
Visualizing Java in Action

Steven P. Reiss
Department of Computer Science

Brown University
Providence, RI 02912-1910

401-863-7641, FAX: 401-863-7657
spr@cs.brown.edu

Abstract

Dynamic software visualization is supposed to provide program-
mers with insights as to what the program is doing. Most current
dynamic visualizations either use program traces to show infor-
mation about prior runs, slow the program down substantially,
show only minimal information, or force the programmer to indi-
cate when to turn visualizations on or off. We have developed a
dynamic Java visualizer that provides a view of a program in
action with low enough overhead so that it can be used almost
all the time by programmers to understand what their program is
doing while it is doing it.

CR Categories: D.2.6 Graphical environments, D.2.5 Debug-
ging aids.

Keywords: Dynamic software visualization, run-time monitor-
ing, instrumentation.

1 Introduction

Software visualization has not been particularly successful for
program understanding. Visualizations that look at the static
aspects of a software system are only able to provide limited
insights and say nothing about the important and more complex
dynamic behavior of the system. Dynamic visualizations have
been expensive to use because they require the programmer to
run the program in an environment that produces the appropriate
trace data, generally slowing program execution by an order of
magnitude or worse. The result is that programmers generally
don’t bother using visualizations even if they would be helpful.

We wanted to provide a dynamic visualization environment that
could actually be used for real running programs. Such an envi-
ronment would provide programmers with the information they
needed to understand what their program was doing as it was
doing it. The environment had to be simple to use, had to mini-
mize the overhead involved with the visualization, had to work
with arbitrary programs, and had to provide immediate feedback

to the programmer. Moreover, the resultant system had to be not
only informative but also entertaining — we wanted programers
to start using visualization just because it was fun.

The requirements for such a visualization system emphasize
usability rather than detailed or high-quality visualizations. In
particular, we felt that such a system should:

• Minimize overhead. The overhead involved in data collection
must be such that the program run as fast as possible. Ideally
we wanted a slowdown factor of 2 or less.

• Maximize information. Given the constraints of minimizing
overhead, we wanted to provide as much information as pos-
sible. The more information that is provided, the more useful
the system is and hence the more it is likely to be used.

• Emphasize real time. We wanted a system that would show
the programmer what the program was doing right here and
now. This meant that we needed to both extract the informa-
tion and display it in real time.

• Maximize displayed information. Not only did we want to
maximize the amount of information that was collected, we
wanted to be able to display as much of this information as
possible at once. This ensures that the programmer does not
have to continually adjust the visualization to get information
that might be relevant.

• Provide a compact display. For the visualizer to be run fre-
quently and with a variety of applications, we needed to
ensure that the result would be non-obtrusive. The system
should be able to provide as much information as possible
while minimizing the amount of screen space that it con-
sumed.

A system meeting these requirements would offer the first step
toward making visualizations both useful and used. Moreover, it
would demonstrate that software visualization could be an every-
day thing rather than something only to be used when problems
were so severe that nothing else worked.

2 Prior Work

There have been a large number of different systems that provide
visualizations of the dynamics of a program. Ours is different in
that it attempts to provide high-level program-specific informa-
tion in real time.

Perhaps the most prominent effort is IBM’s Jinsight [5-7]. Jin-
sight typically runs by collecting detailed trace data as the
program executes and then, after execution is complete, letting

the programmer understand execution at a very detailed level
using a variety of views based on the trace. Trace collection, how-
ever, is not that efficient,requires a suitably modifiedJVM (and
the program to work with that particular JVM), and is typically
not the type of thing one would use all the time. Recent work on
Jinsight has been aimed at letting the programmer identify just
those portions of the program for which tracing should be done.
This provides for almost immediate visualizations, but assumes
that the programmer knows what to look for in advance.

The program visualization group at Georgia Tech has imple-
mented several visualizations that provide insights into program
execution using program traces [2,4]. Similar systems include PV
from IBM [3], and the dynamic aspects of the Bloom system [12-
14]. The problem with these trace-based analyses is that they
require the programmer to take the extra effort to run the system
with tracing and often are both difficultto use and run too slowly
to be practical. Our goal was to get as much of the information
that these tools provide as possible without the considerable over-
head that they incur.

Another set of relevant tools are performance visualizers that
provide insight into what the machine is doing while the program
is being run. These range from standard operating-system based
performance tools such as those incorporated in Sun’s workbench
toolkit or IBM’s PV system, to viewers that concentrate on some
specific aspect of execution. In the later category, one finds
dynamic visualizations of thread behavior [1], visualizations of
heap, performance and input/output in the FIELD environment
[8,9], and the large number of different visualization of the
behavior of processors and messages in parallel systems culmi-
nating in the various MPI visualization tools such as upshot or
xmpi.

Finally, we note that dynamic visualization is nothing really new.
Back in the 1960s we (and others) used to try understanding what
their program was doing either by looking at the lights or the per-
formance meter of the system (on a GE635) or by placing a radio
next to the system and listening to the different types of static that
were generated.

3 Getting Java Trace Data

The key to a successful real-time dynamic visualization system is
obtaining appropriate trace data with minimal overhead. Our
goals here were to determine what information was needed, what
information could practically be obtained, and how to obtain as
much information as possible with the least overhead.

The primary objective of our visualization system was to show
programmers what their program was doing as it was doing it. To
this end, we needed information about what classes were cur-
rently executing, what was happening to memory, and what the
various threads were doing.

Rather than attempt to show everything that the program was
doing, we decided to break the execution into intervals and then
display a summary of what the program did during each interval.
This let us cut down substantially on the amount of data that had

to be conveyed from the application to the visualization tool and
made sense since the visualization tool would have to report
summary information in any case.

The information we wanted to include for each interval then
included:

• What was currently executing. While this could be done at the
method level, it made more sense, given limited display space
and the need to summarize data, to batch this information by
class, or in the case of libraries, by package or collection of
packages.

• How much time is spent in each class. Ideally we wanted the
class execution information to indicate how much time each
thread spent in each class.

• How much time is spent in each class for synchronization.

• What was being allocated. To indicate memory behavior, we
wanted to show the programmer how many allocations occur
for each class of object. Again, for libraries, we wanted to
group this by package.

• What was being deallocated. To get a sense of the total use of
memory, one needs this information along with the allocation
information. We noted, however, that because Java uses gar-
bage collection rather than explicit freeing, this information
will be a bit skewed.

• What threads are in the program. We wanted the programmer
to understand the current set of threads created by the applica-
tion and to show when threads were created or destroyed.

• What each thread is doing. We wanted to show the program-
mer the state of each live thread. Here we wanted to distin-
guish between actively executing, blocking, doing I/O,
sleeping, and running in a synchronized region. Moreover, we
wanted to show the time in each interval that the thread was in
each of these states.

• How often does a thread block other threads. Here we wanted
to provide an indication of which threads were the cause of
other threads needing to block.

These items provided our target set of information. The next issue
we faced was how to obtain this information. Here several alter-
natives were possible.

The simplest option was to use the hooks provided within the
Java system for profilingor debugging. Java provides a profiling
facility, JVMPI, that is able to invoke user routines whenever
profilableevents (e.g. method entry or exit, monitor waits, or
garbage collection) occur. It also provides a debugging facility,
JVMDI, that offers additional hooks to let a debugger control the
running program. We experimented with using JVMPI, having
had considerable experience with it from our previous work [10-
12]. We quickly found out, however, that just turning JVMPI on
for method calls (the basic information we wanted), caused a
slowdown in performance of well over a order of magnitude,
much more than we were willing to allow. Moreover, with
JVMPI there is no way of a priori distinguishing events that occur
in user code from those that occur in library classes or packages.

The alternative we considered was to patch the Java program in
order to insert calls whenever a significantevent occurred. The
events we were interested in involved method entry and exit,
monitor entry and exit, and the state of each thread. Using IBM’s
Jikes Bytecode Toolkit (http://www.alphaworks.ibm.com/tech/
jikesbt), our solution was to instrument the complete application
by inserting calls to trace routines for each method entry and exit,
for each allocation, and around each synchronized region.

While this is much more efficient,it still isn’ t perfect. First, we
tried to use native code so that our tracing code would not affect
the original application and could be as efficientas possible. This
was not practical because Sun’s Java virtual machine has consid-
erable overhead when calling a native method. In particular, just
inserting empty native event calls for the above events slowed the
program down by an order of magnitude.

The second problem involved getting information about the
current thread. In Java this needs to be done by calling the static
method Thread.currentThread. Unfortunately, there is consider-
able overhead associated with this method and using it for each
event again slowed the program down by an order of magnitude.
This forced us to consider ways of providing the user with appro-
priate information without knowing the current thread in most
cases. This limited the information available since we would not
match entry events with the corresponding exit events and could
not associate allocation events with appropriate calls.

A third problem was that patching a Java program has consider-
able overhead, especially if one has to patch not only the user’s
code but also all the Java standard libraries and any other pack-
ages used by the application. To lessen the overhead here, we
decided to take into account the set of classes that the user was
interested in. It would be impractical from a visualization stand-
point, to show information about all the classes in an application.
There are just too many library classes, and most of these are not
relevant to the programmer. Instead, we decided to let classes be
grouped into packages and packages into a package hierarchy.
For example, all classes in java.io.* (and all subpackages of
java.io.) can be represented by a single visualization object.

In order to minimize overhead and patching time, we divide the
classes into three categories. Detailed classes are those directly in
the user’s application. For these we provide information that con-
sider all methods (private and public) and detail any nested
classes for separate visualization. Library classes, on the other
hand, are grouped into packages and we typically only generate
events for the initial entry into the library. (This is done by creat-
ing a stub routine for the library call and replacing all explicit
calls to the library from the application with calls to this stub.)
We do not generate events for calls within a library class. Simi-
larly, allocations of all objects from the package are grouped
together. Finally, classes that are neither detailed nor library are
treated at an intermediate level of granularity. Here nested classes
are merge with their parent, we count only public methods, and
we patch the classes to findout what is going on as they are
called.

4 Generating Data for Visualization

We next needed to generate the actual information we wanted to
visualize from the event calls. This involved processing each
event appropriately, accumulating the necessary information, and
then sending it to the visualizer.

We used method entry and exit events to determine both what
was executing and the state of each thread. What was executing
was determine by keeping a counter for each class (or package)
and incrementing that counter when the appropriate entry event
occurred. Ideally, what we wanted here was to use the counter to
represent time, tracking the time spent executing in each class.
This proved difficultfor two reasons. First, it is difficultor impos-
sible to get a timer that is accurate enough to give reasonable
information on most machines (on Linux, for example, the best
one can do is ten millisecond resolution). Second, we had no way
of matching entries and exits in a multithreaded environment
since determining the current thread was too costly. Because of
this, we approximate usage by just keeping counts of calls.

Entry and exit events are used to determine thread state changes
by identifying those routines that affect thread state and treating
calls to these routines differently. We use an XML fileto identify
all routines in the Java libraries that represent a state change.
(Additional filescan be provided if there are any application-spe-
cificroutines.) These include all routines that might do blocking
input-output, routines that cause the thread to sleep, and routines
that cause the thread to wait for an event. When an entry or exit
call to any of these routines is detected, the tracing code deter-
mines the current thread and changes its notion of the state of the
thread accordingly.

This is not sufficientfor detecting all thread states. We needed to
augment this with information about synchronization and syn-
chronized methods and code blocks. Synchronized methods and
blocks are handled differently by the Java virtual machine.
Blocks are handled by a set of JVM opcodes that indicate syn-
chronized entry and exit. Here it was easy to insert a call immedi-
ately before and after synchronized entry and a call immediately
before synchronized exit. This let us identify states where the
thread is waiting on (or at least checking to acquire) a monitor,
running inside a monitored region, or releasing a monitor. Syn-
chronized methods, however, are handled internally by the virtual
machine. In order to make this explicit, we patched the code
using stub routines in order to provide the corresponding three
calls for synchronized methods. We also use the calls at the start
of a synchronized block or method to maintain counters of the
number of synchronizations done for each class or package as
well as counts of the number of times one thread causes another
thread to block.

Finally, we inserted event calls on each allocation, noting the type
of object being allocated for each. Again, we felt that we could
not determine the thread associated with the call because of the
potential cost of doing so. Thus we just gathered information
about the total number of objects of each class allocated and the
class or package that is the source of the allocation.

Based on these event calls and processing, we need to actually
generate information for the visualizer. This is done in two
stages. First, we create a buffer that can hold all the data. This has
an entry for the execution counts, allocation of counts, and allo-
cation by counts for each class or package that will be reported. It
also has an entry for each thread that indicates the amount to time
spent in each possible state by that thread and the number of
blocks caused by the thread. The event handlers merely update
the information in the current buffer. This is done efficientlyby
precomputing indices into the buffer at patch time and passing
the indices directly in the event calls.

Second, we create a monitoring thread that wakes up at the end of
each interval to generate a report. This thread switches the current
trace buffer with an empty one, sets up a new empty buffer for the
next interval, updates the execution times associated with the
finalthread state of each thread using information from the previ-
ous buffer as needed (to determine the previous thread state if
nothing changed), and then generates appropriate output for the
interval. Note that in order to access the previous buffer and have
a clean buffer for the next event, the monitoring code switches
between three buffers.

The output is currently generated in XML. It provides detailed
information about each class that has non-zero counts and about
each thread that was not dead throughout the interval. The trace
package then sends this output directly to the visualizer along
with general information about the interval such as totals and the
time represented by the interval. Currently, the information can
be sent either through sockets or through an XML-based message
server. A sample interval file is shown in Figure 1.

5 Box Display Visualization

Once the data is available, we needed to have a visualization for
the data. In particular we wanted a visualization that could show a
large number of objects (e.g. all the relevant classes and packages
or all the application’s threads) and several pieces of information
about each object (e.g. for a class, the number of entries, the
number of synchronization calls, the number of allocations, and
the number of allocations by methods in this class; for a thread,
the time spent in each of the possible states) in a small display

area. We also needed something that was simple, fast and easy to
understand since we wanted the visualization to run in real time.

We settled on what we call a box display. Here each class or
thread is represented as a box on the display. Within the box we
can display one or more colored rectangles. The various statistics
can be reflected visually in the vertical and horizontal sizes of the
colored display, in the color (hue, saturation and intensity as sep-
arate items) of the displayed region, or through textures where the
density of the texture is used to represent the corresponding sta-
tistic.

For the class display, we typically display five simultaneous
values. First, the height of the rectangle is used to indicate the
number of calls. Second the width of the rectangle is used to rep-
resent the number of allocations by methods of the class. Third,
the hue of the rectangle is used to represent the number of alloca-
tions of objects of the given class. Fourth, the saturation of the
rectangle is used as a binary indicator as to whether the class was
used at all during the interval. Finally, the brightness of the box is
used to represent the number of synchronization events on
objects of this class. Currently, we do not use texture as part of
the display because we found that Java could not display textures
in real time, however the system includes the capability to tie
them to a property if the user wishes.

Each of these statistics is treated a little differently. First, the
height and width have a minimum value so that a zero or trivial
count (in either dimension) does not cause the display to disap-
pear. Second, we provide a variety of color models for mapping
hue including red to violet, yellow to red, and green to red. Next,
both brightness and saturation are done over a limited range so
that the effect does not obscure the hue value or hide the drawing
altogether. Finally, we invert the sense for brightness so that the
more common low values have high brightness and the occa-
sional high values standout by being darkened.

For threads, we create a stack of color rectangles inside each box.
Here we vary the height of each rectangle based on the percent of
time within the interval the thread is in the corresponding state
and the width of each rectangle as the percent of time in this state
represented by the given thread. The hue is used to denote the
actual thread state. In addition, we currently use the brightness of

<STATS TIME=’1035559445758’>
 <ENTRY NAME=’ja va’ COUNT=’1101551’ />
 <ENTRY NAME=’spr.onsets.OnsetExprSet’ COUNT=’159197’ ABY=’95171’ />
 <ENTRY NAME=’spr.onsets.OnsetCubeSet’ COUNT=’225’ A OF=’225’ />
 <ENTRY NAME=’spr.onsets.OnsetTypeSet’ COUNT=’94496’ A OF=’94496’ />
 <ENTRY NAME=’spr.onsets.OnsetExprSet$SetExpr’ COUNT=’225’ A OF=’225’ />
 <ENTRY NAME=’spr.onsets.OnsetCardSet’ COUNT=’1509’ A OF=’1734’ />
 <ENTRY NAME=’spr.onsets.OnsetCubeBase’ COUNT=’1729410’ />
 <ENTRY NAME=’spr.onsets.OnsetBitSet’ COUNT=’4577700’ />
 <ENTRY NAME=’spr.onsets.OnsetCardDeck’ COUNT=’1059’ ABY=’1059’ />
 <ENTRY NAME=’spr.onsets.OnsetCubeDeck’ COUNT=’2929392’ />
 <ENTRY NAME=’spr.onsets.OnsetExprSet$Expr’ COUNT=’225’ ABY=’450’ />
 <TOTALS COUNT=’10594989’ A OF=’96680’ ABY=’96680’ />
 <THREAD INDEX=’1’ N AME=’main’ SYNC=’1016’ />
 <THREAD INDEX=’2’ N AME=’Reference Handler’ W AIT=’1016’ />
</STATS>

FIGURE 1. Sample trace interval output.

the display as an indicator of how many threads are blocking on
this particular thread.

All of these parameters can be changed dynamically by the user
through the dialog box shown in Figure 2. Moreover, the user can
choose, for each of the count statistics, whether to use a linear
scale or a log scale The latter is often more appropriate is consid-
ering performance statistics.

6 Dynamic Java Visualization

The actual visualization window is divided into two panes as
shown in Figure 3 and Figure 4. The left half of the figuresshow
class and package usage information. Each class or package is
displayed using a box display visualization. In Figure 3 height
reflects the log of the number of entries to the class and width
reflects the number of allocations done by the class or package.
The darker displayed rectangle indicates where synchronized
calls occur. The red rectangle indicates what is primarily being
allocated at this point in the execution. All the very light rectan-
gles indicate classes or packages that were not used during the
interval.

In order to provide stability to the class display, the visualizer
gets information about the complete set of classes and packages
that might be displayed when the application starts. This lets it
create a layout that includes all necessary items and that will
remain the same through the execution. Moreover, the system
labels each box in the display with an abbreviation of the class
name. Tool tips are then used to provide the full class name to the
user.

The right half of the display in Figure 3 uses additional box dis-
plays to indicate the status of the two threads in the system. The
green box on the left indicates that the thread is actively running
while the magenta box on the right indicates the thread is waiting
for an event. The number of threads used by the application
cannot be known in advance. Thus the visualizer will add new
box visualizations to the thread half of the display as the threads
are created.

Figure 4 shows another view of the visualizer, this time on an
application that uses Java’s Swing package. Here one can see the
state of the various threads in the application and Swing, in par-
ticular, one can quickly detect which threads are running (green

FIGURE 2. Dialog box for setting the mapping between statistics and graphical properties.

for normal, yellow for synchronized), and whether the remaining
threads are waiting (magenta) or blocking for I/O (blue). The
class pane here indicates that almost all the execution is occurring
in the ApiColorChooser class.

Another feature shown in Figure 4 is the use of tool tips to show
the particular class or thread that the mouse is over. This lets us
shrink the display to the point where the text is unreadable while
still providing a meaningful display. For example, Figure 5 shows
a miniaturized version of the display for a static analysis tool. To
make this view more telling, we changed all the class statistics to
use the log of the associated values.

Figure 5 also illustrates the use of the browser to show execution
totals rather than incremental information. In this mode the
values shown for each class and each thread represent the total
counts or utilization from the start of the execution rather than
just during the last interval. This is selectable in the View menu
and provides useful summary information in attempting to under-
stand an execution.

The dynamic visualizer normally shows the execution as it is hap-
pening. To achieve this it establishes a socket connection with the
trace package that is loaded into the application, reads data for
each interval, and then updates its display based on the data. For
most applications it is able to maintain a real time display with up
to one hundred frames a second, although the resultant intervals
are often too small to be meaningful to the viewer.

In addition, the visualizer keeps a record of all the previous
entries and provides facilities to let the user browse over the exe-
cution, either as it is happening, or more commonly, after the fact.
The scroll bar on the bottom of the window is used to let the user
scroll over time for the execution. The display updates dynami-
cally as the user scrolls. This facility is useful for going back and
viewing transient events and getting a better understanding of the
application’s execution. It also lets the user stop the display and
zero in on any unexpected or unusual occurrences.

7 Running the Visualizer

In order to make the visualization tool as easy to use as possible,
we developed a simple front end that lets the programmer run the
application and tune the visualization. The front end is invoked
by using the jive command in place of the standard java
command when running the application. This command is
designed to take all the same arguments programmers would nor-
mally use in running their program and hence can be substituted
with a minimum of effort.

Running this command starts up the interface for the visualiza-
tion and automatically starts the application running as well.
Beyond this, the front end provides the programmer with a
number of additional capabilities.

First, the programmer can rerun the application directly from the
interface with the same or modifiedarguments using the Run
command on the File menu to display the dialog box shown in

FIGURE 3. Dynamic display of a Java program.

Figure 6. This is convenient since it lets the system avoid having
to repatch the program for the additional runs. Second, the pro-
grammer can dynamically specify what portions of the applica-
tion should be viewed as detailed and library classes using the
second dialog box shown in Figure 6. Third, the front end hides
the actual process of patching the program, running this in back-
ground whenever necessary. Finally, the front end provides the
user with a separate window for the text input and output of the
application.

8 Experience and Future Work

While not perfect, our efforts show that dynamic visualization of
real applications is possible and may be practical as a default way
of running the application. The program runs with a slowdown of
a factor typically between 2 and 3 depending on the structure of
the application. Given the wide performance range of today’s
machines, this seems to be quite acceptable. The drawback to our
approach here is that patching the application typically takes 20
to 30 seconds, and thus there is considerable startup overhead in
using the tool. However, our approach is totally Java-based and
hence portable to any platform that runs Java.

FIGURE 4. Dynamic view of a Java program using Swing.

FIGURE 5. The visualizer showing a miniaturized display.

We have used the visualization tool on a wide variety of Java pro-
grams ranging from simple student programs, to complex single
threaded applications (a static checker), to user-interface based
applications, to a multithreaded web crawler. We have found that
it provides useful information and that watching it makes one
think more about what the application is actually doing.

The visualization clearly shows where the application under
examination goes through different phases. Each phase has its
own distinctive set of active nodes, it is easy to tell the phases
apart, and the phase transitions are obvious. When viewing the
static analyzer, for example, we could clearly see where the tool
was loading the class files,where it was doing the initial analysis,
and then where it cycled between setting up a program abstrac-
tion based on the analysis and checking that program abstraction.

The visualization also is helpful in providing rudimentary perfor-
mance information. When looking at totals, it becomes obvious
very quickly which classes are executed the most, which do the
most allocations, and which are allocated the most. It also pro-
vides a rapid view into which classes contained the most synchro-
nized methods and hence caused synchronization delays and
blocking. The corresponding thread view shows what each thread
has done and provides some indication of the amount of time
spent in blocking, in synchronized regions, and in general execu-
tion. It can also show which threads are the most active in a mul-
tithreaded application. Note however, that the tool was not
designed for showing the detailed performance information
needed for actually tuning the application.

Where the tool has really demonstrated it usefulness is in high-
lighting unexpected program behaviors. For example, a signifi-
cant portion of the cost of patching is just loading the class files.
The tool shows that about 15% of the time here is spent in syn-
chronization, mainly from standard Java classes. Looking at the
code, we findthat it uses synchronized Hashtables rather than
unsynchronized HashMaps for key components.

Another example occurred when we took a gas station simulation
program and replaced the wait call that was used to provide a
time interval during which gas was being pumped, with what we
thought was a more appropriate sleep call. While the program
seemed to ran normally, looking at the visualization quickly
showed that with the sleep call, all threads were blocking rather
than just the one thread that was supposed to. It was then obvious
that sleep should not be used in a synchronized region.

While the visualization has proved useful, it still has some signif-
icant problems. First, the statistics that are reported are a bit
biased because we don’ t have timing information and we report
only public calls for some classes or packages and all calls for
other packages. Second, because we are only patching Java code,
there are some inaccuracies in that we sometimes miss a thread
state transition if it occurs either in native code or is buried in a
library routine we didn’ t catch at first.Third, the fact that the
tracing code is Java code as well means that some artifacts show
up in the trace. For example, the cost of synchronization tends to
be over emphasized since the event handlers determine the thread

FIGURE 6. Dialog boxes for controlling the execution and specifying detailed and library classes.

and thus add considerable overhead before and after synchroniza-
tion occurs.

The system could also be made more useful by including addi-
tional information and by letting the programmer dynamically
adjust how the information should be grouped. Easy additional
information that could be provided would include the classes in
which synchronization occurs, and what threads are blocking
other threads. More complex information would include actual
timings and tracking of deallocations. Dynamic grouping would
let the programmer look at their program at a high level and then
zero in on the any interesting behavior, for example determining
the specificclasses in a package that were causing synchroniza-
tions.

Other useful features would be to let the programmer set markers
in the visualization to indicate known points in the program. This
would simplify using the program history visualization since pro-
grammers could readily identify what part of the program they
were looking at. A complementary feature would let the pro-
grammer save and reload the data from a run so that the execution
could be reviewed at a later time.

9 Acknowledgements

This work was done with support from the National Science
Foundation through grants ACI9982266, CCR9988141, and
CCR9702188 and with the generous support of Sun Microsys-
tems. Significantadvice and feedback was provided by Manos
Renieris.

10 References

1. Bryan M. Cantrill and Thomas W. Doeppner, Jr.,
“Threadmon: a tool for monitoring multithreaded program
performance,” Proc. 30th Hawaii Intl. Conf. on Systems Sciences,
pp. 253-265 (January 1997).

2. Dean Jerding, John T. Stasko, and Thomas Ball, “Visualizing
interactions in program executions,” Proc 19th Intl. Conf. on
Software Engineering, pp. 360-370 (May 1997).

3. Doug Kimelman, Bryan Rosenburg, and Tova Roth,
“Visualization of dynamics in real world software systems,” pp.
293-314 in Software Visualization: Programming as a
Multimedia Experience, ed. Blaine A. Price,MIT Press (1998).

4. Eileen Kraemer, “Visualizing concurrent programs,” pp. 237-
256 in Software Visualization: Programming as a Multimedia
Experience, ed. Blaine A. Price,MIT Press (1998).

5. Wim De Pauw, Doug Kimelman, and John Vlissides,
“Visualizing object- oriented software execution,” pp. 329-346 in
Software Visualization: Programming as a Multimedia
Experience, ed. Blaine A. Price,MIT Press (1998).

6. Wim De Pauw and Gary Sevitsky, “Visualizing reference
patterns for solving memory leaks in Java,” in Proceedings of the
ECOOP ’ 99 European Conference on Object-oriented
Programming, (1999).

7. Wim De Pauw, Nick Mitchell, Martin Robillard, Gary
Sevitsky, and Harini Srinivasan, “Drive-by analysis of running
programs,” Proc. ICSE Workshop of Software Visualization, (May
2001).

8. Steven P. Reiss, FIELD: A Friendly Integrated Environment
for Learning and Development, Kluwer (1994).

9. Steven P. Reiss, “Visualization for software engineering --
programming environments,” in Software Visualization:
Programming as a Multimedia Experience, ed. Blaine Price,MIT
Press (1997).

10. Steven P. Reiss and Manos Renieris, “Generating Java trace
data,” Proc Java Grande, (June 2000).

11. Steven P. Reiss and Manos Renieris, “Encoding program
executions,” Proc ICSE 2001, (May 2001).

12. Steven P. Reiss, “An overview of BLOOM,” PASTE ’ 01,
(June 2001).

13. Steven P. Reiss, “Bee/Hive: a software visualization
backend,” IEEE Workshop on Software Visualization, (May
2001).

14. Manos Renieris and Steven P. Reiss, “ALMOST: exploring
program traces,” Proc. 1999 Workshop on New Paradigms in
Information Visualization and Manipulation, (October 1999).

