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Abstract

Software is multidimensional but the tools that support
it are not. The lack of tool support causes the software
artifacts representing different dimensions to evolve inde-
pendently and inconsistently. In order to support the evo-
lution of multidimensional software, an environment must
ensure that the different dimensions evolve concurrently.
This can be accomplished through an integration frame-
work that maintains consistency of the different dimen-
sions as they evolve. We have build a prototype of such a
mechanism by setting up and maintaining constraints
among artifacts representing the different software dimen-
sions. This paper describes that prototype and our experi-
ences with it to date.

1  Motivation

Most developers think of a software system as the
code and components that are the end result of the soft-
ware development process. As code is written, developers
gradually ignore the initial stages of development, the
specifications and the design of the system, the documen-
tation, the component specifications, and the test cases.
This narrow view of software is one of the primary causes
of the many problems associated with software and its
development [9].

We visualize an environment where all the aspects of
software development evolve consistently as the system is
developed and maintained. As any one of these aspects
changes, the environment would ensure that all other
aspects are updated accordingly. This would simplify both
software development and maintenance as it would guar-
antee that all aspects were relevant, accurate, and up-to-
date.

Such an environment can be built by defining con-
straints between the artifacts representing the different
software aspects. When an artifact is updated, all the con-
straints on that artifact are triggered and any related arti-
facts are checked for consistency. Consistency can then be
maintained either automatically or by informing the devel-
oper what needs to be done before the change is complete.
In this paper we demonstrate that such an environment
based on constraints can be built and used effectively for a
wide range of software artifacts.

1.1  Software Evolution

Software is not just the source code; instead it is mul-
tidimensional [19]. The specifications, design, architec-
ture, test cases, user interfaces, coding conventions,
components, constraints, design patterns, system architec-
ture, development history, and documentation are all as
much a part of a software system as is the physical code.
Furthermore, these other artifacts are sometimes much
more valuable than the code itself. Software development
and programmer productivity therefore depend on being
able to develop, relate, and consistently maintain all these
different aspects of the software.

Today’s software environments provide a wide variety
of tools to handle the many of dimensions of software.
Environments provide tools for managing, editing, and
debugging the source code; tools for developing and
experimenting with user interfaces; tools for specifying
the design using UML or similar notations; and tools for
creating and managing test cases for a system. Research
environments have demonstrated tool prototypes for man-
aging design patterns, components, and constraints
[3,6,8,16,17,22,24,25,27,29,40]. There are also tools spe-
cifically designed to handle software evolution. Most of
these tools only deal with the source code and use seman-
tic analysis to either identify code affected by potential
changes [2,15,42,47] or that assist in refactoring [5,24,41].

These tools, especially those dealing with different
aspects of software, are rarely integrated with one another.
As a result, software routinely evolves inconsistently
along the different dimensions. Typically, developers
create an initial design, but, as the code gets written and
modified, they do not update this design to reflect the
changes. The overall behavior of the system might have
been specified initially, but this approach offers no guaran-
tee to the future programmer that this specification is actu-
ally followed by the code after several change iterations.
Testing may be the single dimension that receives proper
attention, but the test suite usually bears little relationship
to other dimensions. Likewise, the developers might
emphasize coding conventions and constraints initially,
but will not necessarily check these during later evolution
so they may or may not be present in the evolved system.

This differential evolution of the various dimensions
results in programmers getting inconsistent views of the
system. Programmers quickly learn to not trust design
documents or the original specifications when they are



faced with an evolving code base. Similarly, test cases lose
relevance when developers fail to add new test cases as the
software evolves. Component interaction, originally
thought to be simple, becomes much more complex so that
the developers might not ever fully describe or understand
it in its final form. These and related problems are bad in a
moderate-sized system; they are often fatal as systems get
larger and more complex.

In short, programmers need a software development
framework that supports theconsistent evolution of all the
dimensions of software. This framework should let the
programmer specify the software along the different
dimensions, using existing tools where possible. It should
provide tools for design, code maintenance, test case gen-
eration and support, user interface design, documentation,
component specification, behavioral descriptions, con-
straints, etc. More importantly, it should make sure that
these different dimensions of the software remain consis-
tent with one another as the software evolves and should
provide tools for viewing and controlling this evolution.

1.2  Prior Work

Conceptually, the simplest approach to ensuring the
consistency of different aspects of software is to combine
all the aspects within a single programming language.
Several environments such as Xerox Cedar Mesa environ-
ment [46] and Common Lisp [43] have combined docu-
mentation with code. These efforts led to literate
programming [7,23] and, more recently, the use ofjavadoc
and its corresponding conventions. User interface design is
combined with code in programming environments such
as Visual Studio where the user can design the interface
and the system generates the code which the user never
actually sees. Proponents of UML propose writing com-
plete systems within its framework, thus making it a pro-
gramming language that combines design with code.
Batory [4] lifts this idea to the level of modules that encap-
sulate code, documentation and other dimensions; how-
ever, these must all compose through the same
mechanism. This it not only very restrictive, it is unclear
how, for instance, to compose text the same way we
compose code.

A number of current and past approaches to software
development have attempted to provide a comprehensive,
language-based environment. The Garden [31-33] and
Escalante [26] systems tried to do this for visual lan-
guages; the proposed DARPA prototyping language tried
to do this at the specification level; and, more recently, the
intentional programming efforts at Microsoft [1] try to
combine multiple approaches in a single textual frame-
work. These approaches tend to concentrate on different
programming dimensions, and generally ignore specifica-
tions and design as well as documentation and historical
dimensions. Moreover, none of these approaches has
shown itself to be practical.

An alternative that is being used today is to support a
multidimensional programming technique such as aspect-
oriented programming [20,21] or multi-dimensional sepa-
ration of concerns [45]. Here a base language such as Java
is augmented with cross-cutting encapsulations of code.
This allows, for example, design patterns that affect multi-
ple classes and methods to be defined in a single location.
While these techniques address some of the issues of mul-
tidimensionality, they still focus on programming and
neglect non-program dimensions.

In the end, we believe that approaches that attempt to
embed dimensions of concern in the program will never
scale to handle the multitude of dimensions that program-
mers must reconcile. The different dimensions require dif-
ferent notations and do not interact hierarchically or
cleanly. Moreover, the set of software dimensions is not
fixed. Different types of software require different specifi-
cations and designs. As developers invent new types of
software systems, they also devise new design and specifi-
cations techniques and languages. It is difficult to conceive
of a language where new specification techniques can be
easily added, integrated, and actually used. Finally, this
approach does not address issues of legacy systems or the
legacy components used in developing new software.

Rather than develop a single language incorporating
the different dimensions of software, one could develop an
intermediate representation supporting a variety of tools in
an integrated fashion within a software development envi-
ronment. Environments like Visual Studio already provide
facilities for editing source, designing user interfaces, and
creating UML diagrams. Environments such as Visual Age
maintain the full semantics of the system in memory for
fast compilation and analysis [30]. One could imagine
extending an existing environment, first by providing tools
for specifying other software dimensions and then by
using the internal representation to ensure consistency. For
example, the environment could track the structure of the
source and of the UML class diagrams and could, using its
internal data structures, ensure that the two are consistent.

Like a common language, this approach cannot
succeed in general. It requires that the representation be
designed to handle a much broader range of software
aspects than current environments support. This involves
reimplementing a broad range of tools within the environ-
ment in such a way that the environment can understand
the semantics of the different aspects. Given the broad
range of tools, each with different notations, features, and
facilities, this quickly becomes impractical. This approach
also will make it difficult to develop and use the new
dimensions that will be needed for new types of software;
it will, again, be difficult to use with legacy systems. Most
importantly, before we can develop such an intermediate
representation, we need to tackle the central problem of
how to relate the different dimensions.



1.3  Consistent Software Evolution

Our goal is to provide a workable framework for
maintaining the consistency of the many dimensions of
software as the software evolves. To be effective, practical
and complete, such a framework must meet a broad set of
requirements. In particular, it should:
• Work with existing tools. Practicality implies that we

should not have to reimplement or even significantly
modify the broad range of existing tools. This is neces-
sary to make use of the large effort represented by
these tools and to handle legacy code and external
components. A good mechanism should be able to
extract the necessary information from these tools and
interact with the tools.

• Handle a wide range of software dimensions. A good
mechanism should not be geared to a specific problem
such as ensuring the consistency of a UML class dia-
gram with the source code. Instead it should be flexible
enough to handle the broad range of dimensions that
are actually involved in software development. This
includes those dimensions that are not currently cov-
ered by existing tools.

• Be extensible. While some of the new dimensions can
be foreseen now and should be dealt with, a practical
mechanism will have to be adaptable to new design
techniques and approaches, such as those implicit in
Extreme Programming. To this end, the mechanism
must be open and extensible.

• Be bidirectional. It is important that the mechanism
handle changes in any aspect at any time. For example,
a developer who changes the design will want to know
what code is affected by the change and whether it is
still consistent. At the same time, changing the code
instead should tell the developer what aspects of the
design are affected and whether they are still consis-
tent.

• Support partial checking. A particular dimension gen-
erally does not provide a complete representation of
the software. It is important to be able to support such
partial representations. For example, the programmer
might provide a UML diagram for all the externally
viewable classes, but might omit diagrams for some
internal support classes; it might be appropriate to pro-
vide external documentation for the public and pro-
tected methods of a class and to omit it for private
methods. It should be possible for the mechanism to
handle these and related cases and not force the pro-
grammer to provide unnecessary information.

• Be able to locate points of inconsistency. Not only does
the mechanism need to determine when the dimensions
are inconsistent, it needs to provide the programmer or
tools with information on exactly what is inconsistent
and why. At a minimum, this means identifying where
in the different software artifacts the inconsistencies
arise. Ideally, the mechanism should also provide sim-
ple and useful feedback.

• Have low overhead and be unintrusive.The mecha-
nism should not interfere with existing tools or with the
programmer. It should not take an excessive amount of
time to find the inconsistencies. It should be as auto-
matic as possible.

• Handle both static and dynamic properties. Many
design and specification notations state something
about the behavior of the software. While some of this
can be checked statically, in general such checks are
impossible (by equivalence to the halting problem).
The mechanism must be able to extend to and deal with
the dynamic properties of software.

The existence of such a framework would greatly enhance
programming environments and the programming process
itself.

2  Overview of our Solution

As we have discussed in Section 1.2, approaches to
consistent software evolution that depend on developing a
single comprehensive language or a single common
semantic representation will not succeed for several rea-
sons. First, they cannot adequately capture the wealth of
dimensions inherent to software. Second, they will fail to
handle new dimensions implicit to new types of software
and software development. Third, they make it difficult to
incorporate existing components into a system. To be suc-
cessful, we need a more flexible approach to evolution
management.

Our approach is to address this problem independent
of the tools, languages, and notations needed for defining
the various software dimensions. Here designers would
describe software as they do now: using a combination of
tools to create a set of artifacts or documents, each of
which reflects one or more dimensions of the software. We
then add a separate integration mechanism that provides
for the consistent evolution of these artifacts. This integra-
tion mechanism analyzes the different artifacts and finds
and flags any inconsistencies throughout the software
development process. The mechanism is open both in that
new dimensions can be handled through new types of arti-
facts and a variety of support tools can be used to show
and manage the inconsistencies.

Integration mechanisms that work with existing tools
have been quite successful. We pioneered the use of
control integration in programming environments in the
FIELD system [34-37] and the concept was then used in
commercial systems such as HP’s Softbench, Sun’s
ToolTalk, and DEC’s Fuse. Here tools were either
wrapped or slightly modified to send and receive messages
using a relatively simple central message server. Integrat-
ing a new tool into the environment was a fairly straight-
forward task. Moreover, to the user, the overall
environment behaved like a totally integrated suite of
tools. In more recent work in this area, we showed in the
Desert environment [38,39] and others demonstrated in the
Sheets environment [44] that it is possible to provide an
inexpensive form of data integration on top of existing
tools. All these efforts concentrated on the programming
aspects of software. In the proposed work we intend to
extend this to as many other dimensions of software as
possible.



Using an integration mechanism here has the promise
of solving the problem of inconsistent software evolution
in a practical way. It would allow the use of existing tools,
languages, and notations. It would work with legacy sys-
tems, new code, as well as combinations of the two. It is
simple enough to be adaptable to new dimensions, new
tools, and new notations.

The integration mechanism that we have developed
for maintaining the consistency of the different software
artifacts is based on the notion of constraints. The key
insight here is thatthe design and specifications are
simply constraints on the source code. The whole
process of specification and design can be thought of in
general terms as specifying constraints on the final solu-
tion. Any implementation of the system the satisfies the
full range of such constraints should be an acceptable
solution. We can generalize this to take into account situa-
tions where different design and specification dimensions
impose constraints on each other and to situations where
the source imposes constraints on what should be included
in the design. More importantly, this approach can be
extended to interrelate the multiplicity of dimensions of a
software system.

A constraint-based approach to consistency mainte-
nance is both flexible and feasible. Most of the existing
design notations can be viewed directly as a set of con-
straints on the source. For example a UML class diagram
imposes constraints requiring the existence in the source
of any class, method, or field specified by the diagram
along with constraints about the class hierarchy and use
relationships between the classes. It is possible to automat-
ically take such a diagram and generate the corresponding
list of constraints. Constraints can also be used for check-
ing programming style, design patterns, coding conven-
tions, as well as detailed and system-specific design rules
[10-12,18,28,48]. Similarly, completeness of the design
can be viewed as constraints imposed by the source. For
example, a system-wide constraint can specify that every
public class in the source be reflected in some UML class
diagram.

In order to make this work in general, however, we
must be cautious both in specifying the basis for the con-
straints and in specifying the constraints themselves. The
constraints must provide foraccountability; it must be
possible to determine what portions of the source or other
software artifact are in conflict when a constraint is not
met. The constraints must also be easy to specify and rela-
tively easy to check. The former is required to accommo-
date system-specific constraints that programmers will
want to impose. The latter is needed to ensure that consis-
tency maintenance is tractable even in the face of thou-
sands of constraints. Finally, the basis for specifying
constraints must be flexible enough to accommodate the
wide variety of software dimensions.

The first step in this approach is to develop a common
framework (as opposed to a common representation) for
specifying all the software artifacts. This can be done by

abstracting information from the different artifacts. Using
an abstraction here provides independence from the actual
tools being used, allows analysis to be done in order to
provide a more practical basis for specifying constraints,
and ensures that the information needed by the constraints
is available. Using this approach, it is possible to abstract
information in multiple ways from a single representation.
This is most useful for the source code, where one can
have separate abstractions based on structural information
(the symbol table), semantic information (program depen-
dency graphs), and dynamic information (trace data and
performance summaries). Wherever possible, each item
abstracted from an artifact identifies a location in that arti-
fact as its provenance.

We then specify constraints as predicate equations
over the corresponding abstracted data. We restrict con-
straints to be equations of the
form: where S indicates the set
containing data representing the source of the constraint,
ϕ(x) indicates the conditions under which the constraint is
applicable, andΘ(x) is a qualified predicate the specifies
the conditions the constraint must meet. Constraints of this
form let the consistency manager handle accountability.
The manager can determine for each constraint and each
applicable object from S, what objects specified byΘ are
used to either verify or disprove the constraint. The system
then presents the user with the locations of the inconsistent
elements in the appropriate artifacts.

We note that these constraints are one-way. They state
that for a particular source object (say a class in a UML
diagram or an instance of a design pattern) there must be
some set of corresponding target objects (a class or a set of
classes, methods and fields respectively in the source) that
satisfy the constraint. Moreover, there is no inherent limit
to what types of conditions can be checked by such con-
straints as both the predicates and the set of objects can be
enhanced to accommodate the wide variety of software
dimensions.

To demonstrate the feasibility of this idea, we have
built a prototype system that can manage the evolution of a
small set of software artifacts. The artifacts we have
included cover a representative set of dimensions: UML
class diagrams, source files, style conventions, design pat-
terns, and design constraints.

An overview of the architecture of this system is
shown in Figure 1. The details are presented in the next
three sections.

3  Managing Abstractions

The first part of the system involves simple tools for
abstracting information from artifacts and storing the
result in a relational database. This includes the project
manager, update monitor, artifact abstractor, and database
manager of Figure 1.

The project manager is needed so that the overall
system can determine the set of artifacts that define the
particular software project of interest. Each project is

x S∈( )ϕ x( )Θ x( )∀



defined by an XML file that specifies where in the file
system to find the artifacts and the set of properties associ-
ated with the project. Properties include variables such as
the Java class path, project-wide environment variables,
and compiler options. The file system specification lets the
programmer specify directories to include or exclude as
well as patterns describing files to be explicitly included or
excluded.

The update manager is a tool that runs periodically
checking if any of the artifacts in the project defined by the
project manager have changed since the last check. It
keeps track of the previous set of artifacts and notes any
artifacts that have been deleted, added, or modified. When
such changes are detected, it runs an appropriate abstrac-
tion tool that scans the artifact and generate new abstrac-
tion information for the abstraction database. An XML file
describes the different abstraction tools that are available
and how they should be run (e.g. once for each file of the
given type that has changed or once for all files of the type
that changed).

The artifact abstraction tools are designed to be spe-
cific to a particular artifact type. For UML, we start with
an XMI representation of the UML specification. Several
UML tools generate XMI directly and translators from a
tool-specific representation into XMI are available for the
more common UML tools such as Rational Rose. Our
front end for XMI reads the XMI file and sets up eight
relations that reflect the information contained in the class
diagram.

For source files, we use a modified IBM Jikes parser
for Java that outputs symbol table and related information
in XML format. We then have a separate tool that reads
this data and generates eight relations to reflect the infor-
mation.

The other dimensions of software that we currently
cover are not reflected directly by artifacts. For example,
there is not particular artifact that specifies style conven-
tions. In these cases we define the data in the resultant
relations directly and neither the update manager nor the
artifact abstractor are used.

The result of running any of the artifact abstractors is
an XML file that describes the changes needed in the data-
base. These changes are done on a file-basis. The descrip-
tion file first indicates what elements should be removed
from the database by specifying key-value pairs that gen-
erally identify the source artifacts that are deleted or
changed. It then provides a full set of data from the new or
modified artifacts.

The database manager takes this information and
keeps the database up-to-date. It starts with a set of XML
files that describe the database. These allow the definition
of enumerated constants as well as all the relations. For
each relation, they specify the keys as well any indices that
should be maintained. The database manager can be used
to force a recreation of the database if these files are
changed. It does this both by setting up a new database and
by informing the update manager that everything needs to
be updated from scratch.

The database manager itself is designed to find and
make incremental changes to the database even when the
artifact abstractor provides it with completely new infor-
mation for a modified artifact. It does this by loading the
old information from any changed artifact, comparing that
to the new information, matching as much as possible, and
then making only the required updates. The database
manager then produces a set of update files that describe
the actual changes that were made in the database. This is
the basis for constraint management in the next phase.

In addition to handling database updates, the database
manager performs two other tasks. The first is to maintain
unique identifiers (UIDs) for most of the items stored in
the database. Each primary relation has a UID field. The
corresponding UIDs are used later on to identify the
source or affected items in constraints. UIDs also serve as
keys and can be used to allow virtual pointers from one
relation to another. The XML files that define the database
relations specify which field is a UID and which fields the
UID is dependent upon. The database manager uses this
information wherever possible to preserve UIDs over
updates. UID maintenance also provides facilities for
mapping UIDs in the incoming change data (where they
are defined locally rather than globally) into UIDs in the
global database.

The second task performed by the database manager
is to create and automatically maintain relations based on
transitive closure. Much of the analysis that needs to be
done in understanding programs requires predicates based
on transitive closure. This includes analysis of scopes,
class hierarchies, control and data flow information, and
type inference [13]. The system provides a simple facility
for defining transitive-closure based relations using an
XML file. It then automatically maintains these relations
whenever changes occur, again sending out update infor-
mation as if these relations were updated directly.

Project
Manager
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Monitor

Artifact
Abstractor

Database
Manager

Constraint
Manager

Constraint
Reporter

Software
Artifacts

Abstraction
Database

Constraint
Database

Update
Files

Constraint
Reports

Figure 1. Architecture for detecting and main-
taining software constraints.



4  Defining Constraints

The heart of our prototype system is the constraint
manager. This tool takes a set of metaconstraints defined
against the abstraction database and maintains the implied
set of actual constraints. The set of actual constraints and
their current status is then maintained in a constraint data-
base.

As previously noted, metaconstraints have the form
. In terms of the abstraction data-

base, S is a relation whose elements has associated UIDs,
ϕ controls which elements of S are appropriate to the
metaconstraint, andΘ is the conditions that must be met
for an instance of the metaconstraint to be satisfied. Meta-
constraints are defined as set expressions using XML as
shown in Figure 2. The constraint shown here checks to
see that each UML class has a corresponding class in the
source. The top-level operator is a FORALL that specifies
the set S as the relationUmlClass. The AND clause imme-
diately in the FORALL specifies the restrictionϕ on
which elements ofUmlClassare to be considered. Here is
indicates that only those that have a non-null name and
that are classes (rather than interfaces; this is indicated by
ClassType= 0) should be considered. The EXISTS opera-
tor underneath that specifies the rest of the constraint,Θ.
Here it indicates there has to be a definition in the source
that is a class (SymbolType= 3) and that has a name that
matches the name of the UML class.

In general the metaconstraint definitions can be quite
complex, allowing the use of arbitrary predicates (includ-
ing regular expression matching) and multiple nested
EXISTS and FORALL clauses. The use of XML as an
interface here is chosen so that it will later be possible to
implement a user-friendly front end for specifying con-
straints.

The constraint manager takes each of the metacon-
straint definitions and maps it into two SQL queries over
the abstraction database. The first tests whether the con-
straint is viable for a given UID in the base set. This query
can be used in one of two ways. It can be used first to find
a complete list of UIDs to which the constraint applies.
Second, it can be used to determine the status of the con-
straint for a given set of UIDs. Both return a set of UID-
Boolean pairs where the UID indicates the element of S
that generates the constraint and the Boolean indicates
whether the constraint is currently satisfied. The first
method is used initially to the initial set of constraints. The
second is used in conjunction with the set of items that
were updated that was provided by the database manager
to update all constraints based on this metaconstraint.

The second query the constraint manager generates
from a constraint definition takes a specific UID from the
set S and returns a list of UIDs that specify elements of
other sets that affect the validity of this constraint. If the
database manager updates any of these elements, the con-
straint manager knows that it will have to recheck the con-
straint. This provides the facility for incrementally
updating constraints in an intelligent way and allows the
database manager to handle large numbers of constraints
efficiently. Specific UIDs, however, are not always suffi-
cient. Where the nonexistence of an element is essential to
the validity of a constraint, no particular UID can be
selected. In these cases, the constraint manager associates
relations with each constraint and will recheck the con-
straint if any tuples in that relation have changed as a
result of the update. While this is less efficient, it allows
more powerful constraint specifications.

The constraint manager also keeps track of the con-
straint definition files. It notices when existing files have
been modified or removed and when new files are added.

x S∈( )ϕ x( )Θ x( )∀

<CLIME:CONSTRAINT TYPE="QUERY" NAME="uml_source_class_correspondence" >
<CLIME:EXPR OP="FORALL" VAR="x" TABLE="UmlClass">

<CLIME:EXPR OP="AND">
<CLIME:EXPR OP="NOTNULL">

<CLIME:EXPR OP="FIELD" FIELD="Name" VAR="x" />
</CLIME:EXPR>
<CLIME:EXPR OP="EQL">

<CLIME:EXPR OP="FIELD" FIELD="ClassType" VAR="x" />
<CLIME:EXPR OP="INT" VALUE="0" />

</CLIME:EXPR>
</CLIME:EXPR>
<CLIME:EXPR OP="EXISTS" VAR="y" TABLE="SrcDefinition">

<CLIME:EXPR OP="AND">
<CLIME:EXPR OP="EQL">

<CLIME:EXPR OP="FIELD" FIELD="SymbolType" VAR="y" />
<CLIME:EXPR OP="INT" VALUE="3" />

</CLIME:EXPR>
<CLIME:EXPR OP="EQL">

<CLIME:EXPR OP="FIELD" FIELD="Name" VAR="x" />
<CLIME:EXPR OP="FIELD" FIELD="Name" VAR="y" />

</CLIME:EXPR>
 </CLIME:EXPR>

</CLIME:EXPR>
</CLIME:EXPR>

</CLIME:CONSTRAINT>

Figure 2. Example constraint definition.



In each of these cases it will automatically recompute the
set of affected constraints. This lets the developer specify
new constraints and modify the definitions of old con-
straints dynamically, offering more flexibility to the
system and making it easier to update and maintain the set
of constraints.

The constraint manager stores the result of its analysis
in a constraint database. (This is currently kept as part of
the abstraction database, but can be logically viewed as a
separate database.) This database keeps track of each of
the constraints that are generated from the metacon-
straints. For each it keeps the UID of the base object and
well as the UIDs of all internal objects. These internal
UIDs represent the portions of artifacts in the rest of the
system that either validate or invalidate the particular con-
straint. This database is then accessible to other tools that
want to track constraints and system evolution.

To demonstrate the feasibility of our approach we
developed a range of different constraints. For relating
UML class diagrams to the source code we defined meta-
constraints that:
• Ensure each UML class has a corresponding source

class.
• Ensure each UML interface has a corresponding source

interface.
• Ensure each class generalization in a UML diagram

corresponds to a superclass in the source.
• Ensure each interface generalization in a UML dia-

gram corresponds to an extension in the source.
• Ensure each operation listed in a UML class has a cor-

responding source method with a compatible signature.
• Ensure each attribute listed in a UML class has a corre-

sponding field with a compatible type.
• Ensure each association in a UML diagram has a corre-

spondence in the source class is appropriate.
• Ensure each association in a UML diagram has a corre-

spondence in the target class is appropriate.

For relating the source back to UML class diagrams we
defined metaconstraints that:

• Ensure each unnested source class has a corresponding
UML class.

• Ensure each unnested source interface has a corre-
sponding UML interface.

• Ensure all superclass relationships between unnested
classes have corresponding UML generalizations

• Ensure all interface relationships involving unnested
user classes and interfaces are reflected in the UML
diagram.

• Ensure each public method in an unnested class has a
corresponding method in the UML diagram.

• Ensure each reference to another class based on field
types from one unnested class to another has a corre-
sponding UML association.

For checking programming style we added constraints that
check naming conventions:

• Ensure that classes and interfaces have names of mixed
case that start with an upper case letter.

• Ensure that methods have names that start with a
lowercase letter.

• Ensure that fields have names that are all lowercase and
that contain an underscore.

• Ensure that local variables have names that are all
lowercase.

• Ensure that constants have names that are all uppercase
and that may contain underscores.

To show that we could handle coding rules, we added a
number of usage check metaconstraints. These include:

• Each parameter whose name does not include an
underscore must be used in its routine.

• Each field defined in a class must be read at some
point.

• Each field defined in a class must be written at some
point.

• Each method defined in a class must be called either
directly or potentially virtually.

• All fields must be either private or protected.

Finally, we defined metaconstraints that have to be special-
ized to a particular system. These assume new relations
whose entries are specific to each system and thus are
entered manually rather than being abstracted from an arti-
fact. The metaconstraints defined in this way include:

• Let the programmer define classes that are supposed to
be effectively pass-by-value. This implies that any rou-
tine returning an instance of this class has to return a
new instance. This is a semantic constraint that arises
in some applications. (In our case it arose for a bit-set
type.) We provide a separate relation where program-
mers can define the appropriate types for their system.

• Let the programmer define instances of design patterns.
We provide a relation that lets the user specify the pat-
tern type and properties of that pattern. The only pat-
tern we currently support is the facade pattern [14].

5  Maintaining Constraints

The remainder of our prototype system takes informa-
tion from the constraint database and issues reports about
the set of constraints that were generated. The current
implementation is a simple tool that provides a textual
view either of all constraints or of those constraints that
are not satisfied. The interface to the database is designed
so that more sophisticated visual tools can be constructed
and so that violated constraints can be shown in the
context of the artifact they originated in.

Two examples of constraint reports are shown in
Figure 3. The first indicates that there is a class in the
source for which there is no UML class. Here the report
accesses the abstraction database to provide all the infor-
mation available about the source class that is the culprit.
This shows that enough information is present to locate
that class in a tool if necessary. The second example indi-
cates that a method was defined by never called. In this
case, the constraint is explicitly violated by an element in
the database. Here the report that is generate not only indi-
cates which constraint is not satisfied, but lists the counter-
examples that caused the constraint to fail. Again, the
report demonstrates that enough information is available
so that other tools could be used to show the problem.



6  Experience and Future Plans

We have used the constraint-based evolution frame-
work for two different Java systems. The first involved the
development and evolution of a 2500 line game-playing
program. Here we did a UML design of the initial system
before we worked on the corresponding implementation.
Next we evolved the system by adding new capabilities
and features sometimes by doing the design modifications
first and at other times by doing the code modifications
first. In all cases the constraint manager was able to keep
track of what was inconsistent and was able to report the
differences. We found it very useful to have a tool that
automatically checked and told us what needed to be done.
We also found that the existence of the constraints encour-

aged us to maintain the design as an accurate reflection of
the code.

We also used the system on itself as it was evolving.
Here we demonstrated that the system does scale (the
system currently includes about 17,000 lines of code and
generates about 1,340 constraints) and that it can be used
practically and unobtrusively during software develop-
ment. Rather than do a UML design for this system, we
used Rational Rose’s reverse engineering capability to
construct the UML model. The fact that the various con-
straints on the UML were then satisfied acted as a check
on both this reverse engineering process and on our con-
straint definitions. We also found several bugs in the
system through the various style constraints.

source_uml_method_correspondence        FAIL (_19482) for
        Id :    _15267
        Name :  getName
        File :  /pro/clime/javasrc/edu/brown/clime/clide/ClideModelManager.java
        StartLine :     835
        EndLine :       835
        Scope : _589
        ScopeName :     <topscope>.edu.brown.clime.clide.ClideModelManager.FunctionBase
        SymbolType :    5
        StorageType :   3
        Access :        1
        Final : f
        Abstract :      f
        System :        f
        Synchronized :  f
        Volatile :      f
        Native :        f
        Static :        f
        DefTypeName :   java.lang.String()
        DefType :       _12685
        NewScope :      _593

    Update table: UmlOperation
    Update table: SrcType
    Update table: SrcTypeParameter
    Update table: UmlOperationArgument

check_methods_called    FAIL (_19632) for
        Id :    _18951
        CheckType :     5
        CheckValue :

CounterExample from SrcDefinition:
        Id :    _14524
        Name :  testFile
        File :  /pro/clime/javasrc/edu/brown/clime/clip/ClipFileType.java
        StartLine :     60
        EndLine :       60
        Scope : _106
        ScopeName :     <topscope>.edu.brown.clime.clip.ClipFileType
        SymbolType :    5
        StorageType :   3
        Access :        1
        Final : f
        Abstract :      t
        System :        f
        Synchronized :  f
        Volatile :      f
        Native :        f
        Static :        f
        DefTypeName :   boolean(java.io.File)
        DefType :       _12687
        NewScope :      _111

Figure 3. Sample Constraint Report.



Our prototype work has only demonstrated that the
approach we plan to take is feasible and has potential.
Extending the concepts to handle the full range of software
dimensions and demonstrating that programmers can use
the approach effectively requires significant additional
research. The particular research directions we are
working on include:
• Extending this approach to handle other artifacts.
• Extending this approach to handle dynamic informa-

tion.
• Developing appropriate front ends for displaying

inconsistencies.
• Extending the concept from detecting inconsistencies

to fixing them.
• Validating this approach through more extensive use

and eventually controlled experiments.
• Integrating our mechanisms into an existing develop-

ment environment.

7  Conclusion

The approach we have taken involves the use of a con-
straint-based integration mechanism to maintain and
manage the consistency of software artifacts during evolu-
tion. Our work to date has demonstrated that this approach
is practical and worthwhile. In particular, the approach
meets most of the requirements set out initially for such a
framework:
• The mechanism works with existing tools using what-

ever artifacts the tools provide.
• The mechanism extends to a variety of software dimen-

sions. While we have limited the prototype to a small
set of dimensions, the methods and techniques are gen-
eral and should extend easily. Our ongoing work
includes providing such extensions to the more com-
monly used dimensions such as documentations.

• The mechanism is extensible. New artifacts and dimen-
sions can be added by creating abstraction tools and
updating a small set of XML description files. New
constraints can be added dynamically for these or
existing dimensions.

• The mechanism supports associating inconsistencies
with artifacts. Each constraint is based on a simple
tuple in a database relation. The abstractions that gen-
erate the relations are designed so that each such tuple
has associated source information. Moreover, the sys-
tem also is able to determine other tuples in other rela-
tions that validate or invalidate the constraint, thus
providing further source information.

• The mechanism has relatively low overhead and runs
unobtrusively. The current system, once started, will
automatically maintain all the constraints. Most of the
constraints are checked quickly. A few currently gener-
ate queries that the database optimizer has some prob-
lems dealing with and that run a bit slowly. However,
we are hoping to fix these problems in the near future.

The only requirement that the current mechanism does not
address at all is that of dynamic properties. The mecha-
nism can only really handle static properties defined by the
artifacts and has trouble expressing properties that are only

reflected during system execution. We are beginning to
explore what is needed to specify and check dynamic
dependencies. Here it appears that simple static queries are
insufficient; we are looking at alternatives such as
extended finite state machines.

Finally, we note that while maintaining the consistency of
the various dimensions of software is not a panacea for
making software easier to write or enabling the construc-
tion of better systems, it is a good first step. We believe
one needs an approach such as ours in order to move
beyond the narrow view of the source code being the
system. Being able to view and consistently evolve soft-
ware along multiple dimensions should give developers
more confidence in their systems and should ensure that
the resultant systems are more understandable and do what
they are meant to.
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