
From the Concrete to the Abstract: Visual Representations of Program Execution
Steven P. Reiss and Guy Eddon

Department of Computer Science
Brown University

Providence, RI 02912-1910
401-863-7641, FAX: 401-863-7657

{spr,geddon}@cs.brown.edu

Abstract

Programmers have always been curious about what
their programs are doing, especially when the behavior is
not what they are expecting. Since program execution is
intricate and involved, visualization has long been used to
provided the programmer with appropriate insights into
program execution. This paper looks at the evolution of
visual representations of program execution, showing how
they have moved from concrete representations of rela-
tively small programs to abstract representations of larger
systems. Based on this, we describe the challenges implicit
in future execution visualizations and methodologies that
can meet these challenges.

1. Introduction

A visual representation of program execution is a
graphical display that provides information about what a
program is doingas the program does it. Visualization is
used to make the abstract notion of a computer executing a
program concrete in the mind of the programmer. The con-
currency of the visualization with the execution lets the
programmer correlate real time events, e.g., inputs, button
presses, error messages, or unexpected delays with the
visualization, making the visualization more useful and
meaningful.

Visual representations of program execution have
several uses. First, they have traditionally been used for
program understanding as can be seen from their use in
most algorithm animation systems [7,18]. Second, in
various forms they have been integrated into debuggers and
used for debugging. Finally, they have often been used as a
means of doing performance analysis, visually highlighting
program bottlenecks.

What makes a good visual representation depends on
the particular application one has in mind. A good repre-
sentation has to provide the programmer with the data rele-
vant to the task at hand, be it understanding, debugging, or
performance analysis, within the limits imposed by the
display and the time constraints imposed by concurrency.
Since the particular data are often not known in advance,
the visualization typically needs to present as much poten-
tially relevant information as possible, and present it in a
way so that important or unusual properties stand out visu-
ally either directly or through appropriate visual patterns.

This paper is an attempt to describe what is needed to
do useful visual representations of the execution of today’s
software, with an emphasis on understanding. We do this
by looking at the different representations we and others
have used in the past to learn when and how they are effec-
tive and what lessons we can draw from them. We show
that the representations have been slowly migrating from
the concrete to the abstract. Based on this and the needs of
modern systems, we propose the use of programmer-
defined abstractions as the basis for a new execution visu-
alization framework.

2. Concrete Representations

The earliest computer-based visualizations showed the
actual code as it was executed. These visualizations typi-
cally highlighted statements or lines of code as the
program was executing that line. These visualization were
sometimes combined with other feedback information, for
example execution totals or past history.

Many of the early programming environments fea-
tured some form of dynamic visualization of the source
program. For example, our PECAN environment from the
early 1980’s outlined the current source statement with a
box [8]. This can be seen in the window at the upper right
of the display shown in Figure 1. If the program was exe-
cuting continually, the box kept moving around; if the
program was single stepped, the box changed and the
program halted with each instruction. Other dynamically
updated execution views provided by PECAN included a
flowchart view of the program (in the window on the lower
right of the figure) and a view of the stack and the values of
variables on it seen at the lower left of the figure.

PECAN was followed by algorithm animation systems
such as Balsa [2,3], Tango [19], and others that included a
view of the source code to highlight what the program was
doing. These systems all worked because the programs
under consideration were relatively small and execution
time was not a primary concern.

After PECAN we tried two different approaches to
handling more realistic programs. First, the GARDEN
system attempted to do it using abstraction [9,11].
GARDEN was a programming system that let the user
define, integrate, and use new visual languages. Each lan-
guage had a graphical syntax and an execution semantics
defined in terms of other languages or GARDEN primi-
tives. Programs were represented by objects that could be

executed directly. GARDEN provided the hooks to auto-
matically highlight execution within the visual displays of
a program. Programs were typically constructed using dif-
ferent languages at different levels of abstraction. Since
only one level of abstraction was typically displayed in a
single window and the user could control the displays, the
abstraction level of the visualization was effectively under
the control of the user. Figure 2 shows two examples of
GARDEN program visualizations, the first a flow chart
view and the second a finite state automaton.

Our second approach was in the FIELD system. Here
we attempted to provide visualization of full-sized C (and
later Pascal, Object Pascal, and C++) systems [12,13].
While most of its visualizations were somewhat abstract
(and are covered in the next section), it did source level
views that updated whenever the debugger stopped execu-
tion. Moreover, it support automatic single stepping so that
the user could view the program execution in the editor.
This is shown in Figure 3. FIELD offered two types of
source highlighting: either the text itself could be high-

lighted or an appropriate annotation (in this case the green
arrow), would move around on the display. The editor
would automatically follow execution by changing its
focus or file.

In addition to visualizing the source, FIELD provided
visualizations of user data structures that were updated
dynamically as the program executed as seen in Figure 4.

FIGURE 1. The PECAN environment run time visu-
alization.

FIGURE 3. FIELD visualization showing source
highlighting.

FIGURE 2. Visualization of GARDEN visual pro-
grams in action.

FIGURE 4. FIELD data structure display.

The user was given control over when to update the struc-
ture to keep performance reasonable. This is similar to the
displays provided by other tools [1,6] and later commercial
environments from SGI and Sun. FIELD also let the user
customize the data structure displays [10].

These very concrete visualizations of program execu-
tion are somewhat helpful, but found limited acceptance
and practicality. Lines of code are executed much too
rapidly to provide practical views of systems running at or
near their normal speed. A program today can easily
execute a million lines a second -- far more than can be
viewed or even displayed in a meaningful way. Execution
speed, when limited to that required to update the display
for each line is just too slow for anything other than dem-
onstrations or attempting to understand small programs or
algorithms. What was needed was a way of viewing pro-
grams that run at closer to their normal speed.

The data structure views had other problems. First,
obtaining the information needed to visualize an arbitrary
data structure was costly and slowed the program down so
much that the various tools updated only when the program
was stopped at a breakpoint. Second, real world data struc-
tures are too complex to display in a meaningful way
without significant user input.

3. Semi-Abstract Representations

Since source lines were too fine a representation to
show dynamic execution, visualizations soon moved to
more abstract forms. The idea here is to take a higher level
view of the program and then to show the execution
dynamically in terms of that view.

One obvious high-level view is that of call graphs. The
FIELD environment, for example, was able to extract and
display the call graph of the system in question. Execution
was then shown in the graph by coloring the node currently
executing and, optionally, by coloring active nodes (those
on the stack) a different color. An example with the current
node in red and the stack in green can be seen in Figure 5.

To handle large programs, FIELD allowed abstraction
within the call graph. A node on the display could repre-
sent a single function, a file, a directory, a directory hierar-
chy, or, for object-oriented systems, a set of methods with
the same name in multiple classes. A related view provided
by FIELD showed the currently executing method via
highlighting in the class hierarchy browser, a predecessor
of today’s UML class diagrams.

FIELD also provided visualizations that concentrated
on performance and on particular behaviors. The perfor-
mance view, shown in Figure 6, showed the resources that
the program was using as it ran. This is closely related but
more detailed than the type of views provided by operating
system based visualizations such as IBM’s PV [5] the
visualizations that accompany MPI, or the visualizations
incorporated in Sun’s programming environment. Informa-
tion about files and file usage during execution was shown
in the file viewer seen in Figure 7. Information about
memory was shown in the heap viewer seen in Figure 8.
Both the file and memory views updated dynamically as
the program ran.

These visualizations were more successful and useful
than the earlier direct representations. The call graph and

FIGURE 5. FIELD call graph visualization; high-
lighting shows what is currently executing.

FIGURE 6. Dynamic performance visualization in
FIELD.

FIGURE 7. IO viewer showing file activity during
execution.

class hierarchy views were typically used by students while
working on their class projects. They were not used exten-
sively for larger systems because they did slow the execu-
tion significantly, albeit a lot less than highlighting source
lines. The specific visualizations for I/O and memory
found wider usage, since they could be used with minimal
overhead on arbitrary systems. These visualizations were
limited however by the limited domains and their lack of
history. They were each aimed at specific problems such as
identifying files left open or finding memory leaks, and did
not extend to more general cases. While some of the moti-
vations for a programmer to use dynamic visualization
dealt with these specific problems, many others did so only
partially or not at all.

4. Abstract Representations

The heap and file visualizations were successful for
real systems because they allowed the program to run at or
near full speed while still providing useful information.
The main problem with them was that the information was
quite limited in that it only touched on one particular
domain and thus only helped with understanding or debug-
ging of problems in that domain.

The reason that these views succeed was because they
provided what is essentially an abstraction of the program
execution. For example, the heap view built its model of
memory by only looking at calls to the memory manage-
ment routines; the IO visualizer did the same by looking
only at file open, close, read and write routines. While
these abstractions were close to the actual workings of the
system, it is possible to use other abstractions to get more
complete or more detailed visualizations while still main-
taining program performance.

We have been working on such abstractions. Our first
system along these lines, JIVE, combines several abstrac-
tions into one visualization [15]. One of these abstractions
provides a view of execution in terms of classes or pack-
ages while the other provides an abstraction of thread

behavior. Figure 9 show these two on the left and right
respectively. JIVE runs with a slowdown factor of two.

Both of these views model the program behavior over
time. The class model breaks up execution into intervals of
about 10 milliseconds each. For each interval it keeps track
for each class of the number of calls to methods of that
class, the number of allocations done by methods of the
class, the number of allocations of the class, and the
number of synchronizations on objects of the class. The
display then shows, for the current interval, the number of
calls as the height of the bar, the number of allocations
done as the width of the bar, the number of allocations of
the class using the hue of the bar, and the number of syn-
chronization as the saturation of the bar. The user can also
view totals through the current interval rather than just the
values of the interval and can use the scroll bar at the
bottom to go back and forth in time.

The thread model on the right views each thread as
being in one of eight abstract states: starting, running,
running synchronized, blocking, doing I/O, sleeping, wait-
ing, or dead. It tracks the state of each thread over time,
maintaining the set of state changes and when they occur.
This information can be displayed as on the right of
Figure 9 as bars showing the percent of time each thread
spends in each state during the current interval (or the
totals up through the interval), or it can be displayed as a
time graph as seen in Figure 10.

A third model of program dynamic program behavior
is seen in the color of the scroll bar in the JIVE visualiza-
tions. JIVE uses the information about class and thread
usage to try to match the programmer’s intuition as to the
phases of their program. It uses statistical methods to deter-
mine whether the current interval represents a continuation
of the existing phase, a reinstatement of a previous phase,
or a new phase. It then uses color to display the informa-
tion about phase changes in the bottom of the window [16].

A second visualizer, JOVE, maintains a more complex
model of program behavior [17]. It again looks at the
program in terms of small intervals. For each interval it
keeps track of how many times each basic block is exe-

FIGURE 8. Heap visualizer showing memory utili-
zation during execution.

FIGURE 9. JIVE visualization. Class usage is
shown on the left; thread usage on the right.

cuted by each thread. The summary information is then
kept over the history of the run and is used to produce dis-
plays such as seen in Figure 11. Here each vertical region
represents a class. The pie chart at the top of the bar is used
to show how much time each thread spent in that particular
class during the interval. The height of the darker back-
ground color for the region indicates the number of alloca-
tions done. The lines within the region show information
about the various basic blocks. The color of these lines
indicate the thread or threads executing those blocks; the
width of the line indicates the number of times the block
was executed. JOVE slows the program down by at most a
factor of four.

The abstract views of JIVE and JOVE are useful for
providing the programmer with overview information
describing what the program is doing. We have used them
for debugging, understanding, and performance analysis.
For the latter, they provide useful information about where
execution time is spent in the program, either at a high
level in JIVE or at a detailed level in JOVE. The high level
view was used, for example, to determine that the 3D
graphics and gravity computations of a pinball program
only used about one third of the available execution time

each, and hence were fast enough. The detailed view pro-
vided insights into which collision computations were the
slowest.

The thread visualizations of JIVE were the most
appropriate for debugging and understanding. They readily
showed such events as a thread sleeping rather than waiting
(and thus blocking other threads) and a thread that was
blocking other threads while waiting for I/O. For a multi-
threaded web crawler, they showed how the threads were
divided between waiting for web pages and processing the
pages. They also showed the locks that occurred due to
synchronization in Sun’s HTML parser.

These views however suffer much of the same limits
as the I/O and memory visualizations of FIELD. They
address specific program aspects (albeit more general
ones), and are limited to addressing issues directly related
to those aspects. They provide general information about
the program execution rather than information that is spe-
cific to the particular application or the coding abstractions.

5. Programmer-Defined Representations

The challenge for dynamic program visualizations is
to provide information that is meaningful for understand-
ing specific but not yet defined questions while running the
application at or near full speed.

Our experiences show that the visualizations that have
been most widely used and appreciated for production pro-
grams are those that provide a visual model of some aspect
of the execution and dynamically update that model as the
program runs. These include the memory and I/O visualiz-
ers of FIELD and the thread visualizers of JIVE. These
systems worked because the model they provide is directly
relevant to both the program and to particular problems
that are of interest to the programmer. While it is difficult
to get a gestalt of the memory behavior of a program from
a typical debugger or print statements, the memory visual-
izer provides such a view at a glance. Through visual pat-
terns it quickly shows memory leaks, abnormally large or
unusual allocations, and memory fragmentation. The
thread visualizations do similar things related to problems
relevant to thread behavior and interaction.

If such views are going to be extended to make
dynamic visualization more useful in general, they will
have to be based on models that address the issues that pro-
grammers want to understand or debug about their particu-
lar systems. These models will need to reflect how
programmers view their systems, dynamically update these
models as the program runs, and then provide visualiza-
tions of these models that convey the necessary informa-
tion.

Such models can be program or language specific. For
example, consider a multithreaded web crawler. Each
thread repeatedly is assigned a page. It reads that page,
parses it, computes summary information, and then stores
data about the page based on the parse. Programmers might
want to see what each thread is doing in terms of this

FIGURE 10. JIVE visualization showing thread
states along a time line.

FIGURE 11. JOVE display showing thread usage
at the basic block level.

model. They want to differentiate parsing the page from
computing the summary information; they want to know
when it is waiting for the web versus waiting to write infor-
mation to disk. Essentially, they have a model of thread
behavior and want to see a visual display of that model.

As a simple example of language-based models, con-
sider iterators in Java. Suppose one wants to track all the
currently active iterators in a program, seeing which are
currently active, and ensuring each is used correctly, e.g.
thathasNext is called beforenext. A dynamic visualization
could provide a display that showed each active iterator as
a box colored by its current state (unused,hasNext called,
next called, next called withouthasNext), with positional
information relating the iterators to the source or to partic-
ular threads. From such a display the programmer would
see what is going on and potential errors would stick out.

These and other visualizations can be provided by
letting programmers define the appropriate models for their
programs and then providing suitable visualizations. To be
practical, the models must be easy to specify and under-
stand, quick to do, and reusable. The set of visualizations
provided must be flexible and easily adaptable to the differ-
ent models. The challenges here involve finding the right
framework for defining the models, defining an appropri-
ately broad set of visualizations, providing support to auto-
mate or simplify associating the model with the
visualization, ensuring that the models can be derived from
program execution with small overhead, and doing all of
this in a visual framework.

These challenges can be met. Automata over parame-
terized program events combined with suitable data struc-
tures can be used to model the above situations with
minimal overhead and with a visual language front end.
Multiple visualizations can be defined and associated with
models using appropriate heuristics as in [14]. Systems
such as Aspect/J show that program events can be detected
efficiently [4].

6. Conclusions

Visualizations of program execution have evolved
from concrete representations of the source code that were
slow and only practical for simple programs, to abstract
representations that, while they don’t show everything,
show detailed information about some aspect of the execu-
tion and that work for real systems. To extend the utility of
such dynamic visualizations, one needs to look at main-
taining and visualizing new abstractions as the program
runs. We propose a model whereby programmers can
easily define such abstractions that are relevant to their par-
ticular understanding or debugging tasks and then have
appropriate visualizations generated from these abstrac-
tions. This is the next phase of dynamic program visualiza-
tion.

Acknowledgements.This work was done with
support from the National Science Foundation through
grants CCR021897 and ACI9982266.

7. References

1. David B. Baskerville, “Graphic presentation of data structures
in the DBX debugger,” UC Berkeley UCB/CSD 86/260 (1985).

2. Marc H. Brown and Steven P. Reiss, “Debugging in the
BALSA-PECAN integrated environment,” ACM SIGPLAN-
SIGSOFT Symposium on Debugging (1983).

3. Marc H. Brown and Robert Sedgewick, “A system for
algorithm animation,”Computer Graphics Vol. 18(3) pp. 177-186
(July 1984).

4. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold, “An Overview of AspectJ,” inEuropean Conference
on Object-Oriented Programming, (2001).

5. Doug Kimelman, Bryan Rosenburg, and Tova Roth,
“Visualization of dynamics in real world software systems,” pp.
293-314 inSoftware Visualization: Programming as a Multimedia
Experience, ed. John Stasko, John Domingue, Marc H. Brown,
and Blaine A. Price,MIT Press (1998).

6. Brad A. Myers, “Displaying data structures for interactive
debugging,” Xerox csl-80-7 (June 1980).

7. B. A. Price, I. S. Small, and R. M. Baecker, “A taxonomy of
software visualization,”Journal of Visual Languages Vol. 4(3) pp.
211-266 (Dec. 1993).

8. Steven P. Reiss, “PECAN: program development systems that
support multiple views,”IEEE Trans. Soft. Eng. Vol. SE-11pp.
276-284 (March 1985).

9. Steven P. Reiss, Eric J. Golin, and Robert V. Rubin,
“Prototyping visual languages with the GARDEN system,”Proc.
IEEE Symp. on Visual Languages, (June 1986).

10. Steven P. Reiss and Joseph N. Pato, “Displaying program and
data structures,”Proc. 20th Hawaii Intl. Conf. System Sciences,
(January 1987).

11. Steven P. Reiss, “Working in the Garden environment for
conceptual programming,”IEEE Software Vol. 4(6) pp. 16-27
(November 1987).

12. Steven P. Reiss, “Interacting with the FIELD environment,”
Software Practice and Experience Vol. 20(S1) pp. 89-115 (June
1990).

13. Steven P. Reiss,FIELD: A Friendly Integrated Environment
for Learning and Development, Kluwer (1994).

14. Steven P. Reiss, “A visual query language for software
visualization,” IEEE 2002 Symposium on Human Centric
Computing Languages and Environments, pp. 80-82 (September
2002).

15. Steven P. Reiss, “JIVE: visualizing Java in action,”Proc.
ICSE 2003, pp. 820-821 (May 2003).

16. Steven P. Reiss, “Dynamic detection and visualization of
software phases,”Proc. Third International Workshop on
Dynamic Analysis, (May 2005).

17. Steven P. Reiss and Manos Renieris, “JOVE: Java as it
happens,”Proc. SoftVis ’05, (May 2005).

18. John Stasko, John Domingue, Marc H. Brown, and Blaine A.
Price, Software Visualization: Programming as a Multimedia
Experience, MIT Press (1998).

19. John T. Stasko, “TANGO: a framework and system for
algorithm animation,” IEEE Computer Vol. 23(9) pp. 27-39
(September 1990).

	From the Concrete to the Abstract: Visual Representations of Program Execution
	Steven P. Reiss and Guy Eddon
	Department of Computer Science
	Brown University
	Providence, RI 02912-1910
	401-863-7641, FAX: 401-863-7657
	{spr,geddon}@cs.brown.edu
	Abstract
	1. Introduction
	2. Concrete Representations
	FIGURE 1. The PECAN environment run time visu alization.
	FIGURE 2. Visualization of GARDEN visual pro grams in action.
	FIGURE 3. FIELD visualization showing source highlighting.
	FIGURE 4. FIELD data structure display.

	3. Semi-Abstract Representations
	FIGURE 5. FIELD call graph visualization; high lighting shows what is currently executing.
	FIGURE 6. Dynamic performance visualization in FIELD.
	FIGURE 7. IO viewer showing file activity during execution.
	FIGURE 8. Heap visualizer showing memory utili zation during execution.

	4. Abstract Representations
	FIGURE 9. JIVE visualization. Class usage is shown on the left; thread usage on the right.
	FIGURE 10. JIVE visualization showing thread states along a time line.
	FIGURE 11. JOVE display showing thread usage at the basic block level.

	5. Programmer-Defined Representations
	6. Conclusions
	Acknowledgements

	7. References

