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Abstract

We have built a software development environment that
uses constraints to ensure the consistency of the different
artifacts associated with software. This approach to soft-
ware development makes the environment responsible for
detecting most inconsistencies between software design,
specifications, documentation, source code, and test cases.
The environment provides facilities to ensure that these
various dimensions remain consistent as the software is
written and evolves. This paper describes the techniques
that underlie the environment, concentrating on those that
deal with the diversity of artifacts the environment sup-
ports and on the definition and incremental maintenance
of constraints between these artifacts.

1.  Introduction

Software is multidimensional. Software systems consist
of a wide variety of artifacts such as specifications, design
diagrams and descriptions, source code, test cases, and
documentation. Each of these dimensions describes only a
limited part of the software — the actual system is properly
the combination of all the artifacts.

Software evolution is the process whereby software
changes to meet changing requirements, systems, or user
needs. A major problem with software today is that the dif-
ferent artifacts of a software system tend to evolve at dif-
ferent rates. The source code will be updated to include all
the necessary changes, but the specifications and design
documents are often not modified to reflect these changes.
Test cases may be thorough for the initial system but, in the
absence of a proper development methodology, tend to get
overlooked with the addition of new features. Any user and
developer is familiar with the manner in which documenta-
tion becomes out-of-date, and how implementation
changes take a long time to percolate to the documentation.
The result is that developers learn not to trust and thus not
to use anything other than the source code, making soft-
ware less reliable and much more difficult to understand
and evolve.

We are in the process of developing a software develop-
ment environment that addresses these issues using a con-
straint-based mechanism. The environment defines and

analyzes the consistency of constraints on the software
system, including ones that span different dimensions. For
example, it provides constraints that specify that:

• every class, field, and method that appears in the UML
class diagram for the system much also appear in the
source code;

• every public class appears in a UML class diagram that
includes all its public methods and fields;

• every public method of a public class has associated
documentation;

• all procedures (or all basic blocks or all branches) are
covered by at least one test case;

• the sequence of calls shown in a UML interaction dia-
gram is realizable in the code;

• design patterns that are part of the design exist in the
code and persist through changes; and

• the program obeys a set of specified naming and lan-
guage usage conventions.

This environment provides several capabilities. First, it
extracts relevant information from each of the software
artifacts. A piece of information is relevant either because
it is required to identify potential constraints (e.g. the exist-
ence of a class in a UML diagram), or because it is needed
to test and verify constraints (e.g. the name and symbol
type of each defined symbol). Second, the environment
stores and maintains this information in a database, doing
incremental updates automatically as the software changes.
Third, the environment uses this information along with a
description of the types of constraints to be generated to
build the complete set of constraints for the software
system. Fourth, it uses the information in the database to
incrementally test the validity of these constraints. Finally,
it provides facilities for presenting the results of these tests
to the developers so that they may take steps to resolve
inconsistencies.

Unlike code, which is extremely precise and highly
amenable to well-understood analyses, many of the dimen-
sions we consider are not defined precisely. As a result, our
environment is harder to describe formally, and it is forced
to use more heuristics than one based purely on, say,
program analysis. Nevertheless, programmers use all these
dimensions and rely on them as systems evolve, so we have
a responsibility to support them through the program’s life-



span. Hopefully, with better environmental support and
thereby greater use, some of these other dimensions will
also acquire more precise formulations.

In the next section of this paper we outline the structure
of the environment and identify the key issues that have
arisen in its construction. The following sections look at
these issues in detail and describe our current solutions. We
conclude by describing the current state of the system and
our experiences with it.

2.  Environment Overview: The Challenges

The overall environment consists of the components
shown in Figure 1. The components can be broken into two
parts: the first part manages extracting the necessary infor-
mation from the source artifacts while the second part uses
this information to find, update, and display information
about the constraints.

Extracting information about programs is a non-trivial
task, which is made harder still when tackling numerous
dimensions, some of which are less precisely specified than
others. Moreover, some contain information that spans
multiple software dimensions. For example, source files
contain syntactic information, semantic information, and
documentation while UML files contain information from
each of the different types of UML diagrams. Rather than
using the artifacts directly as the basis for constraint gener-
ation and checking, the environment extracts information
from the artifacts, converts it into a standardized represen-
tation, and stores it in a relational database.

The information is extracted through a set of informa-
tion abstractor tools. Most of these are in two parts. The
first part takes the artifact, isolates the information that is

relevant to a particular dimension, and then generates an
XML file containing that information. The second part
reads this XML file and then generates a second XML file
consisting of commands to the database manager describ-
ing what tuples in what relations should be removed,
inserted or updated.

There were several problems that had to be solved in
order to make this part of the environment work. These
included:

• What are the artifacts associated with a particular soft-
ware project? To address this question we needed to
provide a project manager, which we describe in
section 3.

• What information is required from the artifacts? This
required an understanding of the often vague semantics
associated with some software artifacts as well as a
good intuition for what types of constraints would be
most effective. We discuss this in section 4.

• How to extract this information efficiently? Each
dimension of the software presents its own problems
but also suggests potential solutions. The environment
provides a framework in which new extractors are easy
to add and where multiple extractors can operate on a
single kind of artifact. We explain this in section 4.

• How to extract the information unobtrusively? We felt it
was essential that the system operate in parallel with the
developer while imposing no additional effort. This led
us to include an activity monitor in the environment that
detects when artifacts have changed and automatically
finds and runs the appropriate abstractors and then the
database manager. Section 5. discusses this portion of
the environment.

• How to relate information across different abstractors
or different dimensions? This problem is two-fold. It
first necessitates a consistent means of naming and
identifying items. Second, it requires the database man-
ager to track and maintain identities for tuples in the
database. This is discussed in section 4.

Having gathered information and filed it in the database,
the environment must generate, maintain, and display the
set of constraints that ensue. This work is done by two
components, a constraint manager that is in charge of
finding and updating constraints and storing the resultant
constraint information in another database, and a presenta-
tion manager that uses this second database to provide
appropriate feedback to the developer.

Again, there were several key problems that needed to
be addressed in order to make this work efficiently and
effectively. These included:

• How to define constraints? We chose to define a notion
of metaconstraints that are instantiated based on objects
in the database. The form of these constraints was dic-
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tated by this requirement and the need to associate a
particular location in a source artifact with the con-
straint if it is violated. We found that most constraints
could be defined using formulas that related informa-
tion in the database. Constraints that affected behavior,
however, were more complex. These issues are
described in section 6.

• How to detect and check constraints? Given a particular
form for a metaconstraint, we had to be able to quickly
find the appropriate constraints and check whether they
were satisfied. For formula-based metaconstraints, this
is done by mapping the formula into a set of SQL que-
ries. For behavioral constraints, this is accompanied by
additional checks. This is also discussed in section 6.

• How to manage constraints incrementally? A complex
software system can have large numbers of constraints.
It was thus essential for scalability of the environment
to be able to only check and update constraints that
might be affected by the small set of changes that the
developer makes as the system evolves. This was
accomplished by having the database manager generate
a file describing the updates to the database and through
the use of unique identifiers (UIDs) for database items.
The incremental update logic is described in section 5.

• What information should be presented to the developer
about the constraints and how should it be presented?
We have been experimenting with both a standalone
approach where a new tool is used to present the infor-
mation to the developer and an integrated approach
where we use existing mechanisms of a software devel-
opment environment. This is described in section 7.

3.  The Project Manager

The first problem that we had to deal with was to iden-
tify the artifacts of a particular software system. In our
environment this is done by the project manager compo-
nent of Figure 1. This component lets the developer define
a project using an XML file that describes the components.
It assumes that artifacts are represented by files in the file
system. The project description file then provides either a
list of particular files or a list of directories to search for
files. It also lets the developer specify which subdirectories
or files should be excluded from the search (e.g., version
information and editor backups are candidates for exclu-
sion).

To facilitate these definitions, the project manager pro-
vides for project hierarchies, whereby common definitions
of files to include or exclude can be specified in a separate
project that can then inherited by other project definitions.
A special project, generic, contains global definitions and
is inherited by all projects. Finally, the project manager
provides facilities for associating environment variables

with a project. This is a simple but important detail, since
tools need access to information such as the Java class
path. Two sample project description files are shown in
Figure 2. The first is the generic project defining particular
file patterns to exclude. The second is the description of the
project for our constraint-based environment itself.

While XML files are a convenient framework for the
project manager, they are not always convenient for the
user. To this end, we have implemented a separate front
end for generating and editing project files and have
created a module that takes information from IBM’s
Eclipse environment for Java and automatically generates
or updates a project file.

4.  Artifact Analysis and Abstraction

The abstraction process for software dimensions gener-
ally involves two stages. The first stage is dependent on the
type of artifact and analysis. It involves identifying the par-
ticular information that is needed to describe and under-
stand a specific software dimension and then extracting
that information from the artifact and putting it into a form
that can be easily understood by later tools. We wanted to
ensure that the framework could handle a wide variety of
different artifacts and dimensions, and we needed to make
sure that the necessary information could be extracted
quickly and automatically.

To this end, we have created a variety of abstractors.
These include:

• Symbol table information. This includes information
about the symbol type, data type, access information,
and location of each definition, the location and defini-

<PROJECT NAME="generic">
<FILES>

<EXCLUDE PATTERN="@/bBACKUP"/>
<EXCLUDE PATTERN="@/bCONTROL"/>
<EXCLUDE PATTERN="@/bBUFFERS" />
<EXCLUDE PATTERN="@/RCS" />
<EXCLUDE PATTERN="@/CVS" />
<EXCLUDE PATTERN="@/.*" />

</FILES>
</PROJECT>

<PROJECT NAME="clime" OWNER="spr" GROUP="ivy">
<FILES>

<USE DIRECTORY="/pro/clime/javasrc/edu/brown/clime" />
<USE DIRECTORY="/pro/clime/uml" />
<EXCLUDE DIRECTORY=".../clime/ClicPlugin" />

</FILES>
<ENVIRONMENT>

<SET NAME="CLASSPATH" VALUE="...bloom/java” />
<SET NAME="SOURCEPATH" VALUE="/pro/clime/javasrc" />
<SET NAME="BROWN_CLIME_ROOT" VALUE="/pro" />
<SET NAME="BROWN_CLIME_TEA" VALUE="/pro/tea" />
<SET NAME="BROWN_CLIME_ARCH" VALUE="sol" />

</ENVIRONMENT>
</PROJECT>

FIGURE 2. Sample project definitions.



tion associated with each reference, and information
about data types including the class hierarchy. It is gen-
erated by running a slightly modified version of IBM
Jikes Java compiler that generates appropriate descrip-
tions from the abstract syntax tree.

• Documentation information. This includes information
about all Javadoc comments and the tags that they con-
tain. It is generated by our own doclet that is invoked by
the standard javadoc program for each source file and
which generates an XML description of all the available
documentation-related information.

• Semantic information. Control flow graphs emphasiz-
ing calls are generated for each method in the source
code using the Soot Java Optimization Framework [23].
Each node in the graph represents a call point and con-
tains the signature and class of the calling and called
method.

• UML class diagrams. This includes information about
classes, attributes, operations, parameters, associations,
and generalizations. It is extracted directly from the
XMI (standard XML for UML) representation which is
either the native representation of the UML tool or, in
the case of Rational Rose, using a conversion package
that generates XMI from the native representation.

• UML sequence diagrams. This includes information
about the signature and class of call points as well as
the method bodies and order in which they occur. As in
the case of UML class diagrams, this information is
extracted from an XMI representation.

• Test cases. We assume that the developer is using Junit
[7], a common Java testing package. The information
extractor reads the compiled Java class files using
IBM’s JikesBT package [12]. It finds all classes that are
instances of test groupings and then identifies those
functions that are actual test cases. It then patches the
class files to capture flow information and runs Junit
using the instrumented class files. The instrumentation
calls routines that record each basic block entry, each
call, as well as the entry and exit of the test cases. The
result of running the instrumented code is an XML file
for each test case that includes a description of the test
case, the date and time it was run, and coverage infor-
mation for blocks, branches, functions, and calls.

• History information. This includes information about
all the past versions of each version-managed software
artifact. The information that is recorded includes ver-
sion history, author, descriptions, and change informa-
tion. This information is obtained by requesting
complete CVS log information (assuming that the CVS
version management system [5] is used) for each file.

In addition to information that is abstracted directly
from source artifacts, we found the need to have additional

information that was not directly reflected in the artifacts
that comprise the software. Some of this information was
needed to represent global information that is assumed by
the developers, such as style rules describing naming con-
ventions as well as language usage rules such as every field
must be read and written at least once or that all data fields
should be private.

Other information was needed because the set of formal
artifacts that are used today are incomplete. The software
development activity includes information such as design
patterns that are not currently directly represented by exist-
ing design tools or representations. We are able to define
relations in the database that represent design patterns (and
have done so for several of the patterns in Gamma, et al.
[6] and our previous work [17]), but we need to manually
specify the instances of these patterns that occur in each
particular software system for the database. Because our
constraint framework is sufficient for checking that these
patterns actually exist in the software, we see our manually
entered definitions as a placeholder for what will eventu-
ally be a useful tool that would let developers specify and
maintain a design-pattern-based description of their
system.

Another example of an incomplete set of artifacts is the
description of usage conventions for groups of methods.
Part of the design or specifications of a software system is a
description of how a class or library should be used.
Though there have been efforts, both old [20] and new
[2], to validate software against such specifications, usage
information is usually specified through informal com-
ments and documentation, and cannot be easily captured in
a tool. Our constraint mechanism lets us formally define
such constraints and then check them as the software
evolves. However, we need to provide the instantiations of
the conditions manually instead of extracting them from
existing artifacts. Currently we use this approach to specify
and check conditions such as “any method that returns an
instance of class C (or any of its subclasses) needs to return
a newly created instance”.

Dealing with a variety of artifacts forced us to confront
naming. Since we wanted to relate information in one arti-
fact with that in another, we needed to ensure that we could
appropriately link equivalent references. In some cases,
such as in UML diagrams, the programmer may provide
only partial names, omitting the full package name and
only providing the class name. However, in most cases, the
abstraction tools have enough information to construct
unique names for each package, class, method, field, scope,
etc. We adopted a naming convention similar to that used
in Java and required each abstraction tool to generate a
field with this name for each appropriate entity.



5.  Database Management

The database management component of the environ-
ment is responsible for taking the information that is gener-
ated by the various abstractors and inserting it in the
database. It consists of three modules: an activity monitor,
a command generator and a database manager. We describe
each of these in turn.

The activity monitor runs periodically to detect which
software artifacts have been modified by the developer.
When it detects such modifications, it runs all the appropri-
ate information abstractors, and collects the names of the
resultant data files.

The command generator consumes the information in
these data files and packages it as a set of commands with
respect to the database. The commands are of two forms.
The first indicates that all data in a given database table that
meet a criterion are to be deleted. This is typically used to
remove all the old information that is associated with a par-
ticular artifact when that artifact changes. The second form
of command indicates a new tuple to be add to a particular
table. By organizing the data independently of the informa-
tion source, this package greatly simplifies the actual data-
base manager.

The database manager itself has three primary respon-
sibilities. It first needs to process the commands that are
provided by the command generator, adding and removing
tuples in the database. Second, it needs to manage unique
identifiers. Finally, it needs to generate a file describing
what has changed in the database so that later constraint
processing can be done incrementally.

The commands to the database manager describe sets of
tuples to be added and removed from each relation. Typi-
cally, they would indicate that all tuples that came from a
particular artifact should be removed and then provide all
new tuples for that artifact. This is true even if only a small
change was made to the artifact. This presents two basic
problems for the incremental framework that the database
manager fits in. First, it means that the database manager
would have to report a relatively large number of changes
to the later constraint manager even when only a small
amount of data actually changed. Second, it makes tracking
unique identifiers more difficult.

To avoid these difficulties, the database manager
attempts to intelligently update based on the information it
has. Instead of deleting tuples outright, it reads all the
tuples that would otherwise be deleted. It then compares
each tuple to be added against those scheduled for deletion.
If the new tuple is already in the database, it ignores both
the request to remove and insert it. If the tuple is indeed
new, it inserts it into the database. Finally, it removes all
tuples that were not otherwise duplicated.

While maintaining the tuples in the relations, the data-
base manager needs to manage the assignment of unique
identifiers (UIDs). Unique identifiers are associated with
tuples in most of the tables of the database. They are used
to provide links between tables (such as the link between a
symbol reference and its definition) and form the basis for
later constraint management, where they are used to asso-
ciate a particular constraint instance with the tuples in the
database that caused it to be created and validated.

To support unique identifier management, the database
system requires that any relation containing a UID field
also specify the set of fields that characterize each tuple.
This set of fields is then used to ensure that the same UID
is used to represent the same object through updates. For
example, in the relation describing source definitions, the
UID is characterized by the name, the scope, the data type,
and the type of symbol for the definition. When a tuple
with a UID field is to be added to the database, the database
manager checks if there is an existing UID assigned to the
set of characteristic fields. If so, it will reuse this UID; if
not a new UID will be created. The processing for UIDs
takes advantage of the previously described incremental
processing: it makes the assumption that any UID that
would be reused will come from the set of tuples that are
being deleted from the relation. This assumes that a UID
will only be reused if the file it originally came from and it
now derives from are the same. For Java, this is generally
true for most symbols. Where it is not implicitly true, we
ensure that the UID also depends on the original file.

A second part of UID management handled by the data-
base involves tracking UIDs that are assigned by the
various information abstractors and mapping these into
global UIDs for the database. For example, the symbol
table information abstractor assigns each definition that it
generates a new local UID and links each reference to its
definition using it. These local identifiers are unique only
with respect to the particular data file that is generated, are
not unique globally, and do not correspond to existing or
future global UIDs. The database manager handles local
UIDs by tracking which fields contain UIDs and mapping
the local UIDs, where given, into global UIDs that are gen-
erated using the previously cited rules for UID reuse.

The third task of the database manager is to generate an
XML description of what has changed in the database. The
description identifies which tuples are inserted, deleted,
and updated for each table of the database. This is only
done for tables that have UIDs associated with each tuple
and the information that is reported is just the UID of the
corresponding tuple. For tables that do not have associated
UIDs, the only information to report is whether the table
was changed.



6.  Defining Metaconstraints

Given data about all the different dimensions of a soft-
ware system, the next portion of the environment defines,
manages, and presents the constraints that ensure the dif-
ferent software artifacts remain consistent as the software
evolves. The first part of this task involves defining what it
means for two software artifacts to be consistent with one
another. Typically, this will mean that a syntactic or seman-
tic detail defined in one of the artifacts is represented
appropriately in the other artifact. Our environment uses a
constraint to reflect this association.

While it is not practical to have the developer explicitly
define all the constraints that are needed to relate the
various artifacts, it is possible to define rules whereby such
constraints can be generated. These rules are what we call
metaconstraints. The environment imposes several condi-
tions on how metaconstraints can be defined. These
include:

• It must be easy to identify the source of the constraint.
If a constraint is violated, it is essential that the devel-
oper be told where and in what artifact the problem
arises. For example, if a method is not covered by any
test case, the developer will want to know the identity
and location of the method.

• It must be easy to identify conflicts to a constraint. For
example, if a UML class diagram defines a method as
public but the actual method is protected, the developer
will want to know both the location of the method in the
class diagram and the location of the method in the
source code.

• It must be possible to mange the set of constraints
incrementally. As the database changes, the system will
need to manage the set of constraints, creating new con-
straints and removing old ones as necessary. This
should be possible without having to recompute the full
set of constraints or to check conditions for all con-
straints, and it should be based on the update files gen-
erated by the database manager.

• It must be possible to check the validity of the set of
constraints incrementally. Similarly, checking the valid-
ity of the full set of constraints will probably be too
costly. Instead, the system should be able to determine,
based again on the update file from the database man-
ager, what constraints need to be checked and then to
only recheck those.

To satisfy these requirements, we started with metacon-

straints of the form . Here S is a
relation in the database and x represents a tuple of that rela-
tion. This tuple is the source of the constraint. We require
that any relation used as the source of the constraint have
an associated UID field. This lets us easily identify the

source for a constraint and to detect, based on the update
file from the database manager, when we might have to
check for new constraint instances (when new tuples are
added to the relation S) or to remove existing constraints
(when the source tuple for a constraint is removed from S).

The second part of the constraint definition, ϕ(x), indi-
cates the conditions under which the constraint is applica-
ble, while the third part, Θ(x), is a qualified predicate the
specifies the conditions the constraint must meet. Both of
these are arbitrary predicates defined over tables in the
database. Variables ranging over the tables can be defined
using FORALL, EXISTS, NOTALL, NOTEXISTS, and
UNIQUE, operators. Each such variable is meant to repre-
sent a tuple. Fields of that tuple can then be accessed via a
FIELD operator. The predicates can also include compari-
sons, string matching, arithmetic and string operators, and
Boolean operations. The metaconstraint definitions are
provided by XML files that can be defined either globally
or for a particular project. An example of such a definition
is shown in Figure 3.

These formulas are translated into SQL queries. In par-
ticular, the constraint manager is able to generate two types
of queries from each formula. The first is designed to gen-
erate the set of UIDs that correspond to particular instances
of a metaconstraint along with a Boolean value indicating

x S∈( )ϕ x( )Θ x( )∀

<CONSTRAINT TYPE="QUERY" NAME="source_correspond" >
   <EXPR OP="FORALL" VAR="x" TABLE="SrcDefinition">
      <EXPR OP="AND">
         <EXPR OP="EQL">
            <EXPR OP="FIELD" FIELD="SymbolType" VAR="x" />
            <EXPR OP="INT" VALUE="4" />
         </EXPR>
         <EXPR OP="NOT">
            <EXPR OP="FIELD" FIELD="System" VAR="x" />
         </EXPR>
         <EXPR OP="EXISTS" VAR="z" TABLE="SrcScope">
            <EXPR OP="AND">
               <EXPR OP="EQL">
                  <EXPR OP="FIELD" FIELD="Id" VAR="z" />
                  <EXPR OP="FIELD" FIELD="Scope" VAR="x" />
               </EXPR>
               <EXPR OP="EQL">
                  <EXPR OP="FIELD" FIELD="ScopeType" VAR="z" />
                  <EXPR OP="INT" VALUE="6" />
               </EXPR>
            </EXPR>
         </EXPR>
      </EXPR>
      <EXPR OP="EXISTS" VAR="y" TABLE="UmlClass">
         <EXPR OP="AND">
            <EXPR OP="EQL">
               <EXPR OP="FIELD" FIELD="ClassType" VAR="y" />
               <EXPR OP="INT" VALUE="1" />
            </EXPR>
            <EXPR OP="EQL">
               <EXPR OP="FIELD" FIELD="Name" VAR="x" />
               <EXPR OP="FIELD" FIELD="TypeName" VAR="y" />
            </EXPR>
         </EXPR>
      </EXPR>
   </EXPR>
</CONSTRAINT>

FIGURE 3. Sample metaconstraint definition.



whether the constraint holds or not. This query can be
issued over the whole database or only for a particular set
of UIDs. The query is issued over the whole database when
the constraint set is initially created and when the query
definition file has changed. Otherwise, the query is
restricted to the set of UIDs that have been added or
changed for the source table.

The second type of query that is built by the constraint
manager from the metaconstraint definition is used to gen-
erate the dependencies for the constraint. If the Θ expres-
sion uses an EXISTS operator, then the UID for the
corresponding tuples that satisfy the expression are the ele-
ments that demonstrate the validity of the constraint. Simi-
larly, if the Θ expression uses a FORALL operator, then
the UID of any tuple that does not satisfy serves as a coun-
terexample that demonstrates the failure of the constraint
instance. The constraint manager will generate a set of
queries for each constraint, one for each nested EXISTS or
FORALL operator that is used in this way, to get the full
set of UIDs upon which each particular constraint depends.

These dependencies are used in two ways. First, they
are used to report information to the developer about why a
constraint may or may not hold. Second, they are used by
the constraint manager to determine when a particular con-
straint instance needs to be rechecked after an update to a
set of software artifacts. One complication that arises is
that some constraints are dependent on all tuples in a table.
For example, if a constraint uses a FORALL operator in
the Θ expression, then any change to the corresponding
database table will require that the constraint be rechecked.
To accommodate this, the constraint manager also keeps
track of which tables each constraint is dependent upon.
This information is determined statically by analyzing the
metaconstraint formula.

The constraint manager keeps track of the set of con-
straint instances using a separate set of relations in the
overall database. For each constraint instance, it keeps
track of the metaconstraint, the UID of the source tuple for
that constraint, the set of UIDs for each tuple that serves as
positive or negative evidence for the constraint, the set of
tables the constraint is dependent upon, and a flag indicat-
ing whether the constraint is currently valid or not. This
information is updated incrementally based on the update
files from the database manager and is done automatically
whenever the database manager updates the database.

Our environment uses these predicate-based constraints
to express a wide variety of different relationships among
software artifacts. These include:

• Constraints from UML class diagrams on the source
code that indicate that every class has a corresponding
source class, that every interface matches a source inter-
face, that class and interface generalizations match the

actual class hierarchy, that UML operations correspond
to methods, that UML attributes correspond to fields,
and that UML associations are reflected in the source.

• Constraints from the source code on UML class dia-
grams that ensure that all public classes and interfaces
appear in the UML model, that all generalizations
among public classes and interfaces are reflected by
UML generalizations, that public methods and fields of
public classes are reflected in the UML, and the associ-
ations based on fields are reported in the UML.

• Constraints from test cases on the source code that
ensure that a test case that covers a particular method
has been run since the method was last modified.

• Constraints from documentation on the source code that
ensure that any specification of parameters, see also
links, and throws clauses correspond to the current
source code.

• Constraints from the source code on documentation that
ensure that all public methods of public classes or inter-
faces are documented.

• Naming conventions for classes, interfaces, methods,
fields, local variables and constants.

• Pattern constraints for the Facade pattern. This was
done to illustrate that patterns could be represented and
is limited because of the lack of tools to create and
reflect pattern instances in software.

• Language usage conventions including the fact the all
parameters not starting with an underscore are actually
used, that all fields are read and written at least once,
that all methods are called at least once, and that data
fields are either private or protected.

While such predicate-based constraints are quite power-
ful, they are generally not sufficient for specifying and
checking conditions that are related to behavior. To cover
these, we are experimenting with different specification
techniques and different ways of checking whether differ-
ent software artifacts are indeed consistent.

One example of this involves extending our support for
UML to include sequence diagrams. The UML specifica-
tion [8] states that sequence diagrams depict the order in
which messages are passed between groups of objects col-
laborating in a particular behavior.

Sequence diagrams thus provide a powerful tool for
exposing the interactions between objects. This strength is
particularly applicable to the visualization of design pat-
terns. For instance, the Observer Pattern [6] creates a rela-
tionship within a group of objects such that when one
changes (the Subject) the others are notified (the Observ-
ers).

Figure 4 shows the Observer Pattern in the form of a
sequence diagram. Time progresses down the page. Each



box represents a particular object. The object names are
optional and for our purposes are ignored. The vertical
lines underneath each object are called lifelines and repre-
sent the duration of that object’s existence. Messages are
represented by arrows between lifelines. As a matter of
convention, we place a message’s signature on the side
nearest to the object that it is called from

In the context of our system, each message in the
diagram is represented as a tuple as in Figure 5. This tuple
represents the first call in the Observer Pattern sequence
diagram of Figure 4. The element with name ‘Index’ repre-
sents the order that the message occurs with respect to dia-
gram’s other messages.

The thin rectangles, each superimposed on a lifeline, are
called activations or foci of control. Each focus of control
represents the duration of a message’s execution. Further,
multiple messages may originate from a single focus of
control, representing that they were called by the message
that the focus of control represents.

We decided to utilize nested foci of control so that the
message body that each message is called from can be pre-
cisely represented. Those foci of control that are not
explicitly named are flagged as wildcards. Because a

sequence diagram is not intended to depict all messages in
an execution, only those that contribute toward a particular
goal are shown.

We discovered that predicate-based constraints are not
sufficient to verify the behavioral information expressed by
sequence diagrams. Because the first message in the
diagram represents a call point in an unknown message
body, we check all message bodies in the source code for
call points of its signature and class. For each such call
point that we find, we verify that the call points represented
by the rest of the messages of unknown origin in the
sequence diagram occur after it. Finally we verify that each
of the identified call points begins the proper sequence of
messages represented in the diagram.

7.  Presenting Constraints

The constraint manager generates the set of actual con-
straints along with enough information (based on UIDs) so
that a front end can identify the source and related informa-
tion for each constraint. The next part of our environment
involves taking this information and presenting it to the
user.

The overall environment is structured so that we can
take multiple approaches to presentation. Each presenta-
tion manager can access the database of constraints to get
information about what is currently consistent or inconsis-
tent about the software artifacts. Moreover, each presenta-
tion manager can access the abstraction database to get
enough detailed information about the UIDs associated
with each constraint so that appropriate information can be
presented to the user.

We currently have implemented two approaches to pre-
senting the current set of constraints. The first is a standal-
one system while the second uses the facilities of an
existing programming environment as seen in Figure 6.
The standalone system generates the project description
file, or can work with a description generated elsewhere.
Updates are performed when a project is opened for
viewing or at the request of the user. All constraints for the
project are displayed and can be sorted by file, constraint
name, or pass or failure. The user can choose to hide or
show any constraints to keep from cluttering the view with
constraints in which they are not interested. For example, a
user may hide all UML constraints for a project that has no
UML files. Emacs is opened to display any failures associ-
ated with a file and line number.

Along with the standalone system, we also created a
plugin for IBM’s Eclipse Java environment. This plugin
creates a project description file from the Eclipse project
description, requiring no input from the user. Updates
occur automatically whenever the project is compiled. By
default Eclipse uses an incremental compiler, which means

FIGURE 4. Sequence diagram for the Observer
pattern.

<TUPLE>
  <FDATA NAME=’ModelFile’ VALUE=’.../rose/observer.xml’ />
  <FDATA NAME=’Index’ VALUE=’0’ />
  <FDATA NAME=’Id’ VALUE=’G.14’ />
  <FDATA NAME=’NameOfCall’ VALUE=’void SetState()’ />
  <FDATA NAME=’ClassOfCall’ VALUE=’Subject’ />
  <FDATA NAME=’NameOfCaller’ VALUE=’*’ />
  <FDATA NAME=’ClassOfCaller’ VALUE=’Observer’ />
</TUPLE>

FIGURE 5. A sample tuple from the sequence
diagram of Figure 4.



compiles are quite frequent. Because of the time required
for an update, updates are noticeably slow. If incremental
compiling is turned off in favor of less frequent full builds,
however, there are no such problems. Failed constraints are
displayed in Eclipse’s task list alongside items like com-
piler errors and warnings. The list of constraints is also dis-
played in its own window in order to allow the user to hide
constraints. The user can also input a description of each
constraint to make the constraints shown in the task list
more informative. Constraint names and hidden constraints
are stored across Eclipse sessions.

8.  Experience

We have been using our constraint-based environment
both on itself and for a small set of development projects,
mainly to validate that the underlying systems work and
that the approach is a viable one. Our primary concerns
have been whether the approach represented by the envi-
ronment will report actual inconsistencies, whether the
necessary information gathering will be both accurate and
unobtrusive, whether constraints can be managed and
checked incrementally during active software develop-
ment, and whether the approach scales to handle large soft-
ware systems.

Our first experiment with the environment involved
developing a simple game program using UML and Java.
The program consists of about 2500 lines of Java and 25

classes. We alternatately wrote and evolved the game
program by generating new UML designs and new source
code. In both cases the environment pointed out the differ-
ences and led us to ensure the code and the UML diagrams
evolved consistently.

Our second experiment involved using the environment
on itself (about 25,000 lines of Java) during development.
Our principle goal in this instance was to ensure that the
system was both accurate and unobtrusive. Our experience
was that we did not even notice when the updates were
occurring. Moreover, our periodic checks of the violated
constraints showed them to be accurate and helpful in
finding potential (or in some cases real) problems with the
system. This experiment also validated our approach to
incremental update of both the abstraction information and
the constraints.

Finally, we ran experiments to see how and whether the
approach can scale to larger systems. Specifically, we
defined a project for the SOOT package for Java code anal-
ysis and optimization and generated the set of abstraction
information and constraints. SOOT has approximately
200,000 lines of Java source Our experience here was
mixed. The environment worked, generating the appropri-
ate data and constraints. However it took considerable time
to generate the initial data. The database that was generated
is about 140Mb in size and has about 15,000 constraints.
Setting up the database took about an hour, while generat-
ing the constraints took about 6 hours. Most of the setup
time was spent in reading and writing the XML data files
containing information for the database. Most of the con-
straint time was spent evaluating the query for one particu-
lar metaconstraint which apparently was optimized poorly
by the underlying database system.

The times here are slower than ideal, but they also rep-
resent an extreme case: importing an large legacy project
into the environment. We expect the common case to be a
user who employs the environment from the very begin-
ning, in which case the environment only makes incremen-
tal updates at each stage. This would limit both the size of
the data files that are generated and read and the complex-
ity and number of database queries that need to be gener-
ated to handle the constraints. Moreover, it is possible to
modify the environment for an initial load of the system to
avoid the incremental mechanism (and hence most of the
XML files), and to rearrange the constraint that is generat-
ing the complex query so it is optimized correctly so that
even the larger system could be installed in an hour or two.
We are currently working on improving the performance
here and on extending the environment to handle IBM’s
Eclipse environment for Java which contains 1,200,000
lines of code.

FIGURE 6. Standalone constraint interface.



9.  Related Work

Conceptually, the simplest approach to ensuring the
consistency of different aspects of software is to combine
them all within a single programming language. Several
environments such as Xerox Cedar Mesa environment [22]
and Common Lisp [19] have combined documentation
with code. These efforts led to literate programming [4,11]
and, more recently, the use of javadoc and its correspond-
ing conventions. Environments like Visual Studio combine
code and user interface design. Proponents of UML
propose writing complete systems within its framework,
thus making it a programming language that combines
design with code. Batory [3] lifts this idea to the level of
modules that encapsulate code, documentation and other
dimensions; however, these must all compose through the
same mechanism. This it not only very restrictive, it is
unclear how, for instance, to compose text the same way
we compose code. Other recent work looks at the impact of
evolution of code but ignores the other dimensions [18].

A number of current and past approaches to software
development have attempted to provide a comprehensive,
language-based environment. Garden [14-16] and Escal-
ante [13] tried to do this for visual languages; the proposed
DARPA prototyping language tried to do this for specifica-
tions; and intentional programming [1] tries to combine
multiple approaches in a single textual framework. These
approaches tend to focus on different programming dimen-
sions, generally ignoring specifications and design as well
as documentation. The same remarks apply to program-
ming techniques such as aspect-oriented programming
[9,10] or multi-dimensional separation of concerns [21]. In
the end, we believe that approaches that attempt to embed
dimensions of concern in the program will never scale to
handle the multitude of dimensions that programmers must
reconcile. The different dimensions require different nota-
tions and do not interact hierarchically or cleanly. More-
over, the set of software dimensions grows constantly.

10.  Conclusion and Future Work

We have described a new software environment that
tries to detect inconsistencies between numerous artifacts
used in the development cycle. It does so by translating dif-
ferent notations into a common constraint language. The
environment is abstract enough to support the addition of
new notations. It constantly monitors changes, efficiently
updates constraints, and reports violations when artifacts
become inconsistent. Preliminary experiments show that
the environment both provides useful feedback and does so
efficiently. Maintaining the consistency of the various
dimensions of software is an important step on the road to
giving multiple design artifacts equal billing.

There are many natural directions for future work: sup-
porting more dimensions, strengthening the tool support,
using a richer semantic constraint model, and improving
efficiency to support large legacy systems.
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