
e of
ve
ata
adi-

ed
g
e-
ava
en
he
rd
f
ed

ti-

r-
us

ro-
le
nd
al-
].
ll
is

1,6].

e
let

it
ed
on
r-

ral
is

e
at
ce
at
e.
de

l-
ple
as

or
for
Generating Java Trace Data
Steven P. Reiss, Manos Renieris

Department of Computer Science
Brown University

Providence, RI 02912
401-863-7641

{spr,er}@cs.brown.edu

ABSTRACT
We describe a system for gathering and analyzing Java trace data.
The system provides relatively complete data collection from large
Java systems. It also provides a variety of different analyses of that
data for use with a software visualization system.

1 INTRODUCTION

As Java programs get larger and more complex, they become more
difficult to understand. We have embarked on a project that
attempts to use software visualization to provide this understand-
ing. This paper describes the first part of that effort, a package that
uses the JVMPI interface to collect and then analyze Java traces.

Java was originally used for small scale applications such as
applets or small clients for a more complex, non-Java server.
Today, the language is being used for constructing large-scale
systems including scientific and data-intensive applications. As the
applications have increased in scale, understanding their structure
and behavior has become both more important and more difficult.
The authors of a large Java system need to understand what is
going on inside the system as it is running. They need to see how
the various threads interact, whether the system is over or under
synchronized, where the performance bottlenecks are, how much
memory is actually required, where objects are being allocated,
where the memory leaks are, which classes are active when, and
how the various classes in a complex system interact.

Our approach to addressing such specific understanding problems
is to provide programmers with a system that makes it easy to
define software visualizations that can provide the answers quickly
and efficiently [8-11]. There are several aspects to such a system.
The first is to provide a wide variety of relevant data that can be
used to drive the visualization. Here we let the programmer
combine both structural data describing the system with several
different analyses of the trace data that is obtained by running the
system. The second aspect of our visualization approach is to
provide a framework to make it easy for programmers to specify
what data they need to visualize to understand the problem at hand.
Here we use a visual query language based on the universal rela-
tion assumption that lets programmers select the data of interest
without having to know the structure of the underlying databases
or how the different analyses are done. The final aspect of the visu-

alization approach uses a graphics framework to provide a rang
high-quality 3D visualizations of the selected data. Here we ha
emphasized visualizations that can display large quantities of d
in a small space using various abstractions rather than more tr
tional box-and-line drawings.

This previous work worked with C++ programs and demonstrat
the utility of the approach. Our current efforts involve extendin
this work to support Java. This is more than simply porting the pr
vious code to handle Java rather than C++. Understanding J
involves a somewhat different set of issues than we had be
addressing. In particular, our previous efforts had not tackled t
problem of multithreaded computations (the lack of a standa
threading model for C++ made this difficult), and they paid a lot o
attention to memory allocations; our work for Java has emphasiz
threading and takes a very different view of how memory is u
lized.

Looking at trace data for visualization is not something novel. Pe
formance visualizations have been around for 20 years in vario
forms. (Even the old UNIXprof command had a graphics mode to
produce histograms.) The FIELD environment, among others, p
vided dynamic views of the heap, file I/O and performance whi
the program was running [7]. Various efforts at Georgia Tech a
elsewhere have developed a number of different dynamic visu
izations including the notion of call dags that we are using [2,12
More recently, the IBM Jinsight efforts use relatively complete ca
trace data to provide the user with insights into how the program
running and to address such questions as Java memory leaks [

Our approach differs from previous efforts in its ability to combin
trace data with structural data about the program, in its ability to
the user define what information should be visualized and how
should be displayed rather than only providing a small set of fix
displays, in its emphasis on high-density abstract visualizations,
its ability to handle C++ as well as Java (and thus to display info
mation about multi-lingual systems), and on providing a gene
framework that can be used for a wide variety of different analys
of the same trace data.

In this paper we look at our on-going efforts at generating th
appropriate data for Java visualization. The next section looks
structural data. Section 3 looks at the problem of generating tra
data. This is followed by a description of the various analyses th
we are doing with the trace data in order to get data to visualiz
We next consider some of the resultant visualizations and conclu
by describing our continuing and future efforts.

2 STRUCTURAL DATA

Most of the early work on software visualization dealt with visua
izing the structure and organization of large systems, for exam
showing the call graph or the class hierarchy. Our experience w
that such diagrams were helpful for navigation, but, except f
some examples from reverse engineering, were not too helpful

ified

e
r-
nt
is
ed
us

e
de

hat
t are
is
ra-
rate
set.
the
ini-

if-
al-
d
ll
ed
in
any
u-

ia.
data
hat
s,
-
g to
s to
software understanding. However, our experiences with trace visu-
alization showed that one often wanted to combine such structural
data with the trace data in order to create more meaningful visual-
izations. As examples, one can look at trace data more compactly
by collapsing methods into classes and classes through their class
hierarchy, and one can get a better understanding of the execution
of a program by seeing how different class hierarchies actually
interact at run time.

The first step in providing a comprehensive visualization strategy
for Java applications was to ensure that the necessary structural
information was available. Our previous efforts provided such
information in the form of a program database that was generated
using information provided by the compiler (.sb files from Sun’s
C++ compiler for example) [4,7]. This program database was orga-
nized as an in-memory relational database containing relations for
references, definitions, scopes, files, calls, the class hierarchy, and
class elements.

In moving to Java, we wanted to both simplify and extend this
approach. We moved to a more object-oriented database from a
purely relational one. This let us store the definition corresponding
to each reference as a link rather than attempting to compute it
each time. We eliminated the separate relation for class elements
since in Java all definitions are essentially class elements and the
two relations can be easily combined. (In C++ the information for
class members, i.e. protection, visibility, and properties such as
virtual, static, and friend do not apply to general definitions.)
Finally, we replaced the class hierarchy relation with one that
describes types in the language in general, providing information
about the underlying type algebra. The result is shown in Figure 1.

Our previous work had demonstrated that it was important to
gather this structural information without bothering the program-
mer. That is, the information should be gathered automatically and
with a minimum of overhead. Our current approach has the pro-
grammer define the set of directories and files that constitute the
system in question using either an interactive visual tool or a
simple text editor. Once this is done, our program database will

automatically gather and maintain the database as the spec
files or any file in the specified directories changes.

To gather this information accurately and quickly, we took th
IBM Jikes compiler and modified it to dump the necessary info
mation from the abstract syntax trees that it produces in the fro
end. The information is produced on a file-by-file basis and
stored as XML files. These file are then read by our specializ
database system that is capable of quickly discarding all previo
information from a file and inserting all the new information. Th
database actually runs the Jikes compiler in its incremental mo
so that the compiler shares some of the load of determining w
files need to be rescanned and so that updates beyond the firs
extremely quick. Our experience with Jikes has been that it
extremely fast (especially since we are not doing any code gene
tion). For example, it takes Jikes less than ten seconds to gene
the data for about 30,000 lines of Java comprising our Java tool
(It currently takes our database under three minutes to process
resultant data and build and store the resultant 12M database
tially; updates after that are almost immediate.)

3 TRACE DATA

The best visualizations are created by correlating a variety of d
ferent data from a single trace. For example, one interesting visu
ization we have worked with in our previous system involve
correlating allocations of objects along with the dynamic ca
graph. This allowed us to get an overview of how segment
memory was for each portion of a system’s execution. Our goal
collecting Java trace data was to generate the data so that
number of different analyses could be done after the fact for vis
alization.

This goal required that our trace collection meet certain criter
First, it should be as complete as possible. One cannot analyze
that one does not have. Ideally, we wanted to know everything t
was possible, including a full call trace of all the active thread
locking information, memory utilization, and performance infor
mation. Second, one needs to have a consistent way of referrin
the program elements from the trace. For example, one need

File:
File name
Date last modified
Dependencies

Dependency:
Depends on file
Dependency type

Definition:
Name
Definition scope
Symbol type
Storage type
Flags
Parameters
Type
New scope
Start and end location

Reference:
Name
Scope
Definition
Flags
Start and end location

Scope:
Name
Parent scope
Include scopes
Scope type
Associated symbol
Associated type

Type:
Name
Type style
Base type
Definition
Flags
Parameters
Super type
Interfaces
Scope
Primitive type

Figure 1. Overview of the information in the structural database.

e 2.
xe-

n.
by
d
w
to

once
e,
nt
it,

the
is
to

be
al
ver,
ec-
tain
for
ves
nce

dif-
is
is

re)
me.
ch

ey
i-
as

ory
ory
red
p,

-

have consistent object, thread, class and method identifiers
throughout the trace. Third, the data needs to be collected with a
minimal impact on the performance of the underlying program.
This requires that the execution of the program not be slowed
down so much that any interactive portions of it are unusable and
that the tracing does not introduce side effects such as synchroniz-
ing multiple threads. Finally, we wanted to do this in a portable
way with a minimum number of changes to the JVM or the user’s
program.

3.1 JVMPI

Java provides an interface for generating performance information,
the JVMPI, that meets most of these criteria. It provides hooks into
the JVM that can be used without modifying the user program or
the JVM itself. It provides almost all the data that we needed for
visualization. It is relatively fast as well, with most of the hooks
being integrated directly into the JVM and with little extra over-
head required other than the call to the JVMPI code.

The JVMPI however, does not meet all the requirements. It is fast
because it reports addresses rather than true object identifiers for
objects, classes, threads, etc. Because of garbage collection, such
addresses will change over the course of a run. Thus it also gener-
ates appropriate events indicating such changes and requires that
the application track them. It also makes the calls to the JVMPI
from within the context of the current Java threads. Thus multiple
calls can be occurring simultaneously to the JVMPI application.
Since we needed to combine the multiple threads so as to provide a
single trace as output, our code had to merge all these calls. How-
ever, it had to do so without synchronizing the Java threads.

We addressed these problems by generating multiple data streams
from the JVMPI calls, one per thread, and then merging these data
streams and, at the same time, mapping the identifiers from those
that the JVMPI provided to our own consistent and unique ones.
The result of the trace is than stored in two parts, one that contains
information about the identifiers (for example, the class associated
with an object identifier or the methods and file associated with a
class), and one that contains a sequential description of what the
Java program is doing. The later contains events for each call and
return, each object allocation, as well as locking and synchroniza-
tion information. In it, all the threads are interspersed to illustrate
as closely as possible how the execution actually occurred.

3.2 TMon

The architecture for generating this data can be seen in Figur
Here the user’s Java program is interpreted (or compiled and e
cuted using the JIT compiler1) and the JVMPI is used to provide
the appropriate information to our front end trace package, TMo
TMon then creates an output stream for each thread. It does this
looking at what the current thread is when it gets control, an
checking if that thread is known. If it is a new thread, then a ne
output stream is created. This requires some synchronization
ensure that the streams get unique names, but only happens
and should have a minimal effect on the application. Otherwis
data from the current JVMPI entry is recorded into the curre
thread’s output stream. Finally, if the entry was for a thread ex
then the output stream is closed.

The trace data that is generated by TMon is designed to reflect
parameters of the JVMPI events. Thus, little or no processing
performed on the data. One simple exception involves the need
have performance information included in the trace. This can
obtained by using the JVMPI to get the run time of the individu
thread each time an entry occurs. The corresponding call, howe
can be quite expensive. (On the Sun’s, it takes several micros
onds to get the value of the nanosecond timer.) Instead, we ob
this information only every 4096 actual events and approximate
those events that come in between. A second modification invol
saving a sequence number with each trace record. The seque
number is global and is used to intersperse the traces from the
ferent threads. Here TMon maintains a global counter which
incremented for each record that is output. No synchronization
kept for the counter so that multiple threads might read (and sto
the same value if they happen to be executing at the same ti
This is not really a problem since the effective serialization of su
coexecuting threads is ambiguous in any case.

The output streams used by TMon can take one of two forms. Th
can first be files. Here TMon is given a directory (through an env
ronment variable at start up) and creates new raw trace files
needed. Alternatively, we have implemented a shared-mem
communication mechanism. Here TMon uses a shared mem
buffer to communicate with the back end to set up a new sha
memory buffer for each new thread. Once the buffer is set u
TMon simply adds information to that buffer as needed.

1. We did make minor modifications to the JVM to allow simulta
neous use of JIT and JVMPI.

Java TMon
JVMPI

TMerge

Objects

Trace

TFilter

Figure 2. Overview of the Java trace data generation architecture.

sed
ss.

the
m
ta-
ject
ad
he
nd
icu-
n

the
the
be

red
ting
is
e
ecu-

e
ng
ple
nds
8
the
17
o
-
he
of

es
al-
In order to let the application run as fast as possible, the back end
reads the shared memory buffer as often as possible. Rather than
processing this information immediately (which would restrict the
front end to run at the speed of such processing), it stores the
message for latter use. This ensures that TMon will almost always
have room in the buffer for its information and will have to wait a
minimal amount of time. We take advantage of this by having
TMon do a busy (unsynchronized) wait if the buffer is full most of
the time. Only if the back end has stored over some large number
(currently a million) messages, will it tell TMon to actually stop
processing that thread until at least half the stored messages have
been processed. This tends to work well, especially with interac-
tive applications since the interactive threads are rarely stopped
and can work at a reasonable speed.

3.3 TMerge

The output from TMon, either from the set of files generated or
from the set of shared memory buffers, is processed by the next
phase system, TMerge. The purposes of TMerge are to merge the
various output streams into a single stream containing the results
of each thread, to accumulate from the trace information about the
various objects, classes, methods, and threads into a random-
access database, and to provide a consistent set of unique identifi-
ers for all such items.

TMerge works by setting up a priority queue of all the available
data streams ordering these by the sequence numbers inserted in
the trace. This ensures that the trace records are read in approxi-
mately the correct order. It maintains a hash table that maps the
“current” JVMPI ids into the unique trace identifiers that are used
as part of the trace output. Each trace entry is then processed for
three things.

First, TMerge processes each entry to determine if it adds to or
updates the mapping from JVMPI ids to trace identifiers. If the
identifier is new, a new logical identifier of the appropriate type is
created and a new mapping is set up. (The system knows from the
context what type of identifier is expected in each situation.)
Second, a trace record indicating that an object has moved is used
to map the corresponding objects from their old JVMPI id to the
new one. Note that we say objects here because a class is repre-

sented both as the corresponding class object (which can be u
as an object for calls, etc.) and as the identifier describing the cla

Second, each entry is processed to add or update information in
database of information about identifiers. Here information fro
the trace records is stored with the proper type of item in the da
base. For example, an object allocation entry causes a new ob
to be defined with the appropriate class pointer, while a class lo
entry will add not only the class object and the class type to t
database, but will also add objects describing each field a
method of the class using their names and signatures. The part
lar information stored with the different types of objects is show
in Figure 3.

The final processing of each trace entry is used to generate
resultant trace file. Each trace entry contains the event type and
thread id. The remaining information is type dependent and can
seen in Figure 4. Note that the thread execution time is not sto
with each entry, but is stored as occasional trace records indica
additional run time. This follows from the scheme whereby th
information is only recorded periodically. It can be used by th
program processing the trace data to generate approximated ex
tion times for each call or other events.

3.4 Results

The current system is able to trace execution rather efficiently. W
took a commercial program written as a server for processi
search queries consisting of about 30,000 lines of Java. A sam
run with about a thousand client requests takes about 25 seco
with JIT and 2:39 minutes without JIT. This run generates 1.6
gigabytes of trace data and 167 megabytes of object data as
result from TMerge. Generating this trace data takes about
minutes (a factor of 6-40). (We are still working on attempting t
improve this further through additional optimizations and simplifi
cations.) Moreover, compaction such as provided by gzip or t
UNIX compress command, can shrink the raw data by a factor
five without any loss of information.

4 ANALYZING THE TRACE DATA

While we have only begun to work on a full range of trace analys
for visualization, we already have developed a number of visu

Thread:
Thread id
Total execution time of thread
Thread name
Thread group name
Thread parent name

Object:
Object id
Class id
Array type
Object size

Class:
Class id
Class name
Source file name
Number of interfaces
Number of methods
Number of static fields
Number of instance fields

Method:
Method id
Class id
Method name
Method signature
Start and end line

Field:
Field id
Class id
Field name.
Field signature

Monitor:
Monitor id.
Monitor name.

Figure 3. Information stored for trace objects.

llo-
in

lso
rou-
ion

ly
a

he
for
as

ar,
gi-
ic
alls.

e-
so
n-
o-
in

ion
g
e
ars
nd
ion
r.
ee

are
e,

at

ace
de
is

he
ization using a variety of different analyses of the trace data, both
for C++ and now for Java. The different analyses can be divided
into three basic groups. The first include information obtained by
looking at the sequence of calls. These are used to provide detailed
dynamic views of the execution of generally small programs
(although they can be used for small portions of large programs as
well). The second provide views of the use of memory throughout
the application. The final set provide useful summary views
gleamed from the trace data.

In order to facilitate visualization, each of these analyses is output
as a sequence of tuples for a corresponding relation. The visualiza-
tion package treats these trace files as a single-relation database
when collecting and setting up the visualization. The general
package that does the analysis, TFilter for Java or Vark for C++,
can cache its results for future visualization as well as returning the
results directly.

4.1 Call Trace Analysis

The basic call trace visualization is done from a sequence of call
(and optionally return) records in a tuple. These are ordered by
sequence number. Each record shows where the call was from,
what the call was to, the time of the call, the active thread, the level
of the call, and the first argument (the object for a method call). A
return here is indicated as an empty to routine. An alternative form
of trace outputs the entries in completion order. The advantage of
this is that each entry is extended with the time spent in the routine
locally and the time spent in the routine and everything it called.

A second form of call trace tries to shrink the size of the resultant
data by only providing information about the top of the stack.
Entries here indicate a call to a specific function or a return. This is
used both for some simple visualizations, but we also plan to use it
as input to data mining techniques.

4.2 Memory Trace Analysis

In both C++ and Java, the behavior of memory is important to
understanding the performance and actions of the underlying code.
We provide a simple analysis that offers the information about
memory allocations during the run. The output here consists of one

trace record per object. This record contains the routine that a
cated the block, the type of the block, the size of the block, when
the execution the block was allocated and freed. For C++ it a
indicates the start and end address of the block. The times and
tines given here can be used to correlate the memory informat
with the call trace information in a visualization.

4.3 Path Analysis

Driven by the fact that the amount of data we collect is extreme
large, we looked into ways of compressing them. Gzip gives us
compression factor of four to five, which is not enough. We use t
Sequitur algorithm [5], which has also been used successfully
compressing traces at the basic block level [3]. Sequitur takes
input a string of symbols and outputs a context free gramm
whose start symbol, when fully expanded, gives us back the ori
nal string. This is combined with the conversion of the dynam
call tree into a call dag [2] and finding repeated sequences of c

Our algorithm maps each dynamic call into an identifier that repr
sents that call and all the calls it makes. This is done bottom up,
that when we are analyzing a particular call, we already have ide
tifiers for each of the calls that it makes. We use the Sequitur alg
rithm to build a compact representation of the sequence of calls
the form of a grammar. We convert this grammar representat
into a string. Combining the string with the name of the callin
function yields the identifier for the particular call. In doing so, w
find common nonterminals between this grammar and gramm
for other calls and note any recurring sequences of calls a
encode them using run-length encoding. Here we have the opt
of saying “N or more” calls rather than using the exact numbe
The identifier that is constructed in this way is then matched to s
if the call sequence had previously occurred and, if so, the two
combined, thus forming the call dag. We keep statistics (run tim
real time, and allocation information) with each identifier so th
we can provide the mean and standard deviation for each path.

This whole process gives us a compression factor on the tr
described in Section 3.4 of about 800, two orders of magnitu
better than gzip (but the Lempel-Ziv compression that gzip uses
lossless). More importantly, repetitions and patterns in t
dynamic call tree are discovered and stored.

Class Load and Unload
Class id

GC Start and Stop
Number of used objects
Total used object space
Total object space

JVM Initialize and ShutDown

Method Entry:
Method id
Object id

Method Exit:
Method id

Monitor Enter and Exit:
Object id

Monitor Wait:
Object id
Timeout

Object Allocate and Free
Object id

Thread Start and End

Run time:
Thread execution time.

Figure 4. Summary of trace file entries.

is
e,
ack
the
rch
ler,
er

our
s

rt
is
g
g
hat
he
and

.
re
c-
ne
the

of
the
ies
eri-
us
out

ta-
al
l-

om
her
the
ed,
s to

es
gs

o
ary
lly

f
he
ms
int

y

4.4 Summary Views

There are several ways of summarizing the information contained
in the call trace. One of the simplest that we currently do is to
gather performance information from the call trace and yield a cor-
responding output relation. This relation contains one tuple for
each method or routine called during the execution. Each such
tuple identifies the routine and then gives the number of times it
was called, the time spent executing code in the routine, and the
time spent executing code in the routine and any other routines it
called.

Because the call traces can be extremely large, we are interested in
developing ways of shrinking the trace data accordingly. One
approach we have taken is to replace the call tree with a call dag.
Here each unique call subtree only occurs in the output once. Pro-
cessing such data is complex because much of the trace summary
must be kept in memory while processing the trace data. However,
our experience has shown that such views will typically cut the
trace data to about 40% of its original size (much more with repet-
itive applications) with only a minor loss in the accuracy of the
reported trace information.

To provide high level views of long-running programs, however, a
different approach has to be taken. We have started such an
approach using the notion of interval summaries. Here the overall
execution is broken down into a small number (we are currently
using 1024) of intervals and the trace file is used to generate
summary information for each interval. The corresponding visual-
izations can then provide a high level view showing at a gross level
what was occurring over the whole program. Where additional
detail is needed, such a view can be linked to a detailed call trace
(or other) view restricted to the interval(s) in question.

We currently provide two distinct interval summaries of Java
traces. The first is a call interval trace. This not only divides the run
time into 1024 discrete blocks, but also summarizes all the
methods of a given class within the class. For each class and inter-
val pair it outputs information for each thread. Here it provides the
amount of time that the thread spent executing a method of that
class during the interval, the average depth of the call stack for the
thread during the interval for methods of this class, and the average
time spent waiting by the thread for monitors related to objects of
this class. The second interval summary concentrates on memory
utilization. For each interval and class pair it outputs the average
number of objects of that type that are allocated.

5 VISUALIZING THE RESULTS

We used the trace generation and analysis facilities described here
along with our existing software visualization tools as a starting
point for the full scale visualization of the dynamics of Java pro-
grams. Three of these visualizations are shown in Figure 5.

The visualization in the upper left is an interval visualization of a
simple Swing-based java program. Here time (in terms of inter-
vals) runs along the X axis while class (sorted alphabetically by
name) runs along the Y access. The visualization fills each inter-
val-class block using a box colored by the threads active for that
time and class. The saturation of the color indicates the depth of
the call stack at that point. Blocking threads are shown using black.
The visualization that results clearly shows the initialization and
execution phases of the program as well as where some of the
other processing is being done.

The second and third pictures in Figure 5 show views of the call
stack over time. The one in the upper right represents the stack

using a spiral starting at the center and growing out. Here color
used to indicate the routine, the width of an entry its total run tim
and the height above the floor of the spiral represents the st
depth. The program being traced here does a knight’s tour and
increasing depth of the call stack results from the recursive sea
that it uses. The picture at the bottom of the figure shows a simp
but often easier to read, zoom, and scroll, linear view of anoth
program.

6 FUTURE WORK

The efforts reported here represent a solid first step toward
goal of producing a wide variety of different program analyse
from a single comprehensive call trace with a minimum of effo
on the part of the programmer. The architecture that we use
robust and efficient. It imposes a significant but not overwhelmin
overhead while collecting trace information. Programs bein
traced can be used interactively without the user being aware t
the tracing is occurring. The various analysis both show that t
architecture is general enough to support different analyses
that different analyses are interesting in their own right.

We are continuing this work in a number of different directions
The first is to add interactive control to the trace collection. He
we are developing a user control panel that will let the user intera
tively enable and disable various types of tracing as well as defi
mark events that can be used to correlate user interactions with
resultant visualizations.

A second direction involves doing some of the analysis as part
TMerge. While some of the analysis techniques need to have
whole trace available in order to run (e.g. performance summar
or interval analysis), others can be done on the fly. We are exp
menting with such techniques in order to provide instantaneo
visualizations that convey at a glance a variety of properties ab
systems as they are executing.

A third direction involves developing compact trace represen
tions that provide a high degree of compaction without a minim
loss of information. Here we are looking at dynamic interval ana
ysis, ways of excluding system and other irrelevant classes fr
the traces, and even doing dynamic call dag analysis. Anot
aspect we are looking at here is developing abstract models of
computation for the purpose of visualization. These can be us
for example, to model the behavior of message passing librarie
show such behavior in the context of the overall trace.

The fourth direction that our current research is exploring involv
creating and using visualizations to provide better understandin
of the inner workings of software. This work attempts both t
develop new visualization techniques and to provide the necess
browsing and linkage mechanisms to let the user synergistica
use multiple visualizations simultaneously.

Overall, we feel that visualization, and particularly visualization o
behavior, will become increasingly important in understanding t
large, complex, multithreaded and multiple-process Java syste
that are being developed. Our efforts provide one starting po
along these lines.

7 REFERENCES

1. Jong-Deok Choi and Harini Srinivasan, “Deterministic repla
of Java multithreaded applications,” pp. 48-59 inProceedings
of the SIGMETRICS Symposium on Parallel and Distributed
Tools, (1998).

m

,”

A.
2. Dean Jerding, John T. Stasko, and Thomas Ball, “Visualizing
interactions in program executions,”Proc 19th Intl. Conf. on
Software Engineering, pp. 360-370 (May 1997).

3. James R. Larus, “Whole Program Paths,”Proceedings of the
ACM SIGPLAN ’99 Conference on Programming Language
Design and Implementation, pp. 259-269 (1999).

4. Moises Lejter, Scott Meyers, and Steven P. Reiss, “Support for
maintaining object-oriented programs,”IEEE Trans. on
Software Engineering Vol. 18(12) pp. 1045-1052 (December
1992).

5. Craig G. Nevill-Manning and Ian H. Witten, “Indentifying
hierarchical structure in sequences: a linear-time algorithm,”
Journal of Artificial Intelligence Research Vol. 7 pp. 67-82
(September 1997).

6. Wim De Pauw and Gary Sevitsky, “Visualizing reference
patterns for solving memory leaks in Java,” inProceedings of

the ECOOP ’99 European Conference on Object-oriented
Programming, (1999).

7. Steven P. Reiss,FIELD: A Friendly Integrated Environment for
Learning and Development, Kluwer (1994).

8. Steven P. Reiss, “An engine for the 3D visualization of progra
information,”Journal of Visual Languages, (December, 1995).

9. Steven P. Reiss, “Cacti: a front end for program visualization
IEEE Symp. on Information Visualization, pp. 46-50 (October
1997).

10. Steven P. Reiss, “Software visualization in the Desert
environment,”Proc. PASTE ’98, pp. 59-66 (June 1998).

11. Manos Renieris and Steven P. Reiss, “ALMOST: exploring
program traces,”Proc. 1999 Workshop on New Paradigms in
Information Visualization and Manipulation, (October 1999).

12. John Stasko, John Domingue, Marc H. Brown, and Blaine
Price,Software Visualization: Programming as a Multimedia
Experience, MIT Press (1998).

Figure 5. Visualizations done using trace data.

	Generating Java Trace Data
	Steven P. Reiss, Manos Renieris
	Department of Computer Science
	Brown University
	Providence, RI 02912
	401-863-7641
	{spr,er}@cs.brown.edu
	Abstract
	1 Introduction
	2 Structural Data
	Figure 1. Overview of the information in the structural database.

	3 Trace Data
	3.1 JVMPI
	3.2 TMon
	Figure 2. Overview of the Java trace data generation architecture.

	3.3 TMerge
	Figure 3. Information stored for trace objects.
	Figure 4. Summary of trace file entries.

	3.4 Results
	4 Analyzing the Trace Data
	4.1 Call Trace Analysis
	4.2 Memory Trace Analysis
	4.3 Path Analysis
	4.4 Summary Views
	5 Visualizing the Results
	Figure 5. Visualizations done using trace data.

	6 Future Work
	7 References

