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Abstract

Programmers have always been curious about what their programs are doing while it is exe-
cuting, especially when the behavior is not what they are expecting. Since program execution is
intricate and involved, visualization has long been used to provide the programmer with appro-
priate insights into program execution. This paper looks at the evolution of on-line visual repre-
sentations of executing programs, showing how they have moved from concrete representations of
relatively small programs to abstract representations of larger systems. Based on this examina-
tion, we describe the challenges implicit in future execution visualizations and methodologies
that can meet these challenges.

1.  Introduction

An on-line visual representation of an executing program is a graphical display

that provides information about what a program is doing as the program does it.

Visualization is used to make the abstract notion of a computer executing a program

concrete in the mind of the programmer. The concurrency of the visualization in con-

junction with the execution lets the programmer correlate real time events (e.g.,

inputs, button presses, error messages, or unexpected delays) with the visualization,

making the visualization more useful and meaningful.

Visual representations of executing programs have several uses. First, they have

traditionally been used for program understanding as can be seen from their use in

most algorithm animation systems [37,52]. Second, in various forms they have been

integrated into debuggers and used for debugging [2,31]. Finally, they have often
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been used as a means of doing performance analysis, visually highlighting program

bottlenecks or abnormalities and correlating them to what is happening in the envi-

ronment [24,29].

What makes a good visual representation depends on the particular application

that one has in mind. A good representation has to provide the programmer with the

data relevant to the task at hand, be it understanding, debugging, or performance

analysis, within the limits imposed by the display and the time constraints imposed

by concurrency. Since the particular data are often not known in advance, the visual-

ization typically needs to present as much potentially relevant information as possi-

ble, and present it in a way so that important or unusual properties stand out

visually either directly or through appropriate visual patterns.

While this paper concentrates on visualizing executing programs as they execute,

we note that there has also been a significant body of related work that looks at visu-

alizing and understanding the dynamic behavior of software by capturing program

traces while the program is executing and then visualizing these after the program

has completed. This off-line approach is sometimes considered more appropriate for

tasks such as reverse engineering where little is assumed about a program and

where the task involves attempting to achieve an overall understanding of what hap-

pens during execution and how it correlates with the source [32,54].

On-line and off-line visualizations are similar and quite different at the same

time. Most of the graphical representations that are used in on-line visualizations

also appear in some set of off-line visualizations. The inverse is not always true
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because off-line visualizations can afford to be more computationally intense either

in terms of the data analysis needed to put up the visualization or in terms of the

graphics needed for the visualization. Both types of visualizations typically view exe-

cution as a sequence of events. For off-line these events are recorded and analyzed

later; on-line visualization requires any analysis be done as the events are gener-

ated. This restricts the types of analyses that can be done and puts a heavier empha-

sis on limiting the set of events or on doing the necessary analysis before generating

events. Some off-line techniques have looked at simplifying the instrumentation, but

this has not had the same importance as it has with on-line visualizations. Both

types have struggled over the years to allow the visualization of larger and larger

programs. Again, the limitations imposed by on-line visualization have yielded a dif-

ferent set of solutions, with more emphasis on limiting events and simplifying graph-

ics rather than on detailed analysis of the event streams.

Both on-line and off-line visualizations have their place. When a detailed analysis

of one or several runs is needed to understand overall program behavior such as dur-

ing reverse engineering, the advantage of having trace data and thus being able to

do several different analysis makes off-line visualization beneficial. However, when

looking for a specific problem that arises only occasionally as in debugging, an on-

line approach is generally easier to use. Where programmers are looking at their

own software and have a good understanding of what should be happening, on-line

visualizations typically can provide significant interesting information without the

overhead of collecting traces and doing the various analyses.



Visual Representations of Executing Programs December 22, 2006 4

This paper is an attempt to describe what is needed to do useful visual represen-

tations of today’s software as it executes, with an emphasis on understanding the

execution as it happens from different perspectives. We do this by looking at the dif-

ferent representations we and others have used in the past to learn when and how

they are effective and what lessons we can draw from them. We show that the repre-

sentations have been slowly migrating from the concrete to the abstract. Based on

this and the needs of modern systems, we propose the use of programmer-defined

abstractions as the basis for a new execution visualization framework.

2.  Concrete Representations

The earliest computer-based visualizations showed the actual code as it was exe-

cuted. These visualizations typically highlighted statements or lines of code as the

program was executing each line. These visualization were sometimes combined

with other information, for example data values, execution totals or past history.

2.1  Visualization in Early Programming Environments

Many of the early programming environments featured some form of on-line

dynamic visualization of the source program. For example, our PECAN environment

from the early 1980’s outlined the current source statement with a box [38]. This out-

lining can be seen in the window at the upper right of the display shown in Figure 1.

If the program was executing continually, the box kept moving around; if the pro-

gram was single stepped, the box changed and the program halted with each instruc-

tion. Other dynamically updated execution views provided by PECAN included a

flowchart view of the program (in the window on the lower right of the figure) and a
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view of the stack and the values of variables on it (seen at the lower left of the fig-

ure).

While the PECAN visualizations were fun to look at, they were not that practical.

First, PECAN was designed as a prototype system and could only handle relatively

small programs (under two thousand lines). Thus, one never really tried it with real

systems. Second, while it was designed to support multiple languages, the working

implementation only supported a simple, interpreted version of Pascal, further limit-

ing the potential applications and use. The visualizations themselves were simulta-

FIGURE 1. The PECAN environment run time visualization.
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neously both too fast and too slow. They were too fast to understand because they

updated faster than the eye could focus. They were too slow because doing the visual-

ization slowed the program down substantially so that it was impractical to use for

anything complex. However, the visualizations did seem appropriate for teaching

and understanding the basic execution of programs. Since these uses were not in the

environment’s target domain, we did not evaluate this particular application.

Simple code-based visualizations in programming environments such as those in

Pecan have been duplicated over time. Lieberman’s ZStep 95 provided a source-ori-

ented execution view which such highlighting but also saved the execution states to

allow the user to scroll back and forth in time over the visualization [26]. Most cur-

rent programming environments highlight the current line as the debugger traces or

stops.

2.2  Algorithm Animation

Teaching and simple program understanding, however, was the focus of the vari-

ous algorithm animation systems that were developed starting at about the same

time as PECAN. Systems such as Balsa [5,6], Tango [53], and others typically

included a view of the source code to highlight what the program was doing in addi-

tion to their characteristic algorithm-specific visualizations. These systems all

worked because the programs under consideration were relatively small and execu-

tion time was not a primary concern. Indeed, Balsa even included a user interface

control that let the programmer slow the program execution down so that they could

examine it in slow motion.
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What the algorithm animation systems provided, beyond the simple program-

ming environments, was views of the data. Here they provided very specialized

views that were more geared to the algorithm in question than to the specific pro-

gram data structure. For example, for sorting, instead of displaying the array con-

taining the data, they might display a matrix which shows data position over time

where time is counted in the number of data exchanges [1]. Alternatively, they might

display an array used as a heap as the corresponding tree.

This contrasts to the simple data displays that were provided by PECAN which

only showed the stack. Arrays, structures, and pointers on the stack could be

explored by explicitly clicking on them to expand them, but the resultant display was

shown as a tree and didn’t really illustrate how complex data structures were repre-

sented in memory.

2.3  Visualizing Visual Programming

After PECAN we tried two different approaches to handling more realistic pro-

grams. The first, the GARDEN system, attempted to do it using conceptual program-

ming and visual languages [39,40]. GARDEN was a programming system that let

the user define, integrate, and use new visual languages, with the idea being that

users could conceptualize their problem in terms of some visual language, use GAR-

DEN to implement that language, and then easily code up their particular problem.

Each language had a graphical syntax and an execution semantics defined in terms

of other languages or GARDEN primitives. Programs were represented by objects

that could be executed directly. GARDEN provided the hooks to automatically high-
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light execution within the visual displays of a program to provide on-line visualiza-

tion. Programs were typically constructed using different languages at different

levels of abstraction. Since only one level of abstraction was typically displayed in a

single window and the user could control the displays, the abstraction level of the

visualization was effectively under the control of the user. Figure 2 shows two exam-

ples of GARDEN program visualizations, the first a flowchart view and the second a

finite state automaton. The flowchart displays the overall flowchart in the center and

a boxed view of the currently selected node in the lower right-hand corner. The finite

state automata displayed label states and arcs. In the flowchart, execution was

shown by highlighting the current node. With finite state automata, the current

state and traversed arcs were highlighted. Other languages that were implemented

FIGURE 2. Visualization of GARDEN visual programs in action.
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included Petri nets, data flow graphs, query-by-example, statecharts, and port-based

modules.

Because the focus of GARDEN was on visual languages and program design, the

visualizations that were provided were somewhat incidental and the program size

remained relatively small. Again, while GARDEN was used for a variety of experi-

mental applications, its visualization package saw little use. The reason again was

speed. The visualizations only worked when GARDEN was interpreting the visual

program. When the program was running at full speed, the visualization was a blur

and was not particularly helpful. Moreover, when programs were compiled to be run

for production, the visualization could not be used. The real utility of the visualiza-

tion was when debugging GARDEN programs, when the visualization would provide

the user with the proper context within the visual program.

Many of the other systems that supported visual languages also provided some

sort of dynamic view of the program in terms of the language. Early examples

include Kimura’s data flow language Show and Tell [25], Glinert’s flowchart-based

Pict [17], and Jacob’s state-transition language [21]. One could also consider the

immediate feedback provided by systems such as Borning’s Thinglab [4] as a graphi-

cal view of an executing program, although in this case the view is actually the out-

put.

2.4  Source and Data Visualizations

Our second approach to handling more realistic programs was in the FIELD sys-

tem. Here we attempted to provide on-line visualization of full-sized C (and later
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Pascal, Object Pascal, and C++) systems [42,44]. While most of its later visualiza-

tions were somewhat abstract (and are covered in the next section), the early visual-

izations offered source level views that updated whenever the debugger stopped

execution. Moreover, it supported automatic single stepping so that the user could

view the program execution in the editor. This feature is shown in Figure 3. FIELD

offered two types of source highlighting: either the text itself could be highlighted or

an appropriate annotation would move around on the display. The example in the

figure shows both. The current line of text is highlighted with a green (dark) back-

ground and the arrow annotation on the left hand side points to the executing line.

The editor would automatically follow execution by changing its focus or file as the

program ran.

FIGURE 3. FIELD visualization showing source highlighting.
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Because the visualization was implemented by continually (but automatically)

single stepping the debugger, the performance was about right for program under-

standing, but was too slow to use continually on a real system. To get around this

limitation, FIELD provided mechanisms to restrict the single stepping and hence

the visualization to selected functions, files, or classes. The result was a source-based

visualization that was actually used both on advanced programs and on student pro-

grams, albeit for limited applications.

In addition to visualizing the source, FIELD provided visualizations of user data

structures that were updated dynamically as the program executed, as seen in

Figure 4. The user was given control over when to update the structure to keep per-

formance reasonable. These displays were similar to the displays provided by other

tools [2,30] and later commercial environments from SGI and Sun. FIELD went

beyond these other tools by letting the user customize the data structure displays

using the same visual editor that was used for defining visual languages in GAR-

DEN [41]. The customized displays let the user abstract their data structure and

view it in their terms. This customization can be seen in the simplified list visualiza-

tion of the data structure at the top of the figure shown in the middle or the display

of a linked tree structure displayed as a tree at the bottom of the figure.

The data structure display looked nice but actually had limited utility other than

for debugging. The main problem was the cost of updating the diagram. In order to

get the information needed to display or update the diagram, FIELD needed to inter-

act extensively with the debugger. Such interactions were expensive and could only
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be done practically when the program stopped execution. Even then, it took a matter

of seconds and so wasn’t always desirable. The second problem was that real world

data structures were just too complicated to display even with significant user cus-

tomization. The third problem was that the visual editor used to define the custom

FIGURE 4. FIELD data structure displays.
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visualizations was relatively complex and the time commitment needed to create a

pleasing data structure display was not worth it for ephemeral applications.

2.5  End-User Programming Systems

Spreadsheets such as VisiCalc introduced the notion of wysiwyg programming,

i.e. the notion that the results of the program, including intermediate results, are

continuously computed and shown to the programmer while the program is being

developed. By their very nature, such systems provide a concrete view of the execu-

tion of the underlying program.

Early work on generalizing the simple spreadsheets yielded systems like XED or

VisiProg [20,22]. This system offered a simple procedural language with an underly-

ing data flow model. Programs were continually executed as they were written and

the output was continually shown as part of the environment.

This work has generalized in two directions. First, the notion of continuous test-

ing has been extracted to provide a simple high-level visualization of a program —

whether its test cases currently succeed or fail [50]. Second, as spreadsheet systems

have become more powerful, they have become real programming languages in their

own right.

Visualizations that have then been built on top of spreadsheet systems are inher-

ently dynamic. For example, the work of Burnett, et al. shows how one can visualize

recursive spreadsheet programs [7], assertions about spreadsheet nodes [8], and test

cases and the inherent correctness of nodes [49].
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3.  Semi-Abstract Representations

The primary drawback of the concrete representations cited above was their

inability to show real programs in action. There were always performance issues,

either with the program running too slowly because of the graphics or the graphics

running too quickly to be understood. A large part of the underlying problem was

that source lines and actual user data structures are too fine a representation to

show dynamically. Because of this, practical run time visualizations moved to more

abstract forms. The idea here was to take a higher level view of the program and

then to show the execution dynamically in terms of that view.

3.1  Function-Level Visualizations

One obvious high-level view is that of call graphs. The FIELD environment, for

example, was able to extract and display the call graph of the system in question

[42,43]. On-line execution was then shown in the graph by coloring the node cur-

rently executing and, optionally, by coloring active nodes (those on the stack) a differ-

ent color. An example with the current node in red (dark gray) and the stack in green

(light gray) can be seen in Figure 5. The colors here were selectable through resource

files. To handle large programs, FIELD allowed abstraction within the call graph. A

node on the display could represent a single function, a file, a directory, a directory

hierarchy, or, for object-oriented systems, a set of methods with the same name in

multiple classes. Moreover, nodes could be selectively eliminated in order to simplify

the display. The visualization here was much more practical than the earlier line-
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level displays. The display could be set to update dynamically or only when the pro-

gram stopped execution. Using dynamic display did slow the program down signifi-

cantly because it used tracing within the debugger to trigger the display. However,

the slow down was not so much as to make the program unusable. As a result this

type of visualization was used to class to demonstrate the execution of various pro-

grams and by students to achieve an understanding of their own program’s execu-

tion.

A related view provided by FIELD showed the currently executing method via

highlighting in the class hierarchy browser, a predecessor of today’s UML class dia-

grams. A simple view from this browser can be seen in Figure 6. The class browser

FIGURE 5. FIELD call graph visualization; highlighting shows what is currently
executing.
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concentrated on displaying the class hierarchy and other relationships among

classes and letting the user interactively simplify or specialize the class diagram.

Dynamic visualization was shown by highlighting the currently executing method

using the same underlying facilities as with the call graph browser. In this case only

the current method was highlighted and no attempt was made to show the call stack

or non-method routines. The execution visualization provided by this view was used

extensively by the students for debugging and to a more limited extent for program

understanding.

3.2  Specialized Visualizations

FIELD also provided on-line visualizations that concentrated on performance

and on particular behaviors. The performance view, shown in Figure 7, showed the

FIGURE 6. The FIELD call graph browser also showed dynamic information.
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resources that the program was using as it ran. This view was supported by a little

library that would periodically wake up and send the relevant program statistics to

the visualizer. Its utility was limited by the lack of accuracy of the Unix resource sys-

tem calls at the time.

There have been a wide variety of different dynamic performance visualizations.

Many of these concentrated not on the user’s application, but on system performance

in general while the application was being run. For example, IBM’s PV [24] system

provided a variety of different operating-system level performance visualizations

that could be used to gain insight in the actual application. Another set of perfor-

mance visualizations was tied to the behavior of parallel applications and how they

made use of their resources. The best examples of these are the visualizations that

FIGURE 7. Dynamic performance visualization in FIELD.
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accompany MPI such as XMPI [9] or MPE [11]. More recently, environments such as

Sun’s Studio incorporate tools that provide visualizations of gprof [18] data that

update as the program runs [29].

Information about files and file usage during execution was shown in the file

viewer seen in Figure 8. This view tracked every file operation and provided a graph-

ical display showing the results. Color could be used to either indicate the size of the

I/O operation or the time the I/O operation was done. Reads and write were distin-

guished by horizontal versus diagonal lines respectively, and the position of the oper-

ation in the vertical bar showed its location in the file. This view was very helpful for

finding potential file errors, for example files that were left open, files that were

FIGURE 8. I/O viewer showing file activity during execution.
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opened multiple times, and files with lots of little I/O operations. However, since

these situations arise relatively infrequently, the visualization had limited utility.

Information about memory was shown in the heap viewer seen in Figure 9. This

visualization was driven by tracing all calls that allocated or freed memory and

sending the parameters and return values of those calls to the visualizer. Because

the amount of data involved is relatively small, this visualization was able to run in

real time with the program and only slowed the program by a small factor. The visu-

alization itself was also quite helpful in detecting several types of memory problems

FIGURE 9. Heap visualizer showing memory utilization during execution.
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that affected C and C++ programs. Color in the visualization could indicate size,

time, or the source of the allocation. Coloring let the view be used to show at a glance

excessively large or small allocations, allocations that were supposed to be ephem-

eral but weren’t, the allocations that arose from executing a particular command, or

allocation hot spots in the underlying system. Moreover, the overall visualization

gave a good view of how memory was used, how fragmented it was, and quickly illus-

trated such problems as the memory leak shown at the bottom of Figure 9 by the

area that just kept growing during execution.

While these specialized visualization were much more widely used and more gen-

erally useful on real systems, they still had their drawbacks. They were restricted by

their limited domains and their lack of history. They were each aimed at specific

problems such as identifying files left open or finding memory performance issues,

and did not extend to more general cases. Moreover, while they showed what was

happening now, they did not let the programmer go back and explore what happened

in the past to get to this point. While some of the motivations for a programmer to

use dynamic visualization dealt with the specific problems that these visualizations

addressed, many other motivations were handled only partially or not at all.

3.3  Non-Procedural Visualization

The above visualizations were geared toward standard programming languages

and environments. Other approaches to programming required different approaches

to visualization.
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One such approach is seen in the Transparent Prolog Machine [14] and the suc-

cessor system MRE. These systems provide a visualization of Prolog execution that

have been used for debugging, understanding the semantics of Prolog, and program

understanding [15]. The visualizations show what prolog is doing but provide a

degree of abstraction by presenting the execution in terms of trees and allowing sim-

plifications of the trees. The visualization could be run on-line or off-line with replay

capabilities.

Just as Prolog execution can be difficult to understand, so can rule-based (knowl-

edge-based) systems. These take a set of rules and a set of features and trigger rules

based on the current values of features, with rules then changing the feature set.

There have been several visualizations that provide the user with an understanding

of the execution of such systems [12].

4.  Abstract Representations

The heap and file visualizations were successful for real systems because they

allowed the program to run at or near full speed while still providing useful informa-

tion. The main problem with them was that the information was quite limited in

that it only touched on one particular domain and thus only helped with understand-

ing or debugging problems in that domain.

The reason these views succeeded was because they provided what is essentially

an abstraction of the program execution. For example, the heap view built its model

of memory by only looking at calls to the memory management routines; the I/O

visualizer did the same by looking only at the file open, close, read and write rou-
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tines. While these abstractions were close to the actual workings of the system, it is

possible to use other abstractions to get more complete or more detailed visualiza-

tions while still maintaining program performance.

4.1  JIVE

The desire to provide more useful on-line visualizations of program execution led

us to take a new approach that emphasized abstraction and minimal instrumenta-

tion. Our first system along these lines, JIVE, combines several abstractions into one

visualization [46]. One of these abstractions provides a view of execution in terms of

classes or packages while the other provides an abstraction of thread behavior.

Figure 10 show these two views on the left and right respectively.

FIGURE 10. JIVE visualization. Class usage is shown on the left; thread usage on the right.
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Both of these views model the program behavior over time. The class model

breaks up execution into intervals of about ten milliseconds each. For each interval it

keeps track for each class of the number of calls to methods of that class, the number

of allocations done by methods of the class, the number of allocations of the class,

and the number of synchronizations on objects of the class. The display then shows,

for the current interval, the number of calls as the height of the bar, the number of

allocations done as the width of the bar, the number of allocations of the class using

the hue of the bar, and the number of synchronization as the saturation of the bar.

The user can also view totals through the current interval rather than just the val-

ues of the interval and can use the scroll bar at the bottom to go back and forth in

time. This view provides the user with insight as to where execution is occurring,

whether there are excessive allocations, and where synchronization is being used.

The thread model on the right views each thread as being in one of eight abstract

states: starting, running, running synchronized, blocking, doing I/O, sleeping, wait-

ing, or dead. It tracks the state of each thread over time, maintaining the set of state

changes and when they occur. This information can be displayed (as seen on the

right of Figure 10) as bars showing the percent of time each thread spends in each

state during the current interval or the totals up through the interval, or it can be

displayed as a time graph (as seen in Figure 11). In the latter case, we were also able

to illustrate synchronization dependencies between the threads using vertical lines

that went from white to black.
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A third model of program dynamic program behavior is seen in the color of the

scroll bar in the JIVE visualizations. JIVE uses the information about class and

thread usage to try to match the programmer’s intuition as to the phases of their

program. It uses statistical methods to determine whether the current interval rep-

resents a continuation of the existing phase, a reinstatement of a previous phase, or

a new phase. It then uses color to display the information about phase changes in the

bottom of the window [47].

The key to making JIVE practical was to ensure that it could be used with real

programs in real time. This was done by using fast and minimal instrumentation,

summarizing the data, and then sending the summary to the visualization process.

Over a wide variety of different programs, the worst performance we have seen with

FIGURE 11. JIVE visualization showing thread states along a time line.
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JIVE is a slowdown factor of two, with most programs running at about their normal

speed.

4.2  JOVE

A second on-line visualizer, JOVE, maintains a more complex model of program

behavior but limits itself to the user’s code and not the underlying libraries [48]. It

again looks at the program in terms of small intervals. For each interval it keeps

track of how many times each basic block is executed by each thread. The summary

information is then kept over the history of the run and is used to produce displays

such as seen in Figure 12. Here each vertical region represents a class. The circle at

the top of each bar is used to show how much time each thread spent in that particu-

lar class during the interval, using the colors associated with the various threads to

FIGURE 12. JOVE display showing thread usage at the basic block level.
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form a simple pie chart. The height of the darker background color for the region

indicates the number of allocations done. The lines within the region show informa-

tion about the various basic blocks. The color of these lines indicates the thread or

threads executing those blocks; the width of the line indicates the number of times

the block was executed. Again, with JOVE we emphasized minimal, fast instrumen-

tation. JOVE slows the program down by at most a factor of four, and generally a lot

less.

The abstract views of JIVE and JOVE are useful for providing the programmer

with overview information describing what the program is doing. We have used them

for debugging, understanding, and performance analysis. For the latter, they provide

useful information about where execution time is spent in the program, either at a

high level in JIVE or at a detailed level in JOVE. The high level view was used, for

example, to determine that the 3D graphics and gravity computations of a pinball

program only used about one third of the available execution time each, and hence

were fast enough. The detailed view provided insights into which collision computa-

tions were the slowest.

The thread visualizations of JIVE were the most appropriate for debugging and

understanding. They readily showed such events as a thread sleeping rather than

waiting (and thus blocking other threads) and a thread that was blocking other

threads while waiting for I/O. For a multithreaded web crawler, they showed how the

threads were divided between waiting for web pages and processing the pages. They

also showed the locks that occurred due to synchronization in the HTML parser in

J2SE 1.4.
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Several other visualization techniques along the similar lines have been used

over time. Prominent among these are visualizations that show performance hot

spots in the program. This has been done in terms of abstract source files using See-

Soft [13], in terms of UML-style interaction diagrams as in Jinsight [33-35], and as a

graph of memory (or object) versus time in the hot spot visualizations provided by

Evolve [27,55], although these were all done off-line rather than on-line.

These views however suffer much of the same limitations as the I/O and memory

visualizations of FIELD. They address specific program aspects (albeit more general

ones), and are limited to addressing issues directly related to those aspects. They

provide general information about the program execution rather than information

that is specific to the particular application or the coding abstractions

5.  Programmer-Defined Representations

The challenge for dynamically visualizing program executions is to provide infor-

mation that is meaningful for understanding the specific but not yet defined prob-

lems that programmers actually need to have addressed while running the

application at or near full speed.

Our experiences show that the visualizations that have been most widely used

and appreciated for production programs are those that provide a visual model of

some aspect of the execution and dynamically update that model as the program

runs. These include the memory and I/O visualizers of FIELD and the class and

thread visualizers of JIVE. These systems worked because the model they provide is

directly relevant to both the program and to particular problems that are of interest
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to the programmer. While it is difficult to get a gestalt of the memory behavior of a

program from a typical debugger or print statements, the memory visualizer pro-

vides such a view at a glance. Through visual patterns it quickly shows memory

leaks, abnormally large or unusual allocations, and memory fragmentation.

If such views are going to be extended to make dynamic visualization more useful

in general, they will have to be based on models that address the issues that pro-

grammers want to understand or debug about their particular systems. These mod-

els will need to reflect how programmers view their systems. They will have to be

dynamically updated as the program runs. They will have to provide enough infor-

mation to drive appropriate visualizations.

Such models can be program or language specific. For example, consider a multi-

threaded web crawler. Each thread repeatedly is assigned a page. It reads that page,

parses it, computes summary information, and then stores data about the page

based on the parse. Programmers might want to see what each thread is doing in

terms of this model. They want to differentiate parsing the page from computing the

summary information; they want to know when it is waiting for the web, waiting to

process a robots.txt file, or waiting to write information to disk. Essentially, the pro-

grammer has a model of thread behavior for the particular application and wants to

see a visual display in terms of that particular model.

As a simple example of language-based models, consider iterators in Java. Sup-

pose one wants to track all the currently active iterators in a program, seeing which

are currently active, and ensuring each is used correctly (e.g., that hasNext is called
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before next). A dynamic visualization could provide a display that showed each active

iterator as a box colored by its current state (e.g., unused, hasNext called, next called,

next called without hasNext), with positional information relating the iterators to the

source or to particular threads. From such a display the programmer would see what

is going on and potential errors would stick out.

These and other visualizations can be provided by letting programmers define the

appropriate models for their programs and then providing suitable visualizations. To

be practical, the models must be easy to specify, understand, and implement and

they must be reusable. The set of visualizations provided must be flexible and easily

adaptable to the different models.

There are several challenges to achieving such visualizations. The first involves

finding the right framework for defining the models. This framework must be power-

ful enough to encompass all the above examples and as well as any others user’s

might come up with. At the same time, it must be simple enough so that program-

mers can understand how it can and should be used. One possibility is to use autom-

ata over parameterized program events combined with suitable data structures. This

combination can model the described situations with minimal overhead.

A second challenge involves defining an appropriately broad set of base visualiza-

tions. Multiple visualizations have been defined in several systems including Escal-

ante [28], Cacti [45], and Evolve [55]. Each of these system contains a framework

that handles the common elements among the visualizations and is designed so that

new visualizations are relatively easy to code and incorporate into the framework.
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Customization of the visualization should be up to the user with an appropriate end-

user environment.

A third challenge involves providing support to automate or simplify associating

the model with the visualization. Many of today’s tools do this through the use of

wizards and one could probably design wizards to handle many of the more common

visualization tasks. Appropriate associations might have to go beyond simple map-

pings and consider more detailed (but still on-line) analyses. Here one could imagine

on-line versions of what has typically been done off-line. For example Walker and

Murphy view traces in terms of high-level models based on name patterns [54],

Grundy et al. [19] and Sefika et al. [51] abstract the trace using the underlying

architectural structure of the system, Pacione provides a variety of abstractions

based on program structure and UML diagrams [32], Bertuli et al. abstract run time

information using the class structure [3], and De Pauw et al. do pattern analysis of

the events as a basis for an compact abstract display [34].

A fourth challenge involves ensuring that the data needed by the visualization

models can be derived from program execution with small overhead. While JIVE and

JOVE show that we can achieve this for specific data, the challenge involves han-

dling general data and determining exactly what data is relevant to a particular

visualization. Systems such as Aspect/J show that program events can be detected

efficiently [23]. Jinsight has demonstrated the feasibility of tracing small sections of

the program based on trigger events, a technique which can greatly reduce the trace

overhead [36]. Dtrace uses application-specific dynamic, low-level probes to mini-

mize instrumentation and its effect and to provide high performance [10].
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A final challenge involves putting this all together in a single visual framework

and integrating it with a programming environment. This is more of an engineering

task that involves developing appropriate user interfaces and making the relatively

complex models and visualizations accessible to the programmer. This should build

on the vast literature and experience that has been developed for end-user program-

ming and can be integrated into an environment such as Eclipse relatively

easily [16].

We can then imagine a new visualization framework. The programmer would be

working with their program and run into some problem that requires understanding

program behavior, say for example they wanted to understand the internal settings

of a finite state automata that their system was modeling. They should be able to

quickly specify what they are interested in by defining the relevant program events

and state (creation of the automaton, changing the current state), and defining what

they want to view (the current state). The system would then instrument the pro-

gram and provide the corresponding visualization.

6.  A Taxonomy of Execution Visualizations

The history of execution visualization can best be summarized by a taxonomy

that shows the different properties of previous systems and compares that with what

will be needed to create a truly practical and useful visualizer for large, modern sys-

tems.

The previous discussion brought out several different dimensions along which the

various systems can be compared. The ones that seem the most relevant to under-
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standing the practicality of using the visualization for real problems on real systems

include:

• Execution Effect. This is a measure of how much overhead the visualization puts

on the application. As we have noted, some of the visualizations, principally the

early ones, introduced so much overhead that the application was unusable. At the

other end of the spectrum, visualizations such as the heap viewer or JIVE let the

underlying application run in near real time. We specify this as high (for high

overhead) indicating 2 orders of magnitude slowdown or more, medium indicating

one order of magnitude slowdown, or low.

• Level of Detail. The various visualizations vary considerably in how much detail

they provide. Some provide information in terms of source lines; some only look at

methods; others look at threads; still others look at the overall performance. We

specify this by identifying the lowest level for which details are displayed.

• Degree of Specificity. The visualizations also vary in whether they provide general

information about the system’s execution or if they provide information about only

a specific portion of the execution. We consider those views that provide informa-

tion about the control flow to be general, while those that concentrate on a specific

aspect, such as memory allocation, are specific.

• Abstract versus Concrete. This is a measure of how much abstraction there is from

the actual program to the visualization. This can be either concrete, semi-abstract,

or abstract to follow the prior discussion.

• Customization. This is a measure of how much the viewer can adapt the visualiza-

tion to their particular needs, either by prespecifying what can be visualized or by

controlling the visualization parameters. This dimension’s ranges can be either

none, user-programmable (with considerable effort required), modifiable display,

or easily programmable.
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• Effort Required. Many of the visualization we have been discussing are generated

automatically, but some require programmer intervention or actual code in order

to create the display. This dimension reflects the degree of coding required and its

range includes none, some, and significant.

The various systems that we have discussed can be categorized along these

dimensions as shown in Figure 13. The bottom line of the figure shows the categori-

zation of the framework envisioned in the prior section that would provide specific

visualizations designed to handle specific problems.

System
Execution

Effect
Level of Detail

Degree of Spec-
ificity

Abstract vs.
Concrete

Customization
Effort

Required

PECAN High Statement General Concrete None None

ZStep 95 Unknown Statement General Concrete None None

BALSA Medium Statement General and
Specific

Concrete Programmable Significant

GARDEN Medium Construct General Concrete Modifiable Some

Show & Tell Unknown Construct General Concrete None None

Pict Unknown Construct General Concrete None None

FIELD Editor Medium Line General Concrete None None

FIELD Data Struc-
ture Display

High Field Specific Concrete Programmable None through
Significant

Call graph Medium Function General Semi-Abstract Modifiable None

Class Browser Medium Function General Semi-Abstract Modifiable None

Performance Low System Specific Semi-Abstract Modifiable None

PV Low OS details General Semi-Abstract None None

XMPI Low Messages Specific Semi-Abstract None None

Sun Studio Perf Low Routine General Semi-Abstract None None

I/O Viewer Low File Operation Specific Semi-Abstract None None

Heap Viewer Low Memory Opera-
tion

Specific Semi-Abstract Modifiable None

Transparent Prolog Unknown Clause General Concrete None None

JIVE Low Function or
Thread

General Abstract Modifiable None

JOVE Low Basic block General Abstract Modifiable None

New System Low Abstraction Specific Abstract Easily Customi-
zable

Some

FIGURE 13. Taxonomy of the various on-line program execution visualizations.



Visual Representations of Executing Programs December 22, 2006 34

7.  Conclusions

Visualizations of program execution have evolved from concrete representations

of the source code that were slow and only practical for simple programs, to abstract

representations that show detailed information about some particular aspect of the

execution of real systems. To extend the utility of such dynamic visualizations, one

needs to look at maintaining and visualizing new abstractions as the program runs.

We propose a model whereby programmers can easily define such abstractions that

are relevant to their particular understanding or debugging tasks and then have

appropriate visualizations generated from these abstractions. The development and

implementation of the proposed model is the next phase of dynamic program visual-

ization.
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