
JOVE: Java as it Happens

Steven P. Reiss and Manos Renieris
Department of Computer Science

Brown University
Providence, RI 02912-1910

401-863-7641, FAX: 401-863-7657
{spr,er}@cs.brown.edu

Abstract

Dynamic software visualization is designed to provide program-
mers with insights as to what the program is doing. Most current
dynamic visualizations either use program traces to show infor-
mation about prior runs, slow the program down substantially,
show only minimal information, or force the programmer to indi-
cate when to turn visualizations on or off. We have developed a
dynamic Java visualizer that provides a statement-level view of a
Java program in action with low enough overhead so that it can
be used almost all the time by programmers to understand what
their program is doing while it is doing it.

CR Categories: D.2.6 Graphical environments, D.2.5 Debug-
ging aids.

Keywords: Dynamic software visualization, run-time monitor-
ing, instrumentation.

1 Introduction

We want to be able to understand the behavior of our software. In
particular, we want to be able to understand what the software is
doing when performance issues arise, when it undergoes unex-
pected behavior, and when it interacts with the user or the outside
world in a particular way.

Understanding such behavior is difficult at best. Software is large,
consisting of tens of thousands of lines of code all of which can
interact in arbitrary ways. Software involves high-speed execu-
tion. Code executes so fast that it is virtually impossible to look at
the fine grain behavior of a large system in any meaningful way,
especially as it is occurring. Today’s systems are long running.
The performance and other issues that arise in a modern server
system are temporal, arising only occasionally, and are typically
dominated by the sum total of the other behaviors of the system.
The performance of a particular event or interaction is difficult to
isolate. Finally, today’s system are complex. They have to deal
with multiple threads of control interacting in non-obvious ways

and take for granted such complex entities as garbage collectors
and library functions as XML parsing.

We feel that the best way of understanding such software systems
is to be able to look at a detailed synopsis of their behavior as it
happens in such a way that the types of things that we might be
looking for, in particular performance issues, thread interactions,
and unusual behavior, stand out. Doing this as the software exe-
cutes lets us correlate what is going on in the software with the
appropriate external events (user interactions or other programs)
that trigger the corresponding behavior. Using visualization pro-
vides a high-bandwidth channel from the data to the observer,
letting us use our visual abilities to quickly find unusual patterns
and letting the tool use appropriate visual cures to highlight
potential items of interest. Using appropriate synopses com-
presses the data into something meaningful while letting us
isolate what might be of interest.

To this end, we have created two visualization systems aimed at
understanding the behavior of complex Java programs. Our
earlier system, JIVE, looked both at class-level behavior and at
the interaction of threads [16,18]. It demonstrated that it was pos-
sible to do dynamic visualization of Java with very low overhead
(a factor of 2) while producing meaningful and useful views of
the software. JIVE summarized information in terms of intervals
of 10 milliseconds or more (under user control). For each class or
collection of classes where appropriate it collected the number of
calls of methods of the class, the number of allocations done by
the class, the number of allocations of objects of the class, and the
number of synchronizations done on objects of the class. In addi-
tion, it tracked the state (running, running synchronized, waiting,
blocking, sleeping, doing I/O, or dead) of each thread, the amount
of time spent in each state, and any synchronizations between
threads. This information was displayed dynamically in a
compact form that highlighted classes and threads that had
unusual behaviors. The system also kept track of the history of
the run so the user could revisit or replay the history to further
examine the behavior.

The key aspects to making JIVE successful were to:

• Minimize the overhead so the system could be used on any
program at any time. This includes avoiding any new syn-
chronizations and thus affecting program behavior.

• Maximize the information gathered and displayed so that
complex, interacting patterns could be identified and so it was
more likely that the behavior to be understood was repre-
sented in the display.

• Provide history information so the user can replay the execu-
tion or revisit interesting execution points.

• Key the display so that the types of behavior that are likely to
be of interest are highlighted using appropriate visual cues
such as color and size.

• Let users adapt the display cues to their particular problems.

While JIVE is very useful for a high-level understanding, it does
not provide enough detailed information to address specific prob-
lems such as where execution is occurring in the code, why a par-
ticular thread is using all the execution time. or even what each
thread is actually doing. In particular, we needed:

• Information on where in the source execution is actually
occurring so we can determine where the application is
spending its time and why.

• Information that relates instruction execution to particular
threads of control so we can identify what each thread is
doing and not just what state it is in.

This led us to develop an alternative system, JOVE, that gathers
data over intervals in terms of basic blocks on a per-thread basis,
and then provides a corresponding dynamic display that shows
what is going on in the program as it happens. JOVE meets the
requirements that made JIVE successful in that it has small over-
head (a slowdown of 3-4), lots of available information, a config-
urable display that highlights unusual information, and a history
mechanism to let the user navigate in time over the run.

In this paper we describe the JOVE system. We start with an
overview of the system and an example. Then we briefly describe
related work. Next we explain how we gather the necessary data
with low overhead. Then we detail the display we have developed
for this data and explain how the user can configure the display to
highlight different behavioral aspects. Finally we outline future
work.

2 An Overview of JOVE

JOVE, like JIVE, works by gathering data from a running Java
program and displaying a summary visualization of that data that
shows what the program is doing as it occurs. JOVE splits the
subject program’s execution time into intervals of approximately
10-20 milliseconds. Within each interval, Jove records what the
program is doing in each thread. While there are several ways of
doing this, the standard for counting and performance analysis is
to use basic blocks [8,20]. A basic block is a segment of straight-
line code with no internal branches. This means that if the block
stars executing, then (in almost all cases) all the instructions in
the block will be executed. One can get counts of the number of
times an individual instruction is executed by simply determining
the number of times the block it is contained in is executed. From
this information and compiler information as to what instructions
in the executable correspond to what lines in the source, we can
use basic block counts to determine the number of times a partic-
ular line is executed and the number of machine instructions or
byte codes that are executed for each particular line.

In particular, the atomic datum that JOVE records is a tuple
<I,T,B,c> where I identifies the interval, T identifies the thread, B
identifies a basic block, and c is the number of times block B was
executed by thread T in interval I. JOVE extends the basic block
counts to counts of allocations and executed instructions from a
static analysis of the basic blocks. It then accumulates all these
statistics in multiple ways, for example by file and by thread, and
maps the results to visual elements of an information-dense dis-
play.

JOVE’s main visualization window consists of several vertical
regions, each corresponding to a file of the subject system. Each
region is divided into two subregions, a portion on top for thread
information, and a portion on the bottom for block information.
In the bottom region, there is a horizontal rectangle for each basic
block. These rectangles are ordered by the number of the corre-
sponding source code line(s). These two elements of the visual-
ization, the vertical regions and the horizontal lines of “source
code” resemble SeeSoft [3]. Unlike SeeSoft, however, most ele-
ments of the display change dynamically according to the data
collected in the last completed interval. The result is effectively a
movie of the program in action.

While much of the display shows what is happening in the last
interval the overall file display reflects the totals for this file up to
the current interval. The width of each vertical region corre-
sponds to the percentage of the number of instructions executed
in the file over the entire run. We found that associating the width
of these regions with the percentage of time spent in only the last
interval resulted in abrupt display changes. Similarly, each file
region is colored with a darker and lighter color whose boundary
reflects the number of allocations performed by the code in this
file over the whole run.

The top, thread subregion of each file display contains a pie-
chart. The whole of the pie-chart corresponds to the total time
spent in this file during the current interval. The pie-chart is split
into sectors with each sector corresponding to the portion of the
time spent within a particular thread. Colors are used here to dif-
ferentiate the threads. When viewed during the run, the pie chart
shows how different threads are executing in the different files
over time.

The basic background color of each vertical region encodes three
different statistics. The hue is associated with the number of
instructions executed in the current interval using a green to
yellow color model; the saturation is associated with the number
of threads executing in that file during the interval; and the bright-
ness reflects the number of allocations done by blocks in that file
during the interval. If no code in the file was executed during the
interval, the color defaults to gray. Our previous experience has
shown that while saturation and brightness are not ideal for such
displays, they can effectively highlight interesting cases. An
alternative, using patterns, is currently too slow to run in real time
on most machines.

Each of the basic blocks of a file is depicted by a horizontal rect-
angle within the lower portion of the file region. The height of the
rectangle corresponds to the number of actual source lines

(resulting in a correspond of pixel rows to lines of code). The
width of the rectangle corresponds to the number of the instruc-
tions executed in the basic block during the last interval. The line
is split in multiple colored regions, each corresponding to a
thread, and color coded to agree with the pie-chart.

The JOVE display attempts to provide at a glance a wide range of
information keyed to the current program execution. The differ-
ent display techniques were chosen so that potential problems,
such as thread contention and performance bottlenecks, stand out.
It provides the viewer with a quick overview that facilitates iden-
tifying problems when they occur; and lets the user zero in on
those problems by looking at the visualization more closely.

3 An Example

To understand how JOVE works, consider a simple Producer-
Consumer program adapted from [1]. This program consists of a
main class, two classes inheriting from Thread, Producer and
Consumer, and a CubbyHole class to hold the intermediate data.
Each producer inserts 100 integers in the CubbyHole; each con-
sumer extracts 100. In addition, producers and consumers execute
a small idle loop after each integer insertion or extraction. The
cubbyhole methods are synchronized, meaning that only one
insertion or extraction can be in progress at any given time. In our
version the cubbyhole is built around a vector, which means that
insertion of integers is always possible, but naturally, extraction is
only possible from a non-empty cubbyhole. The main program
starts an equal number of producers and consumers.

We first run the program (under JOVE) with three producers,
three consumers, and a small delay value. The program then runs
in a single JOVE time interval, and JOVE only produces one pic-
ture, Figure 1. The program executes in eight threads: one for
each producer/consumer, one for the cubbyhole, and one for the

main, initial thread. Since there are four files in the subject
system, the JOVE window is split in four panels. We can immedi-
ately say, by their width, that the first two panels consume most
of the execution time, and that they execute for about the same
time.

The first panel corresponds to the Producer file. As shown in the
pie-chart, the producer spends its time equally in three threads,
the “blue”, “purple” and “orange” threads. Most of the time is
spent in the idle loop of line 17, again split equally between the
three producer threads. The second panel corresponds to the Con-
sumer file and shows identical behavior, except, of course, the
code executes in different threads.

The third panel represents the CubbyHole, which executed code
in all 8 threads (although so little time is spent in the main thread
that it is hard to discern that fact in the pie chart). CubbyHole
spends time primarily in three regions of the code: Line 11,
which tests whether there is an item available; Lines 17-21, the
actual removal of an item, and lines 26-29, which the insertion of
an item. As evidenced by the thread color correspond, the first
two blocks are executed on behalf of the consumer code, while
the last block on behalf of the producer code. The saturation of
the last block in CubbyHole is higher, because all the allocation
in the system happens in that portion of the code.

Lastly, the fourth panel corresponds to the main thread and the
driver code. It executes for about 10% of the time in the “red”
thread and with some allocations (of the thread objects).

In the second example, we also used three producers and three
consumers. In this case, however, the number of idle loop itera-
tions was much higher. As a result, two transient effects become
obvious. In Figure 2a towards the beginning of the execution, the
producer threads take more time than the consumer threads

FIGURE 1. Balanced Producer-Consumer program run with JOVE.

because they can always add items to the CubbyHole, while the
consumer threads need to wait until an item is available. This is
reflected in the wider area allocated to the producer thread. In
Figure 2b, towards the end of the execution, the width of the pro-
ducer window is equal to the width of the consumer window,
since, at the end of the execution, both kinds of threads have exe-
cuted for about the same time, since the dominating idle loops are
equal. However, during the latest interval, no producer thread
executed, and therefore the producer region is blank.

Note that in all examples so far, the cubbyhole executed for a
very small amount of time, because the idle loops dominate exe-
cution. When the idle loops’ iteration count is set to zero, Jove
produces Figure 2c.

As a last example, consider the situations where either the con-
sumer or the producer is much slower than their counterpart. In
Figure 2d the producer is faster, and as a result, the first region is
much smaller than the second. The situation is reversed in figure
Figure 2e.

Another example of the use of JOVE can be seen in Figure 3.
Here we are visualizing a pinball program as it runs. The program
has one thread doing the physics computations 1000 times a
second, one doing 3D graphics display, one doing sound, and one
handling keyboard input.

From Figure 3 and tooltips denoting what we are looking at, we
can detect several things about the program and its execution at
this point in time. First, from the relative widths of the different
file blocks, we can see that most of the execution time is spent in

b) End of execution

c) Without wait loops

d) With a fast producer e) With a fast consumer

FIGURE 2. Different JOVE views of the Producer-Consumer program.

a) Start of execution

the large block on the left (ComponentBase.java) which repre-
sents a generic object on the pinball board. Within this file, most
of the time is spend in the area designated by the yellow lines at
the bottom, notably within the intersectLline method. Most of
this execution time derives from the computation thread (yellow).
Note that a small fraction of the execution of this file is in light
blue, representing the drawing thread. The particular methods
here set the color and material based on the component.

There are several files where execution is split roughly evenly
between the drawing and computation threads. Most notably, the
file panel toward the right. This file implements wall components.
The blue here represents the routines for drawing the wall; the
yellow represents the routines for computing intersections. We
can tell from a glance that there is no overlap. Moreover, we can
also tell from the small highlighting of this panel, that the code
here does few allocations.

Finally, while most of the execution is dominated by the compu-
tation and drawing thread, there is one small file containing
purple. This represents the sound thread and is an indication that
sound uses few computational resources in the program.

4 Prior Work

There have been a large number of different systems that provide
visualizations of the dynamics of a program. Ours are different in
that they attempt to provide high-level program-specific informa-
tion in real time.

Two views of our previous dynamic visualizer JIVE are shown in
Figure 4. The left side of each view shows the various classes and
packages at the level of detail chosen by the user. Each class box
contains a rectangle whose height indicates the number of calls of
methods of that class, whose width represents the number of allo-

cations done in those methods, whose hue represents the number
of allocations of objects of that class, and whose saturation
reflects the number of synchronizations. The right side of the top
view contains a region for each thread. In the region is a stack of
rectangles that show the states the thread is in over the interval,
and what fraction of the state is represented by that thread. The
right side of the second view displays the alternate thread view

FIGURE 3. JOVE visualization of a pinball program.

FIGURE 4. Our previous visualizer, JIVE.

where the state of the different threads is shown on a time axis
with vertical bars indicating synchronizations among the threads.
In both cases, the scroll bar at the bottom is colored to show the
(dynamically computed) phase of the program.

Outside of our work, perhaps the most prominent effort is IBM’s
Jinsight [9-11]. Jinsight typically runs by collecting detailed trace
data as the program executes and then, after execution is com-
plete, letting the programmer understand execution at a very
detailed level using a variety of views based on the trace. Trace
collection, however, is not that efficient, requires a suitably modi-
fied JVM (and the program to work with that particular JVM),
and is typically not the type of thing one would use all the time.
Recent work on Jinsight has been aimed at letting the program-
mer identify just those portions of the program for which tracing
should be done. This provides for almost immediate visualiza-
tions, but assumes that the programmer knows what to look for in
advance.

The program visualization group at Georgia Tech has imple-
mented several visualizations that provide insights into program
execution using program traces [4,6]. Similar systems include PV
from IBM [5], and the dynamic aspects of the Bloom and Almost
systems [14,15,19]. The problem with these trace-based analyses
is that they require the programmer to take the extra effort to run
the system with tracing and often are both difficult to use and run
too slowly to be practical. Our goal was to get as much of the
information that these tools provide as possible without the con-
siderable overhead that they incur.

Another set of relevant tools are performance visualizers that
provide insight into what the machine is doing while the program
is being run. These range from standard operating-system based
performance tools such as those incorporated in Sun’s workbench
toolkit or IBM’s PV system, to viewers that concentrate on some
specific aspect of execution. In the later category, one finds
dynamic visualizations of thread behavior [2], visualizations of
heap, performance and input/output in the FIELD environment
[12,13], and the large number of different visualization of the
behavior of processors and messages in parallel systems culmi-
nating in the various MPI visualization tools such as upshot or
xmpi.

There are also commercial tools that provide some dynamic per-
formance information as the program is running. For example,
Borland’s OptimizeIt, provides graphs of cpu time, memory
behavior, loaded classes, and garbage collection behavior. It also
lets the programmer create snapshots and then investigate both
the object graph for memory problems and a dynamic call graph
for performance information.

Finally, we note that dynamic visualization is nothing really new.
Back in the 1960s programmers worked on understanding what
their program were doing either by looking at the console lights
or the performance meter of the system (on a GE635) or by
placing a radio next to the system and listening to the different
types of static that were generated.

5 Implementation Overview

The overall operation of JOVE is based on our previous experi-
ence with JIVE. The system consists of four basic components,
control, setup, information gathering, and visualization.

The control component presents a basic interface to the user. It
lets the user define the system that is to be run, provide or change
arguments to either the Java interpreter or the user code, identify
which classes or packages should be monitored and which should
be ignored, and change the settings of how statistical properties
are mapped to graphical properties of the visualization.

The setup component is an independent process that takes a set of
Java classes and a class path, identifies all the classes that should
be monitored, and then patches those class files by inserting
appropriate code to do the monitoring. Our current patcher makes
use of IBM’s JikesBT byte code toolkit [7]. This component pro-
duces two outputs. The first is a jar file that contains the modified
class files. This is used to replace the original class files when the
application is actually run. The second output is a descriptive file
that itemizes information about each basic block in the program,
including the containing method and class, the source lines, the
number of instructions in the block, the number of allocations in
the block, and the types of objects allocated by each of these allo-
cations. This second file is used by the visualizer to translate raw
counts from the basic blocks into more meaningful information
for the user.

The information gathering component is a small library that is
loaded with the user’s program. This library is called initially and
by the instrumented code. It is responsible for keeping track of
counts and providing the appropriate data dynamically to the
visualizer. Details of the setup and information gathering compo-
nents are provided in the next section.

Finally, the visualization component provides two displays. One
is a transcript of the program’s input and output. The second is
the main display of the collected information as previously
described. This component is in charge of storing and accessing
the dynamic information, of creating an appropriate display
based on the user’s preferences, of dynamically updating that
display as the program runs, and of providing time-based access
to the data. This is described in the subsequent sections.

6 Getting Detailed Trace Data

The key to a successful real-time dynamic visualization system is
obtaining the appropriate trace data with minimal overhead. For
JOVE this means getting counts of how many times each basic
block is executed for each thread in some interval.

In our previous work we determined that the most efficient and
the only practical way of getting trace data with small overhead
from Java was to patch the java byte codes before execution to
add the appropriate information gathering instructions. In JIVE
we patched every function entry and exit for the classes we were
monitoring with a call to a function that incremented an appropri-
ate counter inside the current buffer. For functions that repre-

sented a thread state change, we also recorded the current thread
and time and new state when the function was entered and
restored the prior state when the function exited. For library
classes we created stubs for each external entry to the library and
had that routine do the counting so we would not have to patch
the library code itself.

While very efficient, this did not provide the detailed information
that we wanted to gather and display in JOVE. In particular, it
only gathered information at the method level, not the basic block
level, and, more importantly, it did not associate any of the counts
with the appropriate thread.

In some ways, gathering information at the basic block level is
easier than at the method level. In particular, in JIVE not only did
we have to patch every method entry and exit, we also had to
worry about allocations and abnormal exits through exceptions.
Neither of these needs to be done if one is doing basic block trac-
ing. First, information about allocations is encoded in the basic
block information since we can statically determine in almost all
cases what objects are going to be allocated when a block is exe-
cuted. Second, since we statically know the method location of
each block and whether that block represents an exception han-
dler, we can detect exceptions from the output sequence.

The first problem we had to tackle in getting basic block informa-
tion for JOVE was to have the counts be associated with the
current thread. Our previous work showed that determining the
current thread at each method entry was too expensive. Our solu-
tion here was to add an additional parameter to each routine con-
taining the current context which includes the current thread and
the count information for that thread.

Adding a parameter creates some problems. First, any routines
that implement standard interfaces such as callbacks or abstract
methods of classes that aren’t patched, cannot be changed.
Second, all calls to any modified method need to be changed as
well. Where these calls occur in modified code, this can be easily
done; where they occur in unmodified code, this is not possible.

Our solution was to create a shadow routine for each routine that
was being traced. We changed the name of the original routine,
added the context parameter, and then added code to the routine
to call an appropriate method on each basic block entry. We then
created a new stub routine with the original name and parameters.
The new stub routine computed the context (by finding the
current thread and then looking up the context based on this) and
then called the modified original routine. We then modified all
calls to routines from the patched code to be calls to the corre-
sponding renamed routine.

This solution meant that almost all calls that were made in the
modified code used the modified original routines and did not
have to compute a new context. Moreover, we are able to handle
correctly calls from unmodified code and routines that imple-
mented interfaces or abstract methods.

The next problem was to do efficient counting and reporting of
blocks for each thread. Here we had the context for each thread

contain preallocated count buffers sized to hold counts for each
of possible basic block in the monitored source. The code on
basic block entry just increments the corresponding counter for
the current context. Each context triple buffers these counts. One
buffer that holds the current counts. A second buffer is used to
hold the data that is currently being processed for sending to the
visualization front end. A third buffer, representing the previous
interval, is available for comparison and deltaing from the second
when starting up (to track threads whose state did not change
during the interval, for example), and then has all its counters
cleared so that it is available at the next interval.

The actual collection and reporting of the data to the visualization
front end is done by a separate thread that is run off a timer that
computes the intervals. This thread handles the buffer swapping,
produces an XML message that summarized all non-zero counts,
and sends this message over a socket to the visualizer.

7 Detailed Dynamic Visualization

Information gathering yields basic block counts for each interval
for each thread or context. For display purposes, we accumulate
this information by context and globally for each source file,
accumulating all blocks for a given file and mapping the basic
blocks to the corresponding file lines.

The next issue that arises is how to effectively display this infor-
mation. We first noted that there are three basic types of informa-
tion that we can display. First, we have information about the
individual basic blocks (and hence source lines). Here we have
the number of times they are executed, the number of allocations
done, and the number of byte codes that were executed, both for
each individual thread and for all threads together. Second, we
have information about files. Here we have total counts of these
various statistics from all the blocks in the file again associated
with different threads. Third, we have the various statistics accu-
mulated by thread.

We wanted to display all three types of information on the same
display. In doing so, we wanted to ensure that we could display as
much of the data as possible, and that interesting values, notably
possible performance problems, thread conflicts, and interesting
changes in behavior, would stand out.

As noted in Section 2, the is organized into vertical file regions,
each of which contains a pie-chart display for contexts and a
SeeSoft-like display of basic blocks. Global file information is
reflected in the file region size, background color, and the divi-
sion between the dark and light background. The role of contexts
in the file during the interval is the pie chart. Rectangles in the
basic block region reflect context, allocations, and the number of
instructions executed during the interval.

Central to the JOVE display is the ability to show multiple
dimensions of data in a meaningful way. The general file display
shows five different statistics using width, hue, saturation, bright-
ness, and the position of the separating line. The pie chart shows
the various contexts by color and can reflect different statistics
about that context (e.g. instructions or allocations) in the pie chart

size. The basic blocks can encode up to five statistics in their
width, height, hue, saturation, and brightness.

While the display provides a lot of information, the programmer
needs to correlate it back to the source program. Rather than
attempting to label everything in place (where the text would
often be too small to read), we use tooltips to provide detailed
information to the user. Figure 5 shows the tooltip that results
from placing the mouse over the large blue area in Figure 3.

8 Customization

JOVE is designed so that the user use can adjust the program to
obtain the most appropriate display for the application at hand.
We normally run JOVE from the command line, where we have
installed a jove command that basically replaces the normal java
command, but runs JOVE on the application. Within JOVE, the
user can use the dialog boxes shown in Figure 6 to set the various
command line arguments, to change the interval size, to specify
classes that are dynamically loaded and not statically detectable
but that should be monitored, and to identify which packages and
classes should be monitored and which can be ignored.

The user can also control what statistics are displayed in what
way using the display properties dialog box shown in Figure 7.
The user can choose total or immediate values for each of the sta-
tistical properties. Moreover, the user can choose either linear,
square root, or log scaling to take into account different distribu-
tions of values for those properties. Other user-settable items
include the color models (red-violet, yellow-red, green-red,
yellow-green, blue-red, or green-yellow), whether the statistical
values should be inverted or not, whether blocks should be
expanded to take up the full range of the file box or just size pro-
portional to the file size, and the way that shading should be done
for file displays.

9 Data Structures

One of the key implementation problems in JOVE was storing the
data coming from the application in such a way that we can
rapidly compute the display at each interval. On a long running
program, there can be a large number or intervals, each of which
has significant data. For example, in the relatively small pinball
example, there are about 3000 basic blocks that have to be
tracked, maintaining two values (local and total) for each interval
for each of the fourteen active threads. Moreover, we needed to
provide access to summation counters for files and threads. This
is more complex, as we need to accumulate the different statistics
(allocations, instructions, and block counts) separately since they
can’t be directly derived from the raw counts as they can for basic
blocks.

To store this data we create a vector of intervals. Each interval is
represented as two hash tables, one for the local data for this
interval and one for the total data up to and including this inter-
val. Each hash table is indexed by the block or file where the

FIGURE 5. Tooltip showing block details.

FIGURE 6. Dialog boxes for controlling the execution and specifying detailed and library classes.

associated value is another hash table. For each individual item,
this second hash table maps the context (thread) to a block of sta-
tistical values representing the different counts. A special context
value is used to represent the global context. This is illustrated in
Figure 8.

The raw data that is received from the information gatherer for
each interval is at the block level, providing each non-zero count
of a block for a particular thread. We first use this data to set up
the local tables. Each non-zero count generates a statistics entry
for the corresponding block and thread (going through the two

levels of hash table). The total for all threads is computed as a
separate statistic from the local totals; similarly, each block count
is also accumulated into the corresponding entry for its file
indexed in the first hash table. Finally, the total of all entries is
also computed. The result is a complete set of the non-zero statis-
tics for each interval that can be rapidly indexed by block or file
and thread or any combination thereof.

Totals are kept in a similar fashion, but are computed in a differ-
ent way. We generate the totals after we have computed the local
values for the interval. For each entry in the previous totals that
has no corresponding local entry, we simply link to the previous
statistics block. Otherwise, we create a new totals entry (again
using two-level hash tables) that contains the sum of any previous
total entry and the new local values.

The result is a fairly space-efficient storage mechanism that pro-
vides rapid access to all the available statistics and takes into
account the fact that most of the counters will be zero. Using it,
we are able to save about an hour’s run of the pinball program in
memory and then rapidly scroll over the display using the history
bar to get an overview of the run.

10 Future Work

While not perfect, our efforts show that detailed dynamic visual-
ization of real applications is possible and may be practical as a
default way of running the application. The program runs with a
slowdown of a factor typically between 3 and 4 depending on the

FIGURE 7. Dialog box for controlling display properties.

Intervals:

Local Global

Block1

Block2

Blockn

File1

File2

Totals

Block1

Block2

Blockn

File1

File2

Totals

Block i

Thread1

Thread2

Totals

Block i

Thread1

Thread2

Totals

Statistics
<#block>
<#inst>
<#alloc>

Statistics
<#block>
<#inst>
<#alloc>

FIGURE 8. The data structure used to store count informa-
tion.

structure of the application. Given the wide performance range of
today’s machines, this seems to be quite acceptable.

There are several directions for future work. First, we note that
JIVE and JOVE provide complementary information about
program execution. While JOVE provides detailed information
about particular source files, JIVE provides information about
thread states, synchronization, and about the behavior of library
classes. Ideally, one wants all the information from both tools
available for a single run. This seems possible, with the major
difficulty being avoiding slowing down the computation any
more that it already is.

A second involves addressing properties of the execution that
neither JIVE nor JOVE deals with. One of these is actual timings.
Current methods of getting detailed execution times are too
expensive to be useful. We will be looking into using sampling
and similar techniques to get good approximations without sig-
nificant overhead. Another property that we would like to address
is memory utilization. While we can track allocations, tracking
deallocations in a garbage collected environment is more diffi-
cult. Simple solutions like adding a finalizer method to each class
turn out to be too costly in the current JVMs. Here we are looking
into using the internal Java profiling tools (JVMPI and the Java
Management Package) in addition to the class patching we cur-
rently do.

A third direction involves associating program behavior with
events, either input actions or program generated events. In a web
service, for example, for is interested in understanding what pro-
cessing is being done to handle a particular input request. One
complexity here is that the processing might take place in several
threads over an extended period of time. We plan to integrate our
previous work in this area into the dynamic visualizations of
JOVE [17].

A fourth direction is to make it easier to correlate the display with
text. Here we plan to allow the user to select a particular file that
is of interest and provide a separate window that correlates the
display for that file with the actual text of the file.

In conclusion, we have found JOVE is capable of providing
dynamic information about real Java programs as they execute.
Its abstract, multidimensional display provides lots of informa-
tion and graphically highlights potential problems. It offers a new
tool to aid in the dynamic understanding of software systems.
JOVE is available from our website at http://www.cs.brown.edu/
people/spr/research/bloom.html as part of the BLOOM package.

11 Acknowledgements

This work was done with support from the National Science
Foundation through grants CCR021897 and ACI9982266.

12 References

1. Mary Campione and Kathy Walrath, The Java Tutorial: Object-
Oriented Programming for the Internet, Addison-Wesley (1996).

2. Bryan M. Cantrill and Thomas W. Doeppner, Jr., “Threadmon: a tool
for monitoring multithreaded program performance,” Proc. 30th Hawaii
Intl. Conf. on Systems Sciences, pp. 253-265 (January 1997).

3. Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, Jr., “Seesoft -
a tool for visualizing software,” AT&T Bell Laboratories (1991).

4. Dean Jerding, John T. Stasko, and Thomas Ball, “Visualizing
interactions in program executions,” Proc 19th Intl. Conf. on Software
Engineering, pp. 360-370 (May 1997).

5. Doug Kimelman, Bryan Rosenburg, and Tova Roth, “Visualization of
dynamics in real world software systems,” pp. 293-314 in Software
Visualization: Programming as a Multimedia Experience, ed. John
Stasko, John Domingue, Marc H. Brown, and Blaine A. Price,MIT Press
(1998).

6. Eileen Kraemer, “Visualizing concurrent programs,” pp. 237-256 in
Software Visualization: Programming as a Multimedia Experience, ed.
John Stasko, John Domingue, Marc H. Brown, and Blaine A. Price,MIT
Press (1998).

7. Chris Laffra, Doug Lorch, Dave Streeter, Frank Tip, and John Field,
“What is Jikes Bytecode Toolkit,” http://www.alphaworks.ibm.com/tech/
jikesbt, (March 2000).

8. James R. Larus, “Abstract execution: a technique for efficiently
tracing programs,” U. Wisc.-Madison Computer Sci. Dept. TR 912
(February 1990).

9. Wim De Pauw, Doug Kimelman, and John Vlissides, “Visualizing
object- oriented software execution,” pp. 329-346 in Software
Visualization: Programming as a Multimedia Experience, ed. John
Stasko, John Domingue, Marc H. Brown, and Blaine A. Price,MIT Press
(1998).

10. Wim De Pauw and Gary Sevitsky, “Visualizing reference patterns for
solving memory leaks in Java,” in Proceedings of the ECOOP ’99
European Conference on Object-oriented Programming, (1999).

11. Wim De Pauw, Nick Mitchell, Martin Robillard, Gary Sevitsky, and
Harini Srinivasan, “Drive-by analysis of running programs,” Proc. ICSE
Workshop of Software Visualization, (May 2001).

12. Steven P. Reiss, FIELD: A Friendly Integrated Environment for
Learning and Development, Kluwer (1994).

13. Steven P. Reiss, “Visualization for software engineering --
programming environments,” in Software Visualization: Programming as
a Multimedia Experience, ed. John Stasko, John Domingue, Marc Brown,
and Blaine Price,MIT Press (1997).

14. Steven P. Reiss, “Bee/Hive: a software visualization backend,” IEEE
Workshop on Software Visualization, (May 2001).

15. Steven P. Reiss, “An overview of BLOOM,” PASTE ’01, (June 2001).

16. Steven P. Reiss, “Visualizing Java in action,” Proc. IEEE
International Conference on Software Visualization, pp. 123-132 (2003).

17. Steven P. Reiss, “Event-based performance analysis,” Proc 11th
IEEE Intl Workshop on Program Comprehension, pp. 74-81 (2003).

18. Steven P. Reiss, “JIVE: visualizing Java in action,” Proc. ICSE 2003,
pp. 820-821 (May 2003).

19. Manos Renieris and Steven P. Reiss, “ALMOST: exploring program
traces,” Proc. 1999 Workshop on New Paradigms in Information
Visualization and Manipulation, (October 1999).

20. MIPS Computer Systems, Inc., RISCompiler Languages
Programmer’s Guide. December 1988.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

