
A Visual Query Language for Software Visualization
Steven P. Reiss

Department of Computer Science
Brown University

Providence, RI 02912 spr@cs.brown.edu
401-863-7641, FAX: 401-863-7657

Abstract

Visualization for software understanding requires that
the user be able to define specific visualizations that are
specialized to the particular understanding task at hand.
In this paper we describe a system that lets the user define
such visualizations quickly and effectively. The system uses
a visual query language over a variety of data sources to
let the user specify what information is relevant to the
understanding task and to correlate that information. Then
it provides a mechanism for letting the user select and cus-
tomize an appropriate visualization for this data.

1. Problem Definition

Software understanding is the task of answering ques-
tions and gaining insights about software systems. In some
cases it involves gathering broad-stroke information about
what a system is doing; in other cases it involves under-
standing a particular aspect of the system; in still other
cases it involves addressing very specific issues such as
why was this routine called or what will happen if I change
this input.

Software visualization for understanding must address
the basic issues that understanding implies. It must provide
access to multiple data sources in order to address the wide
range of applications implied by software understanding. It
must provide the means for integrating and relating these
sources so that the complex questions that arise in software
understanding can be readily addressed. It must permit a
wide range of questions, from the very narrow to the very
broad. Moreover, it must let the user get a visual answer to
an understanding problem quickly and accurately, typically
providing a detailed solution in about five minutes.

To facilitate software understanding, a front end of soft-
ware visualization must provide a variety of facilities and
meet a number of requirements. The most important of
these are:

• It must provide a query language over multiple data
sources. If the available data is viewed as a (possibly
virtual) database, then asking questions over this data is
essentially querying that database.

• It must provide independence from the underlying data
formats and structures. Programmers are already bur-
dened with the complexities of the language, environ-
ment, and the particular system. It is not reasonable to
make them learn the wide variety of formats that will be
used in collecting and analyzing the data that is needed
for understanding.

• It must allow the easy addition of new data sources. As
systems get more complex, new data sources become
relevant. As software understanding problems become
more complex, more data sources and data analyses are
needed to address them. Any system should be able to
easily accommodate such changes.

• It must support a variety of different formats of data.
Some of the data will be available in relational data-
bases. Other data might be available as linked objects,
for example symbol tables or abstract syntax trees.
Other data might be available in XML format, for
example program analysis data through GXL [5] or the
results of various analysis tools. Other data will be
available dynamically through requests of existing sys-
tems, for example configuration data can be obtained
dynamically using appropriate commands to CVS or
RCS.

• It must provide full query capabilities. The questions
that arise in software understanding can be quite
involved and the data sources can be quite complex. In
order to get the proper answers from these sources, the
front end must provide a powerful and flexible query
language.

• It must make common queries simple. While many
understanding problems are complex and unique, a sig-
nificant number of the queries that need to be addressed
occur repeatedly. Such repeated queries, no matter how
complex they are, should be easy to ask.

• It must be intuitive and easy to use. Programmers are
harried enough and are loathe to learn or use a new tool.
A visualization tool that is not easy to use will simply
not be used. Programmer’s don’t yet understand the
potential value of visualization and will not take the

time to learn a difficult or obscure tool. A consequence
of this is that ideally the front end should be integrated
into an existing programming environment.

• It must provide easy integration with a visualization
system. The front end should let the user define the
question that needs to be addressed and, at the same
time, should let the user define what the visualization
should look like.

We are currently developing a comprehensive system
for using visualization for software understanding [8]. This
system, BLOOM, includes facilities for collecting both
static and dynamic data about systems [7], facilities for
analyzing that data in various ways [9], a wide variety of
visualization styles [10], facilities for browsing over, inter-
acting with, and correlating the visualizations, and a
general facility for defining what should be visualized and
how it should be displayed. It is this last facility, MURAL,
provides a powerful visual query environment that is the
topic of this paper. This package attempts to offer a power-
ful front end for the user that meets the above criteria.

The next section describes the visual query language
that MURAL provides for specifying what data is relevant
to a particular understanding problem. The following
section describes how MURAL supports a wide variety of
different data sources, mapping them appropriately into
entities and relationships. The next section describes the
approach that MURAL takes to finding a visualization
once the user has defined the relevant data. The final sec-
tions describe related work, experiences to date, and future
plans for the system.

2. The MURAL Query Language

MURAL provides a visual query language based
loosely on entities and relationships. Entities here represent
the various data sources. Relationships represent ways of
correlating these data sources, either though pointers, indi-
ces, or arbitrary associations. The visual front end shows
the entities as boxes and the relationships as arrows con-
necting the boxes as can be seen in Figure 1.

2.1 Entities and Relationships

Entities are used to represent objects. They can be used
to represent a tuple from a relational database, an object
from an object database, an element from an XML file, or a
simple C++ or Java object. Each entity consists of a set of
fields that are defined over a basic set of domains. The
domains include primitive domains such as strings and
integers, references to other entities, and named instances
of these domains. Entities in the visual editor actually rep-
resent sets of such objects.

Relationships represent ways of relating the entities in
one set with those in another. Relationships can be simple,
i.e. based on fields in one entity that contain pointers
(either direct or indirect) to an instance of another entity.
For example, a static definition entity contains a field
labeled source that points to the file entity in which that
definition occurs. Relationships can also be more complex.
The set of entities representing classes can be indexed by
the full class name. Thus, any entity that contains a field
with a class name can be related to this set of classes
through this index. Relationships that are even more
complex are possible. The user can relate to entities by
indicating that a certain set of fields should have common
or correlated values.

The user can create multiple relationships between two
entities. When this is done, the user is prompted as to
whether these should be merged into a single relationship,
hence representing an AND of the conditions of the origi-
nal relationships, or if they should be left alone, represent-
ing an OR of the relationship conditions.

Figure 1 shows an example query using MURAL. This
particular query combines profiling statistics accumulated
for each pair of calling-caller routines along with static
information about those routines and their classes. Entities
in the query are represented as boxes containing a set of
fields. Each field is labeled with the field name and data
type. Fields that contain internal data such as pointers are
not displayed. Relationships are labeled and are indicated
by arcs between the entities. Either the labels are the name
of the field that is used for simple relationships based on
pointers or indices, or a user defined name for more
complex relationships. Triangles at the end of the arcs are
used to indicate the direction and arity of the relationships.

2.2 Combined Entities

To facilitate complex queries and the definition of visu-
alizations, MURAL introduces several concepts. The first
is the notion ofcombination. Entities and relationships can
be combined into new entities or relationships. Two or
more entities along with the relationships that connect
them can be combined into a single entity. The result is
similar to taking a join of the underlying sets using the
relationship as the join expression. For example, Figure 2
shows the result of selecting the entitiesTfileMethodand
TfileClassentities for thefrom relationship along with their
accompanyingclass_idrelationship and combining them
into a single entity labeledMethodClass.

Combined entities are useful in a variety of ways. Their
primary use is to let the user define new data objects as
logical combinations of existing objects based on the rela-
tionships among the existing objects. This is necessary for
defining what should be visualized in our overall frame-

work. Second, they make the specification of complex
queries simpler by providing levels of abstraction. A com-
bined entity essentially is an abstraction of the various enti-
ties and relationships that went into it.

Combining entities also provides the means to define
queries involving transitive closure. MURAL treats the
case where two identical entities are combined using a
single relationship as special. It asks the user to specify the
range of times, from zero to infinite, that the relationship
can be followed. This provides a natural and intuitive way
of both expressing and denoting transitive closure opera-
tions in the visual query. Note that transitive closure is
essential to queries in the software domain since it is
needed for asking about class hierarchies, scope contain-
ment, and call containment (A calls routines that eventually
call B).

2.3 Combined Relationships

Just as multiple entities can be combined using the rela-
tionships between them to form new entities, a series of
relationships and their intervening entities can be merge to
form a combined relationship. The implication here is that
the data in the selected entities is not needed, just the rela-
tionship. For example, Figure 2 also shows the effect of
combining themethodand class_id relationships along
with the intermediateTfileMethod class to create a
calling_class relation.

Combined relationships provide many of the benefits of
combined entities. They simplify both the visual image of a
query and its definition by providing a level of abstraction.
They let the user make explicit what relationships should
be the focus of the visualization that is being defined. Also,

FIGURE 1. Snapshot of MURAL showing the setup of a query that correlates 2-level call analysis (statis-
tics about routine A calling routine B) with static information about the two routines and their
classes.

they make it easier to use logically AND together multiple
relationships.

2.4 Restrictions and Fields

The second concept that MURAL uses to facilitate
complex queries is the notion of restrictions. The user can
define arbitrary restrictions on each entity in the form of
Boolean expressions. These restrict which objects in the set
implied by the entity actually are represented by the entity
on the display. Restrictions can be defined either on base or
combined relationships. Note that by defining restrictions
on combined relationships, the user is actually defining
more complex, cross-entity conditions. This is another way
that combined entities allow easier and more intuitive defi-
nition of sophisticated queries.

The third concept that MURAL uses is to let the user
restrict and modify the set of fields that an entity contains.
Individual fields can be removed either from the visual
display of the query or from consideration in the construc-
tion of the visualization or both. This can be used to save
screen space and to make large and complex entities more
understandable while building queries. It is also useful in
defining a restricted and possibly more relevant set of fields
for a particular visualization. This is needed to let the user
specify what is important in the visualization that is ulti-
mately being defined.

In addition to limiting the set of fields, MURAL lets
new fields be defined for an entity. This is done by provid-
ing a new field name and an expression over the other
entity fields that provides the new field’s value. Computed
fields let the user define new data elements that should be

used in the visualization. They also allow the stepwise def-
inition of restrictions and relationships since the new fields
can be used to define new restrictions and relationships.

2.5 Submodels

In addition to making it possible to construct complex
queries, MURAL attempts to make it easy to ask common
queries. Once a query is constructed, it can be saved as a
submodel. Then the user can instantiate such submodels as
needed when building the query. When the most common
queries are stored as submodels, such queries can be
invoked with a simple series of clicks. For example,
Figure 3 shows the query of Figure 1 defined as a sub-
model. The initial display provided by MURAL shows the
user the set of available submodels to encourage the user to
select an existing model if one is relevant.

2.6 Expressive Power

The query language that results is at least as powerful as
the relational algebra or calculus. The basic operators that
need to be provided to accomplish this are product, select,
and project. The query language handles products through
relationships in general. While most relationships express
restricted products or joins, the use of arbitrary, field-based
relationships allows the definition of arbitrary products if
these are needed. Selects can be done either through rela-
tionships which imply a selection of the corresponding
product, or through restrictions on the entities. Projects are
done by limiting the set of fields in the entity or by eliding
entities or relationships when doing a combination opera-

FIGURE 2. MURAL supports grouping operations. Here the Method and Class entities that are separate
in the original query are combined into a single entity for the from relationship while the method and
class_id relationship along with the TfileMethod entity are combined to form the calling_class rela-
tionship.

tion. Note that this limitation does not affect the fields that
are available for restriction or for relationship definition.

The query language offers additional capabilities that
are only found in extended relational databases, logic data-
base, or object databases. The ability to treat the combina-
tion of a class with another instance of the same class using
a relationship as a transitive closure provides the ability to
define transitive closure-based queries that cannot be
defined in a relational framework.

3. Handling Multiple Data Sources

One of the more powerful aspects of MURAL is that it
can handle a wide and extensible variety of data sources. It
does this through the use of a common data model based
on entities and fields and the ability to define arbitrary data
sources in terms of that model. The query language reflects
this data model rather than the characteristics and restric-
tions of the original data sources.

The model starts with a notion of domains of data to
provide a common basis for multiple data sources. Each
domain represents a basic type of data such as integer or
string. Domains can be arranged hierarchically with lower
levels of the hierarchy acquiring additional semantics.
Thus a subdomain of string isfilenamewhich represents a
valid filename string and a subdomain of integer isline
which represents a line in a file. Domains are also used to
represent references, either direct pointers or indirect
unique identifiers, to a particular entity.

XML-based definitions are then used to define each data
source in terms of entities and fields. A sample from such a
file is shown in Figure 4. These let the user define new
domains as references to existing domains, as subdomains

of existing domains, or as arrays of existing domains as
shown by the top definitions in the figure. The user can also
define new entities representing information from a data
source. Each data source can have multiple such entities
associated with it. Each entity specifies both how to access
the data source and the fields associated with the entity.
The example shown represents the result of trace analysis
providing statistics for all allocations grouped by class.
The analysis is obtained from an XML file which is pro-
duced by running the TFILTER program, and each entity
corresponds to a CLASS element in the XML file. This
information is described in the ACCESS element of the
domain definition. The various fields of the entity are each
given a name and a domain and rules for obtaining that
field from the source XML file either from an attribute or
from a related element.

This scheme has been used for accessing information
from XML-based analysis as above as well as from a rela-
tional database, from a specialized repository of attributes
maintained by the trace collection package, and from an in-
memory Java object database of static information gath-
ered by a programming environment. The back end of the
system takes care of creating efficient access methods to
the different data sources based on the actual resultant
query [10].

4. Specifying Visualizations

Once users have selected the data of interest by choos-
ing an appropriate set of entities constrained by a combina-
tion of relationships and restrictions, they will want to get a
visualization of the result.

FIGURE 3. The call-profile query of Figure 1 shown as a submodel. This view also shows the current set
of available submodels which cover the most common visualizations that a user might want to see.

MURAL provides an internal mechanism that finds
appropriate visualizations and offers the user an ordered
choice of what it deems appropriate for viewing the speci-
fied data. This mechanism starts with definitions of each of
the available visualization strategies. These definitions
provide MURAL with a model of what type of data are
used in the visualization, a brief description of the visual-
ization, the set of parameters that control the visualization,
and the set of visualization fields to which the data
described in the user’s query can be mapped.

An example of such a definition is shown in Figure 5.
The definitions are in two parts. First the definitions
specify the set of data domains that are used in the various
visualizations. Each of these is defined as a set of possible
source domains.

The second part of the figure shows the definition of our
spiral visualization. The first part of this definition
describes the object model. This particular visualization is
driven by a set of objects each of which must have a from
and a to time fields. These fields must have a data type that
corresponds to the visualization domainIndex. In addition,
there are optional visualization fields for the height, width,
color and texture associated with the visualization. More
complex models allow the specification of multiple object
types and relationships between these types.

When the user finishes building the data model, he
clicks the visualization button in MURAL. At this point the
system attempts to match the user’s model with each of the
visualization data models. The matching attempts to asso-
ciated each entity with a visualization object type in such a
way that all required fields are present and as many of the

optional fields as possible are available. Multiple entities
can be mapped to a single visualization object type.

The matching process is actually more complex than
this. In doing the matching, not only does MURAL con-
sider the explicit user entities, but it also considers possible
operations on those entities including:

• Combining multiple entities using intervening relation-
ships as is supported by the query language.

• Combining multiple relationships into a single relation-
ship as is supported by the query language.

• Merging two identical entities into a single entity using
a union operation. This is needed to handle self-loops in
the visualization model since such loops are not directly
representable in the query model.

• Omitting entities and relationships by not associating
them with any visualization entity or relationship.

The system uses heuristics to assign a cost to each of
these operations and a value to each of the matching fields.
The result of these values is used to sort the list of potential
visualizations for the given user data model. This list is
pruned by eliminating strategies that are not within 50% of
the best selection or within 90% of the best selection for a
given visualization.

5. Related Work

The visual query language itself is built on top of
numerous other efforts aimed at providing visual database
interfaces. These start with Query by Example [15] which
defined a table-based interface. Other examples include
PSQL [11], various Entity-Relationship query languages
[4,12,14], SeeQL [13], G+ [2], DOODLE [3], and

<DOMAINS>

<DOMAIN NAME="TfileClassRef" TYPE="REF" REFER="TfileClass" />
<DOMAIN NAME="TfilterThread" TYPE="NAMED" DOMAIN="ThreadName" />
<DOMAIN NAME="TasteTypeRef_Array" TYPE="ARRAY" BASE="TasteTypeRef" />

<DOMAIN NAME=”AllocClass” DESCRIPTION=”Allocations by class” TYPE=”ENTITY”>TTIP=”Allocation statistics organized by class”>
 <ACCESS TYPE=’XML’
 RUN=”$(TFILTER) -d $(TRACEDIR) -AC”
 FILE=”$(TRACEDIR)/AllocClass.tf”
 ELEMENT=”CLASS” />
 <FIELD NAME=”class” DOMAIN=”TfileClassRef” XMLATTR=”ID” />
 <FIELD NAME=”number_of_objects” DOMAIN=”int” XMLATTR=”OBJECTS” GROUPING=”Sum” />
 <FIELD NAME=”number_freed” DOMAIN=”int” XMLATTR=”FREED” GROUPING=”Sum” />
 <FIELD NAME=”average_span” DOMAIN=”double” XMLATTR=”TIME” GROUPING=”Sum” />
 <FIELD NAME=”average_moves” DOMAIN=”double” XMLATTR=”MOVE” GROUPING=”Sum” />
 <FIELD NAME=”average_gcs” DOMAIN=”double” XMLATTR=”GC” GROUPING=”Sum” />
 <FIELD NAME=”stddev_span” DOMAIN=”double” XMLATTR=”TIMESD” GROUPING=”Sum” />
 <FIELD NAME=”stddev_moves” DOMAIN=”double” XMLATTR=”MOVESD” GROUPING=”Sum” />
 <FIELD NAME=”stddev_gcs” DOMAIN=”double” XMLATTR=”GCSD” GROUPING=”Sum” />
 </DOMAIN>

<DOMAINS>

FIGURE 4. A sample entity definition. This definition represents statistical information about allocations
by class. It is obtained from an XML file using the specified access rules and XML information speci-
fied for each field. The class field contains a reference to a TfileClass object.

VISUAL [1]. Our query language differs from these both
in its features and its focus. Most of these languages are
aimed at specifying exact queries. Our language is oriented
toward specifying a broad collection of data for visualiza-
tion with the assumption that any specific data element will
be isolated as part of the visualization process.

The systems that are closest to our work include Query
by Diagram (QBD) [12]. QBD uses an entity-relationship
base to construct relational queries, with both entities and
relationships containing information. It starts with the
overall ER database schema and lets the user select paths
within that schema. It provides bridges to allow connec-
tions based on arbitrary conditions. It can translate loops
into generalized transitive closure. Our system, on the
other hand, does not assume an initial entity-relationship
schema or even use a true entity-relationship database
model. Instead, it lets the user connect entities that repre-
sent data sets dynamically. Our relationships are essentially
links rather than the traditional ER-type relationships.
Moreover, QBD has no equivalent to our use of combina-
tions of both entities and relationships.

We also used experiences from our previous work
where we used a much simpler query visual language
based on a universal relation assumption that became too
bulky and complex for specifying relevant queries [6].

Rather than pursuing this previous model, we used the
lessons we learned in making the MURAL query language
both more powerful and simpler.

The handling of multiple data sources builds on the
broad body of work in federated databases. Our work is
different in that it is designed to handle a wide range of
data sources beyond databases as well as database-related
sources. At the same time, we have not done a lot of the
optimization work that previous systems do to make feder-
ated queries run fast. The front end described here assumes
that there is an efficient back end to obtain and visualize
the data. We have a start at that back end, but not one that
handles arbitrary queries very efficiently.

Finally the work on finding appropriate visualizations is
based loosely on the various efforts at finding appropriate
data display formats for different types and combinations
of data.

6. Experience and Future Work

The MURAL system goes a long way toward meeting
the requirements for software visualization we previously
defined. It provides a common model of multiple data
sources that hides the nature and structure of the source
and its data from the user and makes it easy to accommo-
date new or additional sources. It provides a full query lan-

<VIZDATA>

<DOMAINS>
<DOMAIN NAME="Color" COLOR="TRUE">
 <USE DOMAIN="int" />
 <USE DOMAIN="long" />
 <USE DOMAIN="float" />
 <USE DOMAIN="double" />
 <USE DOMAIN="string" />
 <USE DOMAIN="enum" />
 <USE DOMAIN="flag" />
 </DOMAIN>
</DOMAINS>

<VISUALIZATIONS>
<VISUALIZATION NAME="SpiralFlavor" DESCRIPTION="Spiral" >
 <REQUIRES>
 <REQUIRE>
 <ENTITY NAME="Object">
 <FIELD NAME="FromTimeIndex" DESCRIPTION="From Time" DOMAIN="Index" MAP="Range
 <FIELD NAME="ToTimeIndex" DESCRIPTION="To Time" DOMAIN="Index" MAP="RangeMap"
 <FIELD NAME="ZFromIndex" MAP=’LevelMap’ DESCRIPTION="From Height" DOMAIN="Ind
 <FIELD NAME="ZToIndex" MAP=’LevelMap’ DESCRIPTION="To Height" DOMAIN="Index"
 <FIELD NAME="WidthIndex" MAP=’WidthMap’ DESCRIPTION= "Width" DOMAIN="Index" O
 <FIELD NAME="ColorSpec" DESCRIPTION="Color" DOMAIN="Color" OPTIONAL="1"/>
 <FIELD NAME="TextureSpec" DESCRIPTION="Texture" DOMAIN="Texture" OPTIONAL="1"
 </ENTITY>
 </REQUIRE>
 </REQUIRES>

</VISUALIZATION>
</VISUALIZATIONS>
</VIZDATA>

FIGURE 5. Sample visualization definition. The first part shows the definition of visualization domains as
sets of possible data domains. The second part provides a description of our spiral visualizations
first by specifying the data model to be visualized and second by defining the parameters of the visu-
alization.

guage oriented toward specifying the data and relationships
that should be visualized. This language makes use of the
notion of combination to let the user quickly build new
data objects and relationships that should be the basis for
the desired visualization. The system uses submodels to
make specifying common visualizations simple. Moreover,
the language is designed to be intuitive and easy to use.
Finally, the whole framework is designed so that the
system can select the appropriate visualization and thus
integrate easily into the overall visualization framework.

We have been using a fully-functional MURAL as a
front end for visualization only for a limited time and for a
limited set of users (the back end is not totally complete)
and thus our experience to data is limited. We have demon-
strated, however, that it is possible to define a wide range
of different visualizations quite easily using the front end.
Moreover, these visualization typically interrelate data
from several different sources, demonstrating the utility of
a general purpose query language. The visualization range
from views of the stack during execution to views of allo-
cations by class and method to views of the statics structure
of the file and class dependencies of a system.

The problems we have had with the query language are
two fold. First, restrictions and user-defined operations are
still a little difficult to use and are not adequately reflected
in the visual representation. Second, we have found a need
to be able to specify aggregate queries. Right now aggrega-
tion is available in the back end as a feature of the visual-
ization engine. It seems logical and some users have asked
that it also be available as part of the query language.

We have not had any problems with new data sources
and have been able to match all our available data to the
entity-relationship form that MURAL provides. Adding
new data sources to MURAL itself is relatively trivial.
Adding new access methods to the back end to support
these sources typically takes one to two days of program-
ming.

The major problem to date with MURAL itself has been
the heuristics used in selecting the appropriate visualiza-
tion. Our experience here is that the best visualization is
always one of the ones chosen as appropriate, but is gener-
ally not the one that is chosen as most appropriate. We are
currently looking into determining a better set of heuristics
and a better set of values for selecting the best visualiza-
tion.

Overall, our experiences with MURAL have been quite
positive. As we complete the rest of the visualization
system and make it easy to obtain and then view data about
program behavior and structure, we hope to make the
whole system available to a larger and broader range of

users. This will provide the real test of whether the query
language we have developed and described here is the
appropriate one.

7. Acknowledgements

This work was done with support from the National
Science Foundation through grants ACI1025046,
CCR1039110, and CCR9702188 and with the generous
support of Sun Microsystems. Parts of the code were
written or modified by Joshua Levin; significant advice and
feedback was provided by Manos Renieris.

8. References

1. N. Balkir, G. Ozsoyoglu, and Z. Ozsoyoglu, “A graphical
query language: VISUAL,” Case Western Reserve University
(1997).

2. I. F. Cruz, A. O. Mendelzon, and P. T. Wood,Proc. 2nd Intl.
Conf. on Expert Database Systems. 1989.

3. I. F. Cruz, “DOODLE: a visual language for object-oriented
databases,”ACM SIGMOD Intl. Conf. on Management of Data,
pp. 71-80 (1992).

4. R. Elmasri and J. Larson, “A graphical query faciliy for ER
databases,”Proc. 4th Intl. Conf. on Entity-Relationship Approach,
pp. 236-245 (October, 1985).

5. Richard C. Holt and Andy Schurr, “GXL: toward a standard
exchange format,”Workshop Conference on Reverse Engineering
2000, (November, 2000).

6. Steven P. Reiss, “Software visualization in the Desert
environment,”Proc. PASTE ’98, pp. 59-66 (June 1998).

7. Steven P. Reiss and Manos Renieris, “Generating Java trace
data,”Proc Java Grande, (June 2000).

8. Steven P. Reiss, “An overview of BLOOM,”PASTE’01, (June
2001).

9. Steven P. Reiss and Manos Renieris, “Encoding program
executions,”Proc ICSE 2001, (May 2001).

10. Steven P. Reiss, “Bee/Hive: a software visualization
backend,”IEEE Workshop on Software Visualization, (May
2001).

11. Nicholas Roussopoulos and Daniel Leifker, “An introduction
to PSQL: a pictorial structured query language,”Proc. IEEE
Workshop on Visual Languages, pp. 77-87 (1984).

12. Guiseppe Santucci and Pier Angel Sottile, “Query by
Diagram: a visual environment for querying databases,”Software
Practice and Experience Vol. 23(3) pp. 317-340 (1993).

13. Bosco S. Tjan, Leonard Breslow, Sait Dogru, Vijay Rajan,
Keith Reick, James R. Slagle, and Marius O. Poliac, “A data-flow
graphical user interface for querying a scientific database,”IEEE
Symp. on Visual Languages, pp. 49-54 (August, 1993).

14. Z. Q. Zhang and A. O. Mendelzon, P. Ng, and R. Yeh, “A
graphical query langauge for entity-relationship databases,” in
Entity-Relationship Approach to Software Engineering, ed. S.
Jajodia,North-Holland (1983).

15. M. M. Zloof, “Query by Example: a data base language,”
IBM Systems J. Vol. 16(4) pp. 324-343 (1977).

