with the generous
supportof SunMicrosystemssSignificantadviceandfeed-
back was praided by Manos Renieris.

9. References

1. Ziya Aral and llya GertnefNon-intrusive and interactie
profiling in Parasight, Proc. ACM/SIGPLANCONf on Parallel
Programming pp. 21-30 (January 1998).

2. Bryan M. Cantrill and Thomas.\WWoeppnerJr,
“Threadmon: a tool for monitoring multithreaded program
performancé,Proc. 30thHawaii Intl. Conf on System$ciences
pp. 253-265 (January 1997).

3. Michael M. Gorlick, “The flight recorder: an architecture for
system monitoring, ACM/ONRWbrkshopon Parallel and
DistributedDehugging, pp. 175-183 (DEcember 1991).

4. S.L.Graham,.B. Kesslerand M. K. McKusick, “gprof: A
call graph gecution profilef SIGPLANNoticesVol. 17(6) pp.
120-126 (June 1982).

5. Minwean Ji, Edard W Felten, and Kai Li, “Performance
measurements for multithreaded prograrRsoc. ACM
SIGMETRIC®erformance 98, pp. 161-170 (August 1998).

6. Tim Lindholm and Frank #&llin, TheJavaVirtual Machine
SpecificationSecondEdition, Addison-Wésley (1999).

7. Wm De Rauw and Gary Satsky, “Visualizing reference
patterngor solvingmemoryleaksin Java;’ in Proceeding®f the
ECOOP’99 EuropeanConfeenceon Objectoriented
Programming (1999).

8. Wm De Rauw Nick Mitchell, Martin Robillard, Gary
Sevitsky, and Harini Sriniasan, “Drve-by analysis of running
programs, Proc. ICSEWbrkshopof Softwae isualization (May
2001).

9. Steen P ReissFIELD: A Friendly IntegratedEnvironment
for Learningand DevelopmentKluwer (1994).

10. Steen P Reiss and Manos Renieris, “GeneratingaXaace
data; ProcJavaGrande (June 2000).

11. Steen P Reiss and Manos Renieris, “Encoding program
executions, ProcICSE2001, (May 2001).

12. Steen P Reiss, “Bee/Hie: a softvare visualization
baclend; IEEE Workshopon Softwae Misualization (May
2001).

13. Steen P Reiss, An overview of BLOOM, PASTE'01,
(June 2001).

14. Steen P Reiss, A visual query language for sofare
visualizatior, IEEE 2002 Symposiunon HumanCentric
ComputingLanguagesand Ervironments pp. 80-82 (September
2002).

15. MIPS Computer Systems, InRISCompilelanguayes
Programmets Guide December 1988.

	Event-Based Performance Analysis
	Steven P. Reiss
	Department of Computer Science
	Brown University
	Providence, RI 02912-1910
	401-863-7641, FAX: 401-863-7657
	spr@cs.brown.edu
	Abstract
	1. Introduction
	2. Overview
	FIGURE 1. System overview.

	3. Defining and Triggering Events
	FIGURE 2. Sample event trigger definitions.

	4. Tracking and Maintaining Events
	5. Implementation
	FIGURE 3. Event processing for a call action
	FIGURE 4. Event processing for exit, allocate and free actions
	FIGURE 5. Sample XML output from event-based performance analysis.

	6. Reporting Event Information
	FIGURE 6. Example visualizations of event-based resource utilization.

	7. Experiences and Future Work
	8. Acknowledgements
	9. References

