
JIVE: Visualizing Java in Action
Demonstration Description

Steven P. Reiss
Department of Computer Science

Brown University
Providence, RI 02912-1910

401-863-7641, FAX: 401-863-7657
spr@cs.brown.edu

Abstract

Dynamic software visualization should provide a pro-
grammer with insights as to what the program is doing.
Most current dynamic visualizations either use program
traces to show information about prior runs, slow the pro-
gram down substantially, show only minimal information,
or force the programmer to indicate when to turn visual-
izations on or off. We have developed a dynamic Java visu-
alizer that provides a view of a program in action with low
enough overhead that it can be used almost all the time by
programmers to understand what their program is doing
while it is doing it.

1. Introduction

Software visualization has not been particularly suc-
cessful for program understanding. Visualizations that look
at the static aspects of a software system are only able to
provide limited insights and say nothing about the impor-
tant and more complex dynamic behavior of the system.
Dynamic visualizations have been expensive to use
because they require the programmer to run the program in
an environment that produces the appropriate trace data,
generally slowing program execution by an order of mag-
nitude or worse. The result is that programmers generally
don’t bother using visualizations even if they would be
helpful.

We wanted to provide a dynamic visualization environ-
ment that could actually be used for real running programs.
Such an environment would provide programmers with the
information they needed to understand what their program
was doing as it was doing it. The environment had to be
simple to use, had to minimize the overhead involved with
the visualization, had to work with arbitrary programs, and
had to provide immediate feedback to the programmer.
Moreover, the resultant system had to be not only informa-
tive but also entertaining — we wanted programers to use
visualization just because it was fun.

A system meeting these requirements would provide a
first step toward making visualizations both useful and
used. Moreover, it would demonstrate that software visual-
ization could be an everyday thing rather than something
only to be used when problems were so severe that nothing
else worked.

2. Getting Java Trace Data

The key to a successful real-time dynamic visualization
system is obtaining appropriate trace data with minimal
overhead.

Rather than attempt to show everything that the program
was doing, we break the execution into intervals and then
display a summary of what the program did during each
interval. This let us cut down substantially on the amount
of data that had to be conveyed from the application to the
visualization tool and made sense since the visualization
tool would have to report summary information in any
case.

The information we provide for each interval includes:
• What classes were executing.
• The number of calls to or within each class.
• The number of synchronization calls for each class.
• What was being allocated.
• What was being deallocated.
• What threads are in the program.
• The state of each thread.
• The number of blocks caused by each thread.

This information is obtained by patching the user’s
program and associated libraries and system files using
IBM’s JikesBT byte code package.

The patching is kept to a minimum by dividing the
application’s classes into three categories. Detailed classes
are those directly in the user’s code. For these we provide
information that considers all methods and details any
nested classes for separate visualization. Library classes,
on the other hand, are grouped into packages and we only
generate events for the initial entry into the library. Finally,
classes that are neither detailed nor library are treated at an
intermediate level of granularity where nested classes are
merged with their parent and we only consider public
methods.

3. Box Display Visualization

Once the data is available, we needed to have a visual-
ization for the data. In particular we wanted a visualization
that could show a large number of objects (e.g. all the rele-
vant classes and packages or all the application’s threads)
and several pieces of information about each object (e.g.

for a class, the number of entries, the number of synchroni-
zation calls, the number of allocations, and the number of
allocations by methods in this class; for a thread, the time
spent in each of the possible states) in a small display area.
We also needed something that was simple and fast since
we wanted the visualization to run in real time.

We settled on what we call a box display. Here each
class or thread is represented as a box on the display.
Within the box we can display one or more colored rectan-
gles. The various statistics can be reflected visually in the
vertical and horizontal sizes of the colored display, in the
color (hue, saturation and intensity as separate items) of the
displayed region, or through textures where the density of
the texture is used to represent the corresponding statistic.

For the class display, we typically display five simulta-
neous values. First, the height of the rectangle is used to
indicate the number of calls. Second the width of the rect-
angle is used to represent the number of allocations by
methods of the class. Third, the hue of the rectangle is used
to represent the number of allocations of objects of the
given class. Fourth, the saturation of the rectangle is used
as a binary indicator as to whether the class was used at all
during the interval. Finally, the brightness of the box is
used to represent the number of synchronization events on
objects of this class.

For threads, we create a stack of color rectangles inside
each box. Here we vary the height of each rectangle based
on the percent of time within the interval the thread is in
the corresponding state and the width of each rectangle as
the percent of time in this state represented by the given
thread. The hue then is used to denote the actual thread
state and saturation is used to indicate the number of
blocks on this thread.

All of these parameters can be changed dynamically by
the user through a dialog box. Moreover, the user can
choose, for each of the count statistics, whether to use a
linear or a log scale.

4. Running the Visualizer

The actual visualization window is divided into two
panes as shown in Figure 1. The left half of the figure show
class and package usage information while the right half
shows the thread data.

Figure 1 shows the visualizer on an application that uses
Java’s Swing package. Here one can see the state of the
various threads in the application and Swing, see what is
being allocated (red), seeing what is doing the allocations
(the wide rectangles), see what is actively running. In addi-
tion, one can quickly detect which threads are running
(green for normal, yellow for synchronized), and what the
remaining threads are waiting or blocking for.

The dynamic visualizer works in two different modes. It
defaults to showing the current execution as it is happen-
ing. Alternatively, the visualizer can be used as a browser
over the execution, either as it is happening, or more com-
monly, after the fact. The scroll bar on the bottom of the
window is used to let the user scroll over time for the exe-

cution. The display updates dynamically as the user scrolls.
This facility is useful for going back and viewing transient
events and getting a better understanding of the applica-
tion’s execution. The dynamic display also can be viewed
either incrementally or by looking at totals.

5. Experience

While not perfect, our efforts show that dynamic visual-
ization of real applications is possible and may be practical
as a default way of running the application. The program
runs with a slowdown of a factor typically between 2 and 3
depending on the structure of the application. Given the
wide performance range of today’s machines, this seems to
be quite acceptable.

We have used the visualization tool on a wide variety of
Java programs ranging from simple student programs, to
complex single threaded applications (a static checker), to
user-interface based applications, to a multithreaded web
crawler. We have found that it provides useful information
and that watching it makes one think more about what the
application is actually doing. For example, we have noted
that the visualization makes it obvious when the applica-
tion goes through various phases. Each phase has its own
distinctive set of active nodes, it is easy to tell the phases
apart, and the phase transitions are obvious.

6. Demonstration

We will demonstrate the various capabilities of this
system. The demonstration would involve running a variety
of applications and viewing and interpreting the displays as
the systems were running. During the demonstration we
would illustrate how the system can be used effectively for
software understanding and would illustrate its various fea-
tures and capabilities.

FIGURE 1. Dynamic view of a Java program using
Swing.

	JIVE: Visualizing Java in Action
	Demonstration Description
	Steven P. Reiss
	Department of Computer Science
	Brown University
	Providence, RI 02912-1910
	401-863-7641, FAX: 401-863-7657
	spr@cs.brown.edu
	Abstract
	1. Introduction
	2. Getting Java Trace Data
	3. Box Display Visualization
	4. Running the Visualizer
	FIGURE 1. Dynamic view of a Java program using Swing.

	5. Experience
	6. Demonstration

