
Demonstration of JIVE and JOVE: Java as it Happens
Steven P. Reiss, Manos Renieris

Department of Computer Science
Brown University

Providence, RI 02912-1910
401-863-7641, FAX: 401-863-7657

{spr,er}@cs.brown.edu
Abstract
Dynamic software visualization is designed to provide
programmers with insights as to what the program is doing. Most
current visualizations either use program traces to show
information about prior runs, slow the program down
substantially, show only minimal information, or force the
programmer to indicate when to turn visualizations on or off. We
have developed a dynamic Java visualizer that provides a
statement-level view of a Java program in action with low enough
overhead so that it can be used almost all the time by programmers
to understand what their program is doing while it is doing it.

Categories and Subject Descriptors
D.2.6 Programming Enviroments - graphical environments.

General Terms
Performance, Measurement, Design.

Keywords
Software visualization, program comprehension.

1. INTRODUCTION
We want to be able to understand the behavior of our software.
In particular, we want to be able to understand what the
software is doing when performance issues arise, when it
undergoes unexpected behavior, and when it interacts with the
user or the outside world in a particular way.

Understanding such behavior is difficult at best. Software is
large, consisting of tens of thousands of lines of code all of
which can interact in arbitrary ways. Software involves high-
speed execution. Code executes so fast that it is virtually
impossible to look at the fine grain behavior of a large system
in any meaningful way, especially as it is occurring. Today’s
systems are long running. The performance and other issues
that arise in a modern server system are temporal, arising only
occasionally, and are typically dominated by the sum total of
the other behaviors of the system. The performance of a
particular event or interaction is difficult to isolate. Finally,
today’s system are complex. They have to deal with multiple
threads of control interacting in non-obvious ways and take for
granted such complex entities as garbage collectors and library
functions as XML parsing.

We feel that the best way of understanding such software
systems is to be able to look at a detailed synopsis of their
Copyright is held by the author/owner(s).
ICSE’05, May 15-21, 2005, St. Louis, Missouri, USA.
ACM 1-58113-963-2/05/0005.
behavior as it happens in such a way that the types of things
that we might be looking for, in particular performance issues,
thread interactions, and unusual behavior, stand out. Doing
this as the software executes lets us correlate what is going on
in the software with the appropriate external events (user
interactions or other programs) that trigger the corresponding
behavior. Using visualization provides a high-bandwidth
channel from the data to the observer, letting us use our visual
abilities to quickly find unusual patterns and letting the tool
use appropriate visual cures to highlight potential items of
interest. Using appropriate synopses compresses the data into
something meaningful while letting us isolate what might be of
interest.

2. JIVE OVERVIEW
To this end, we have created two visualization systems. Our
first system, JIVE, looked both at class-level behavior and at
the interaction of threads [2,3]. It demonstrated that it was
possible to do dynamic visualization of Java with very low
overhead (a factor of 2) while producing meaningful and
useful views of the software. JIVE summarized information in
terms of intervals of 10 milliseconds or more (under user
control). It let the user either display what was currently
happening (effectively as a movie) or to go back and forth over
the history to look at the visualization in more detail.

For each class or collection of classes where appropriate it
collected the number of calls of methods of the class, the
number of allocations done by the class, the number of
allocations of objects of the class, and the number of
synchronizations done on objects of the class. It displayed this
information in a box with a central colored rectangle. The
height of the rectangle reflected the number of calls and the
width the number of allocations done by the class. Thus, the
overall size of the rectangle quickly tells the user where
execution is occurring. The hue of the rectangle is used to
indicate the number of allocations of the class and the
saturation the number of synchronizations. A red or nearly red
rectangle then indicates lots of allocations of that class while a
dark rectangle indicates lots of synchronizations.

For threads, JIVE tracked the state (running, running
synchronized, waiting, blocking, sleeping, doing I/O, or dead)
of each thread, the amount of time spent in each state, and any
synchronizations between threads for each interval. Each
thread was displayed in a box with stack of rectangles each
representing a possible thread state. The color of each
rectangle was keyed to the thread state, while its height
indicated the amount of time the thread spent in that state in
the interval. Saturation was used to indicate synchronizations
blocks caused by the thread. From the resultant display it is
easy to see which threads are running and which are blocked
and why they are blocked. Moreover, synchronization

problems often become obvious either due to blockages or by
seeing threads that cause others to block.

The key aspects to making JIVE successful were to:

• Minimize the overhead so the system could be used on any pro-
gram at any time.

• Maximize the information gathered and displayed so that com-
plex, interacting patterns could be identified and so it was more
likely that the behavior to be understood was represented in the
display.

• Provide history information so the user can replay the execution
or revisit interesting execution points.

• Key the display so that the types of behavior that are likely to be
of interest are highlighted using appropriate visual cues such as
color and size.

• Let users adapt the display cues to their particular problems.

While JIVE is very useful for a high-level understanding, it
does not provide enough detailed information to address
specific problems such as where execution is occurring in the
code, why a particular thread is using all the execution time. or
even what each thread is actually doing. In particular, we
needed:

• Information on where in the source execution is actually occur-
ring so we can determine where the application is spending its
time and why.

• Information that relates instruction execution to particular
threads of control so we can identify what each thread is doing
and not just what state it is in.

3. JOVE OVERVIEW

This led us to develop an alternative system, JOVE, that
gathers data over intervals in terms of basic blocks on a per-
thread basis, and then provides a corresponding dynamic
display that shows what is going on in the program as it
happens [4]. JOVE meets the requirements that made JIVE
successful in that it has small overhead (a slowdown of 3-4),
lots of available information, a configurable display that
highlights unusual information, and a history mechanism to let
the user navigate in time over the run.

Information gathering yields basic block counts for each
interval for each thread or context. For display purposes, we
accumulate this information by context and globally for each
source file, accumulating all blocks for a given file and
mapping the basic blocks to the corresponding file lines.

Since our data is organized by file and line, the basic display
we chose is a variant of SeeSoft [1]. The actual display is split
into a number of vertical regions, each of which represents a
file. If there are too many files, then multiple rows are used.

Each file region is split into two parts. On the top, we have the
context region. This contains a circular display showing what
threads are active in the file. This is displayed as a pie chart
with colors used to indicate the different threads. The user can
tell at a glance either what threads are active in what files or
what code is being used simultaneously by multiple threads.

The bottom of the file region is used first to display
information about the overall code for the file. The width of
the file display is by default proportional to the total number of
instructions executed in that file. The color of the file display
shows three different statistics. The hue is associated with the
number of instructions executed in the current interval; the
saturation with the number of threads executing in that file
during the interval; and the brightness with the number of
allocations done by blocks in that file during the interval. If no
code in the file was executed during the interval, the color
defaults to gray. Finally, we actually use two colors in the file
region, the color computed above and a lighter version of that
color. This lets us separate the file region into two parts and
display a further statistic, the total number of allocations, using
the height of the darker region within the file display.

Basic block information is overlaid on the file display in the
file region. Here JOVE shows up to five statistics for each
basic block. First, the size of the block in terms of width and
height can be used. The default display uses the number of
lines in the block as the height and the number of instructions
executed during the interval as the width. The color of the
block then shows the remaining statistics. By default, the hue
shows the thread or threads executing in the block in the
proportion they executed, the saturation shows the number of
threads, and the brightness shows the number of allocations.

4. CONCLUSION

While not perfect, our efforts show that detailed dynamic
visualization of real applications is possible and may be
practical as a default way of running the application. The
program runs with a slowdown of a factor typically between 3
and 4 depending on the structure of the application. Given the
wide performance range of today’s machines, this seems to be
quite acceptable.

JOVE is available from our website at
http://www.cs.brown.edu/people/spr/research/bloom.html as
part of the BLOOM package. This work was done with support
from the National Science Foundation through grants
CCR021897 and ACI9982266.

5. REFERENCES

[1] 1. Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner,
Jr., “Seesoft - a tool for visualizing software,” AT&T Bell
Laboratories (1991).

[2] 2. Steven P. Reiss, “Visualizing Java in action,” Proc. IEEE
International Conference on Software Visualization, pp. 123-
132 (2003).

[3] 3. Steven P. Reiss, “JIVE: visualizing Java in action,” Proc.
ICSE 2003, pp. 820-821 (May 2003).

[4] 4. Steven P. Reiss and Manos Renieris, “JOVE: Java as it
happens,” SOFTVIS ’05, (May 2005).

	Demonstration of JIVE and JOVE: Java as it Happens
	Abstract
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. Introduction
	2. JIVE Overview
	3. JOVE Overview
	4. Conclusion
	5. References

