Generating Java Trace Data

Steven P. Reiss, Manos Renieris
Department of Computer Science
Brown University
Providence, Rl 02912
401-863-7641
{spr,er}@cs.brown.edu

ABSTRACT alization approach uses a graphics framework to provide a range of
high-quality 3D visualizations of the selected data. Here we have
emphasized visualizations that can display large quantities of data
in a small space using various abstractions rather than more tradi-
tional box-and-line drawings.

We describe a system for gathering and analyzing Java trace data
The system provides relatively complete data collection from large
Java systems. It also provides a variety of different analyses of that
data for use with a software visualization system.

This previous work worked with C++ programs and demonstrated
1 INTRODUCTION the utility of the approach. Our current efforts involve extending

this work to support Java. This is more than simply porting the pre-
As Java programs get larger and more complex, they become morevious code to handle Java rather than C++. Understanding Java
difficult to understand. We have embarked on a project that involves a somewhat different set of issues than we had been
attempts to use software visualization to provide this understand- addressing. In particular, our previous efforts had not tackled the
ing. This paper describes the first part of that effort, a package thatproblem of multithreaded computations (the lack of a standard
uses the JVMPI interface to collect and then analyze Java traces. threading model for C++ made this difficult), and they paid a lot of
attention to memory allocations; our work for Java has emphasized
threading and takes a very different view of how memory is uti-
lized.

Java was originally used for small scale applications such as
applets or small clients for a more complex, non-Java server.
Today, the language is being used for constructing large-scale
systems including scientific and data-intensive applications. As the |ooking at trace data for visualization is not something novel. Per-
applications have increased in scale, understanding their structureformance visualizations have been around for 20 years in various
and behavior has become both more important and more difficult. forms. (Even the old UNIXrof command had a graphics mode to
The authors of a large Java system need to understand what iproduce histograms.) The FIELD environment, among others, pro-
going on inside the system as it is running. They need to see howvided dynamic views of the heap, file I/O and performance while
the various threads interact, whether the system is over or underthe program was running [7]. Various efforts at Georgia Tech and
synchronized, where the performance bottlenecks are, how muchelsewhere have developed a number of different dynamic visual-
memory is actually required, where objects are being allocated, izations including the notion of call dags that we are using [2,12].
where the memory leaks are, which classes are active when, andviore recently, the IBM Jinsight efforts use relatively complete calll
how the various classes in a complex system interact. trace data to provide the user with insights into how the program is

Our approach to addressing such specific understanding problem§unning and to address such questions as Java memory leaks [1,6].

is to provide programmers with a system that makes it easy to Our approach differs from previous efforts in its ability to combine
define software visualizations that can provide the answers quickly trace data with structural data about the program, in its ability to let
and efficiently [8-11]. There are several aspects to such a systemthe user define what information should be visualized and how it
The first is to provide a wide variety of relevant data that can be should be displayed rather than only providing a small set of fixed
used to drive the visualization. Here we let the programmer displays, in its emphasis on high-density abstract visualizations, on
combine both structural data describing the system with severalits ability to handle C++ as well as Java (and thus to display infor-
different analyses of the trace data that is obtained by running the mation about multi-lingual systems), and on providing a general
system. The second aspect of our visualization approach is toframework that can be used for a wide variety of different analysis
provide a framework to make it easy for programmers to specify of the same trace data.

what data they need to visualize to understand the problem at hand . . .
Here we use a visual query language based on the universal relal this paper we look at our on-going efforts at generating the
tion assumption that lets programmers select the data of interest@PPropriate data for Java visualization. The next section looks at

without having to know the structure of the underlying databases Structural data. Section 3 looks at the problem of generating trace
or how the different analyses are done. The final aspect of the visu-data. This is followed by a description of the various analyses that
we are doing with the trace data in order to get data to visualize.

We next consider some of the resultant visualizations and conclude
by describing our continuing and future efforts.

2 STRUCTURAL DATA

Most of the early work on software visualization dealt with visual-
izing the structure and organization of large systems, for example
showing the call graph or the class hierarchy. Our experience was
that such diagrams were helpful for navigation, but, except for
some examples from reverse engineering, were not too helpful for

File name
Date last modified
Dependencies

Dependency:

Depends on file

Scope:

Name

Parent scope
Include scopes
Scope type
Associated symbol

Dependency type Associated type
Definition: Type:

Name Name

Definition scope Type style

Symbol type Base type

Storage type Definition

Flags Flags

Parameters Parameters

Type Super type

New scope Interfaces

Start and end location Scope

Primitive type

Reference:

Name

Scope

Definition

Flags

Start and end location

Figure 1. Overview of the information in the structural database.

software understanding. However, our experiences with trace visu-automatically gather and maintain the database as the specified
alization showed that one often wanted to combine such structuralfiles or any file in the specified directories changes.

data with the trace data in order to create more meaningful visual-
::)Z;tcl:gﬂ:pgi geﬁgﬁcl)%i i?]rt]g ggr; slgcs)kaitjt::?;sesgzt?h:gﬁgeh(i[?\g]ifif;g BM Jikes compiler and modified it to dump the necessary infor-

hierarchy, and one can get a better understanding of the executior] ation from the abstract syntax trees that it produces in the front

of a broaram bv seeina how different class hierarchies actuall end. The information is produced on a file-by-file basis and is
interae:t gt run ti%e g Y stored as XML files. These file are then read by our specialized

database system that is capable of quickly discarding all previous
The first step in providing a comprehensive visualization strategy information from a file and inserting all the new information. The
for Java applications was to ensure that the necessary structuratlatabase actually runs the Jikes compiler in its incremental mode
information was available. Our previous efforts provided such so that the compiler shares some of the load of determining what
information in the form of a program database that was generatedfiles need to be rescanned and so that updates beyond the first are
using information provided by the compiler (.sb files from Sun’s extremely quick. Our experience with Jikes has been that it is
C++ compiler for example) [4,7]. This program database was orga- extremely fast (especially since we are not doing any code genera-

nized as an in-memory relational database containing relations fortion). For example, it takes Jikes less than ten seconds to generate
references, definitions, scopes, files, calls, the class hierarchy, andhe data for about 30,000 lines of Java comprising our Java tool set.
class elements. (It currently takes our database under three minutes to process the

resultant data and build and store the resultant 12M database ini-
atially; updates after that are almost immediate.)

To gather this information accurately and quickly, we took the

In moving to Java, we wanted to both simplify and extend this
approach. We moved to a more object-oriented database from
purely relational one. This let us store the definition corresponding

to each reference as a link rather than attempting to compute it3 TRACE DATA

each time. We eliminated the separate relation for class elementsry, pog; \isualizations are created by correlating a variety of dif-

&erent data from a single trace. For example, one interesting visual-
ization we have worked with in our previous system involved
correlating allocations of objects along with the dynamic call
graph. This allowed us to get an overview of how segmented
memory was for each portion of a system’s execution. Our goal in
collecting Java trace data was to generate the data so that any
number of different analyses could be done after the fact for visu-
Our previous work had demonstrated that it was important to alization.

gather this structural information without bothering the program-
mer. That is, the information should be gathered automatically and
with a minimum of overhead. Our current approach has the pro-
grammer define the set of directories and files that constitute the
system in question using either an interactive visual tool or a
simple text editor. Once this is done, our program database will

two relations can be easily combined. (In C++ the information for
class members, i.e. protection, visibility, and properties such as
virtual, static, and friend do not apply to general definitions.)

Finally, we replaced the class hierarchy relation with one that
describes types in the language in general, providing information
about the underlying type algebra. The result is shown in Figure 1.

This goal required that our trace collection meet certain criteria.
First, it should be as complete as possible. One cannot analyze data
that one does not have. Ideally, we wanted to know everything that
was possible, including a full call trace of all the active threads,
locking information, memory utilization, and performance infor-
mation. Second, one needs to have a consistent way of referring to
the program elements from the trace. For example, one needs to

Objects|

TMerge TFilter

\ S

Trace |1

Figure 2. Overview of the Java trace data generation architecture.

have consistent object, thread, class and method identifiers3.2 TMon

throughout the trace. Third, the data needs to be collected with a

minimal impact on the performance of the underlying program. The architecture for generating this data can be seen in Figure 2.
This requires that the execution of the program not be slowed Here the user’s Java program is interpreted (or compiled and exe-
down so much that any interactive portions of it are unusable and cyted using the JIT compil¥rand the JVMPI is used to provide
that the tracing does not introduce side effects such as SynChrOﬂiZ-[he appropriate information to our front end trace package’ TMon.
ing multiple threads. Finally, we wanted to do this in a portable TMon then creates an output stream for each thread. It does this by
way with a minimum number of changes to the JVM or the user's |ooking at what the current thread is when it gets control, and

program. checking if that thread is known. If it is a new thread, then a new
output stream is created. This requires some synchronization to
3.1 JVMPI ensure that the streams get unique names, but only happens once

and should have a minimal effect on the application. Otherwise,
data from the current JVMPI entry is recorded into the current
"thread’s output stream. Finally, if the entry was for a thread exit,
then the output stream is closed.

Java provides an interface for generating performance information
the JVMPI, that meets most of these criteria. It provides hooks into
the JVM that can be used without modifying the user program or
the JVM itself. It provides almost all the data that we needed for The trace data that is generated by TMon is designed to reflect the
visualization. It is relatively fast as well, with most of the hooks parameters of the JVMPI events. Thus, little or no processing is
being integrated directly into the JVM and with little extra over- performed on the data. One simple exception involves the need to
head required other than the call to the JVMPI code. have performance information included in the trace. This can be
The JVMPI however, does not meet all the requirements. It is fast I;)hbrteaégega% Ersn'gga;hg n‘:?;'\gz::a? sg?htgi or?rg St::;i é)i];,;hgéﬁdﬁ\gagle r
because it reports addresses rather than true object identifiers fo . ; ‘ g o '
objects, classes, threads, etc. Because of garbage collection, sucﬁﬁgsbteo gﬂ:ethixsslzsew;‘. tﬁg“ﬂ;ﬁ%iﬁgﬁa';?:?i Iﬁgga:gl wleci)ok;stz?r;
addresses will change over the course of a run. Thus it also gener- is information only every 4096 actual events and approximate for

ates appropriate events indicating such changes and requires thatl{jlose events that come in between. A second modification involves

the application track them. It also makes the calls to the JVMPI saving a sequence number with each trace record. The sequence
from within the context of the current Java threads. Thus multiple -\ " global and is used to intersperse the traces from the dif-

calls can be occurring simultaneously to the JVMPI application. S -
Since we needed to combine the multiple threads so as to provide aferent threads. Here TMon maintains a global counter which is

single trace as output, our code had to merge all these calls. How_lkncre][nenged for each rehcord t?".itlls ?]Utplét' No ﬁynchéonlzgtlon 'S
ever, it had to do so without synchronizing the Java threads. ept forthe counter so that multiple threads might rea (an stc_)re)
’ the same value if they happen to be executing at the same time.

We addressed these problems by generating multiple data streamdhis is not really a problem since the effective serialization of such
from the JVMPI calls, one per thread, and then merging these datacoexecuting threads is ambiguous in any case.

streams and, at the same time, mapping the identifiers from those.l_he output streams used by TMon can take one of two forms. They

e e s s befls. Hre Thio s gien acrectory (trough an e
parts, ronment variable at start up) and creates new raw trace files as

information about the identifiers (for example, the class assocnatedneeded_ Alternatively, we have implemented a shared-memory

with an object identifier or the methods and file associated with a S .
class), and one that contains a sequential description of what thecommunlcanon mechanism. Here TMon uses a shared memory

Java program is doing. The later contains events for each call andbUffer to communicate with the back end to set up a new shared

return, each object allocation, as well as locking and synchroniza- memory buffer for each new thread. Once the buffer is set up,
tion information. In it, all the threads are interspersed to illustrate TMon simply adds information to that buffer as needed.
as closely as possible how the execution actually occurred.

1. We did make minor modifications to the JVM to allow simulta-
neous use of JIT and JVMPI.

Thread:

Thread id Method:
Total execution time of thread Method id
Thread name Class id
Thread group name Method name
Thread parent name Method signature
Start and end line
Object:
Object id Field:
Class id Field id
Array type Class id
Object size Field name.
Field signature
Class:
Class id Monitor:
Class name Monitor id.
Source file name Monitor name.

Number of interfaces
Number of methods
Number of static fields
Number of instance fields

Figure 3. Information stored for trace objects.

In order to let the application run as fast as possible, the back endsented both as the corresponding class object (which can be used
reads the shared memory buffer as often as possible. Rather tharas an object for calls, etc.) and as the identifier describing the class.
processing this information immediately (which would restrict the
front end to run at the speed of such processing), it stores the
message for latter use. This ensures that TMon will almost always
have room in the buffer for its information and will have to wait a
minimal amount of time. We take advantage of this by having
TMon do a busy (unsynchronized) wait if the buffer is full most of
the time. Only if the back end has stored over some large number
(currently a million) messages, will it tell TMon to actually stop
processing that thread until at least half the stored messages hav
been processed. This tends to work well, especially with interac-
tive applications since the interactive threads are rarely stopped
and can work at a reasonable speed. The final processing of each trace entry is used to generate the
resultant trace file. Each trace entry contains the event type and the
thread id. The remaining information is type dependent and can be
3.3 TMerge seen in Figure 4. Note that the thread execution time is not stored
.) with each entry, but is stored as occasional trace records indicating
The output from TMon, either from the set of files generated or qgitional run time. This follows from the scheme whereby this
from the set of shared memory buffers, is processed by the nextintormation is only recorded periodically. It can be used by the
phase system, TMerge. The purposes of TMerge are to merge theyrogram processing the trace data to generate approximated execu-
various output streams into a single stream containing the results;jo, times for each call or other events.
of each thread, to accumulate from the trace information about the
various objects, classes, methods, and threads into a random-
access database, and to provide a consistent set of unique identifi3.4 Results
ers for all such items.

Second, each entry is processed to add or update information in the
database of information about identifiers. Here information from
the trace records is stored with the proper type of item in the data-
base. For example, an object allocation entry causes a new object
to be defined with the appropriate class pointer, while a class load
entry will add not only the class object and the class type to the
database, but will also add objects describing each field and

ethod of the class using their names and signatures. The particu-
ar information stored with the different types of objects is shown
in Figure 3.

. - . The current system is able to trace execution rather efficiently. We
TMerge works by setting up a priority gueue of all the available hook a commercial program written as a server for processing

data streams ordering these by the sequence numbers inserted i h . L fab i f I
the trace. This ensures that the trace records are read in approxi-searc. hquErles COES'Stmng I'a out 30,000 |nkes 0 bJava.zA sampde
mately the correct order. It maintains a hash table that maps theUn With about a thousand client requests takes about 5 seconds

“current” JVMPI ids into the unique trace identifiers that are used with JIT and 2:39 minutes without JIT. This run generates 1.68

. igabytes of trace data and 167 megabytes of object data as the
%Sr ;;{;%fgt‘:e trace output. Each trace entry is then processed for?esult from TMerge. Generating this trace data takes about 17

minutes (a factor of 6-40). (We are still working on attempting to
First, TMerge processes each entry to determine if it adds to or improve this further through additional optimizations and simplifi-
updates the mapping from JVMPI ids to trace identifiers. If the cations.) Moreover, compaction such as provided by gzip or the
identifier is new, a new logical identifier of the appropriate type is UNIX compress command, can shrink the raw data by a factor of
created and a new mapping is set up. (The system knows from thefive without any loss of information.

context what type of identifier is expected in each situation.)

Second, a trace record indicating that an object has moved is usedd ANALYZING THE TRACE DATA

to map the corresponding objects from their old JVMPI id to the

new one. Note that we say objects here because a class is repreWhile we have only begun to work on a full range of trace analyses
for visualization, we already have developed a number of visual-

Class Load and Unload Monitor Wait:

Class id Object id
Timeout
GC Start and Stop
Number of used objects Object Allocate and Free
Total used object space Object id

Total object space
Thread Start and End
JVM Initialize and ShutDown

Run time:
Method Entry: Thread execution time.
Method id
Object id
Method Exit:
Method id

Monitor Enter and Exit:
Object id

Figure 4. Summary of trace file entries.

ization using a variety of different analyses of the trace data, both trace record per object. This record contains the routine that allo-

for C++ and now for Java. The different analyses can be divided cated the block, the type of the block, the size of the block, when in

into three basic groups. The first include information obtained by the execution the block was allocated and freed. For C++ it also

looking at the sequence of calls. These are used to provide detailedndicates the start and end address of the block. The times and rou-
dynamic views of the execution of generally small programs tines given here can be used to correlate the memory information
(although they can be used for small portions of large programs aswith the call trace information in a visualization.

well). The second provide views of the use of memory throughout

the application. The final set provide useful summary views .
gleamed from the trace data. 4.3 Path Analysis

In order to facilitate visualization, each of these analyses is output priven by the fact that the amount of data we collect is extremely
as a sequence of tUpleS for a Corresponding relation. The ViSUa“Za'|arge’ we looked into ways of Compressing them. Gz|p gives us a
tion package treats these trace files as a single-relation databasgompression factor of four to five, which is not enough. We use the
when collecting and setting up the visualization. The general Sequitur algorithm [5], which has also been used successfully for
package that does the analysis, TFilter for Java or Vark for C++, compressing traces at the basic block level [3]. Sequitur takes as
can cache its results for future visualization as well as returning the input a string of symbols and outputs a context free grammar,
results directly. whose start symbol, when fully expanded, gives us back the origi-
nal string. This is combined with the conversion of the dynamic
call tree into a call dag [2] and finding repeated sequences of calls.

4.1 Call Trace Analysis
Our algorithm maps each dynamic call into an identifier that repre-
The basic call trace visualization is done from a sequence of call sents that call and all the calls it makes. This is done bottom up, so
(and optionally return) records in a tuple. These are ordered by that when we are analyzing a particular call, we already have iden-
sequence number. Each record shows where the call was from tifiers for each of the calls that it makes. We use the Sequitur algo-
what the call was to, the time of the call, the active thread, the level rithm to build a compact representation of the sequence of calls in
of the call, and the first argument (the object for a method call). A the form of a grammar. We convert this grammar representation
return here is indicated as an empty to routine. An alternative form into a string. Combining the string with the name of the calling
of trace outputs the entries in completion order. The advantage of function yields the identifier for the particular call. In doing so, we
this is that each entry is extended with the time spent in the routine find common nonterminals between this grammar and grammars
locally and the time spent in the routine and everything it called. for other calls and note any recurring sequences of calls and
encode them using run-length encoding. Here we have the option
of saying “N or more” calls rather than using the exact number.
The identifier that is constructed in this way is then matched to see
if the call sequence had previously occurred and, if so, the two are
combined, thus forming the call dag. We keep statistics (run time,
real time, and allocation information) with each identifier so that
we can provide the mean and standard deviation for each path.

4.2 Memory Trace Analysis This whole process gives us a compression factor on the trace
) o described in Section 3.4 of about 800, two orders of magnitude

In both C++ and Java, the behavior of memory is important t0 petter than gzip (but the Lempel-Ziv compression that gzip uses is

understanding the performance and actions of the underlying code jgsgless). More importantly, repetitions and patterns in the

We provide a simple analysis that offers the information about gynamic call tree are discovered and stored.

memory allocations during the run. The output here consists of one

A second form of call trace tries to shrink the size of the resultant
data by only providing information about the top of the stack.
Entries here indicate a call to a specific function or a return. This is
used both for some simple visualizations, but we also plan to use it
as input to data mining techniques.

4.4 Summary Views using a spiral starting at the center and growing out. Here color is
used to indicate the routine, the width of an entry its total run time,

There are several ways of summarizing the information contained and the height above the floor of the spiral represents the stack

in the call trace. One of the simplest that we currently do is to depth. The program being traced here does a knight's tour and the

gather performance information from the call trace and yield a cor- increasing depth of the call stack results from the recursive search

responding output relation. This relation contains one tuple for thatit uses. The picture at the bottom of the figure shows a simpler,

each method or routine called during the execution. Each such but often easier to read, zoom, and scroll, linear view of another

tuple identifies the routine and then gives the number of times it Program.

was called, the time spent executing code in the routine, and the

time spent executing code in the routine and any other routines it 6 FUTURE WORK

called.
The efforts reported here represent a solid first step toward our

Becausg the call traces C_an.be extremely Iarge, we are _interested irgoa| of producing a wide Variety of different program ana|yses
developing ways of shrinking the trace data accordingly. One from a single comprehensive call trace with a minimum of effort
approach we have taken is to replace the call tree with a call dag.on the part of the programmer. The architecture that we use is
Here each unique call subtree only occurs in the output once. Pro-ropust and efficient. It imposes a significant but not overwhelming
cessing such data is complex because much of the trace summargyerhead while collecting trace information. Programs being
must be kept in memory while processing the trace data. However, traced can be used interactively without the user being aware that
our experience has shown that such views will typically cut the the tracing is occurring. The various analysis both show that the
trace data to about 40% of its original size (much more with repet- architecture is general enough to support different analyses and

itive applications) with only a minor loss in the accuracy of the that different analyses are interesting in their own right.
reported trace information. o)
We are continuing this work in a number of different directions.

To provide high level views of long-running programs, however, a The first is to add interactive control to the trace collection. Here
different approach has to be taken. We have started such anwe are developing a user control panel that will let the user interac-
approach using the notion of interval summaries. Here the overall tively enable and disable various types of tracing as well as define

execution is broken down into a small number (we are currently mark events that can be used to correlate user interactions with the
using 1024) of intervals and the trace file is used to generate resyltant visualizations.

summary information for each interval. The corresponding visual- .))

izations can then provide a high level view showing at a gross level A Sécond direction involves doing some of the analysis as part of

what was occurring over the whole program. Where additional TMerge. While some of the analysis techniques need to have the

detail is needed, such a view can be linked to a detailed call trace Whole trace available in order to run (e.g. performance summaries

(or other) view restricted to the interval(s) in question. or interval analysis), others can be done on the fly. We are experi-
menting with such techniques in order to provide instantaneous

We currently provide two distinct interval summaries of Java yisualizations that convey at a glance a variety of properties about
traces. The firstis a call interval trace. This not only divides the run systems as they are executing.

time into 1024 discrete blocks, but also summarizes all the . . o)

methods of a given class within the class. For each class and interA third direction involves developing compact trace representa-
val pair it outputs information for each thread. Here it provides the tions that provide a high degree of compaction without a minimal
amount of time that the thread spent executing a method of that'os_s of information. I-_lere we are looking at (_jynamlc interval anal-
class during the interval, the average depth of the call stack for the YSiS, ways of excluding system and other irrelevant classes from
thread during the interval for methods of this class, and the averageth® traces, and even doing dynamic call dag analysis. Another
time spent waiting by the thread for monitors related to objects of @Spect we are looking at here is developing abstract models of the
this class. The second interval summary concentrates on memorycOmputation for the purpose of visualization. These can be used,

utilization. For each interval and class pair it outputs the average fOf €xample, to model the behavior of message passing libraries to
number of objects of that type that are allocated. show such behavior in the context of the overall trace.

The fourth direction that our current research is exploring involves

5 VISUALIZING THE RESULTS creating and using visualizations to provide better understandings
. . L . of the inner workings of software. This work attempts both to

We used the trace generation and analysis facilities described hergyevelop new visualization techniques and to provide the necessary

along with our existing software visualization tools as a starting prowsing and linkage mechanisms to let the user synergistically
point for the full scale visualization of the dynamics of Java pro- ;g multiple visualizations simultaneously.

grams. Three of these visualizations are shown in Figure 5. o _ o

. . , .) o Overall, we feel that visualization, and particularly visualization of
T.he V|suaI|.zat|0n in the upper left is an |ntgrval \.llsuallzatlon.of a pehavior, will become increasingly important in understanding the
simple Swing-based java program. Here time (in terms of inter- |3rge complex, multithreaded and multiple-process Java systems

vals) runs along the X axis while class (sorted alphabetically by hat are being developed. Our efforts provide one starting point
name) runs along the Y access. The visualization fills each inter- 5,ong these lines.

val-class block using a box colored by the threads active for that

time and class. The saturation of the color indicates the depth 0f7 REFERENCES

the call stack at that point. Blocking threads are shown using black.

The visualization that results clearly shows the initialization and 1. Jong-Deok Choi and Harini Srinivasan, “Deterministic replay
execution phases of the program as well as where some of the of Java multithreaded applications,” pp. 48-5®inceedings
other processing is being done. of the SIGMETRICS Symposium on Parallel and Distributed

. . R . Tools (1 .
The second and third pictures in Figure 5 show views of the call ools (1998)

stack over time. The one in the upper right represents the stack

E irugr Pl of Enmple tor e Vel [N Ill

File @imdouy Nimemimg
rn [L r
ne P] i
. - - -:. " oy]
- r E
¥ E ;
—
o . .
- = - [-
L. = h
= = b
- -) -
~—— ET -
et
i.._ = g
e i R L~ pea—
i il P — o
E B
i D e el
- [L
» — Lewm” T e —
= E
— - — . -
] . T 4
'. -] | i
""_'_"'__'_:“""“5._ | ke i e
== = g T T =
3 o L
' T B T e T o r I
— - -
= —
T ridoiead |
sl Froslise
el Sl bumat jmnfllorg hresd
lelSbackDepdds; 3, DR
Ll Trmat: ST | bt Fert Poart husae]
i T T [
Dol bl T ¥
—

E irugr Pl of Eample tor e et | Ill

File @imdouy Nimmlmg

6t]

:Iﬂ-iﬂl

sl

B

el
Mgnlisslecsl: BT
BoriTioa Tt als (oEE
Dgrfrealilac e’ i e | ghe
eyl o ale: Mo ppenma [n ey i ghbmgen or e
Dk v RIS
Ignla: Enightfenivieoresniing. comi chareil
lrFroal_jed 35
Tgnilal e

Figure 5. Visualizations done using trace data.

Dean Jerding, John T. Stasko, and Thomas Ball, “Visualizing

interactions in program execution®foc 19th Intl Conf on
Software Engineeringpp. 360-370 (May 1997).

James R. Larus, “Whole Program PatRsjceedings of the
ACM SIGPLAN 99 Conference on Programming Language
Design and Implementatiorpp. 259-269 (1999).

7.

8.

. Moises Lejter, Scott Meyers, and Steven P. Reiss, “Support for g

maintaining object-oriented programtEEE Trans on
Software Engineerinyol. 18(12) pp. 1045-1052 (December
1992).

Craig G. Nevill-Manning and lan H. Witten, “Indentifying
hierarchical structure in sequences: a linear-time algorithm,”
Journal of Artificial Intelligence ReseardVol. 7 pp. 67-82
(September 1997).

Wim De Pauw and Gary Sevitsky, “Visualizing reference
patterns for solving memory leaks in Java,Pioceedings of

10.

11.

12.

the ECOOP 99 European Conference on Objewiented
Programming (1999).

Steven P. Reis§IELD: A Friendly Integrated Environment for
Learning and DevelopmeniKluwer (1994).

Steven P. Reiss, “An engine for the 3D visualization of program
information,” Journal of Visual Language¢December, 1995).

Steven P. Reiss, “Cacti: a front end for program visualization,”
IEEE Sympon Information Visualizationpp. 46-50 (October
1997).

Steven P. Reiss, “Software visualization in the Desert
environment,Proc. PASTE 98, pp. 59-66 (June 1998).

Manos Renieris and Steven P. Reiss, “ALMOST: exploring
program tracesProc. 1999 Workshop on New Paradigms in
Information Visualization and ManipulatioifOctober 1999).
John Stasko, John Domingue, Marc H. Brown, and Blaine A.
Price,Software VisualizationProgramming as a Multimedia
ExperienceMIT Press (1998).

	Generating Java Trace Data
	Steven P. Reiss, Manos Renieris
	Department of Computer Science
	Brown University
	Providence, RI 02912
	401-863-7641
	{spr,er}@cs.brown.edu
	Abstract
	1 Introduction
	2 Structural Data
	Figure 1. Overview of the information in the structural database.

	3 Trace Data
	3.1 JVMPI
	3.2 TMon
	Figure 2. Overview of the Java trace data generation architecture.

	3.3 TMerge
	Figure 3. Information stored for trace objects.
	Figure 4. Summary of trace file entries.

	3.4 Results
	4 Analyzing the Trace Data
	4.1 Call Trace Analysis
	4.2 Memory Trace Analysis
	4.3 Path Analysis
	4.4 Summary Views
	5 Visualizing the Results
	Figure 5. Visualizations done using trace data.

	6 Future Work
	7 References

