
CLIME: An Environment for Constrained Evolution
Demonstration Description

Steven P. Reiss, Christina M. Kennedy, Tom Wooldridge, Shriram Krishnamurthi
Department of Computer Science

Brown University
Providence, RI 02912

{spr,cmkenned,twooldri,sk}@cs.brown.edu

Abstract

We are building a software development environment
that uses constraints to ensure the consistency of the dif-
ferent artifacts associated with software. This approach to
software development makes the environment responsible
for detecting most inconsistencies between software
design, specifications, documentation, source code, and
test cases. The environment provides facilities to ensure
that these various dimensions remain consistent as the
software is written and evolves. The environment works
with the wide variety of artifacts typically associated with
a large software system. It handles both the static and
dynamic aspects of software. Moreover, it works incremen-
tally so that consistency information is readily available to
the developer as the system changes. The demonstration
will show this environment and its capabilities.

1. Introduction

Software is multidimensional. Software systems
consist of a wide variety of artifacts such as specifications,
design diagrams and descriptions, source code, test cases,
and documentation. Each of these dimensions describes
only a limited part of the software — the actual system is
properly the combination of all the artifacts.

Software evolution is the process whereby software
changes to meet changing requirements, systems, or user
needs. A major problem with software today is that the dif-
ferent artifacts of a software system tend to evolve at dif-
ferent rates. The result is that developers learn not to trust
and thus not to use anything other than the source code,
making software less reliable and much more difficult to
understand and evolve.

We are in the process of developing a software devel-
opment environment that addresses these issues using a
constraint-based mechanism. The environment defines and
analyzes the consistency of constraints on the software
system, including ones that span different dimensions.

This environment provides several capabilities. First, it
automatically extracts relevant information from each of
the software artifacts. Second, the environment stores and
maintains this information in a database, doing incremental
updates automatically as the software changes. Third, the
environment uses this information along with a description
of the types of constraints to be generated to build the com-

plete set of constraints for the software system. Fourth, it
uses the information in the database to incrementally test
the validity of these constraints. Finally, it provides facili-
ties for presenting the results of these tests to the develop-
ers so that they may take steps to resolve inconsistencies.

2. Environment Architecture

The overall environment consists of the components
shown in Figure 11. The components can be broken into
two parts: the first part manages extracting the necessary
information from the source artifacts while the second part
uses this information to find, update, and display informa-
tion about the constraints.

The Project Manager determines what files are part of
the current project. This information is used by the Activity
Monitor which determines when the files change, and then
uses appropriate Information Abstractors to get relevant
data about the corresponding software artifacts. This infor-
mation is passed to the Database Manager which first
determines what has actually changed and then updates the
database according to those changes. We currently handle

1. Reiss, Steven P. “Constraining Software Evolution”, Proc. Intl. Conf.
on Software Maintenance, October, 2002, pp. 162-171.

Software
Artifacts

Information
Abstractors

Database
Manager

Database

Activity
Monitor

Updates

Constraint
Definitions

Constraints

Constraint
Manager

Presentation
Manager

User
Output

FIGURE 1. The architecture of the environment.

Project
Manager

source files, UML diagrams, style rules, design patterns,
semantic information, test cases, and history information in
this first part of the system.

The Constraint Manager is based on metaconstraints
of the form . Here S is a relation in
the database and x represents a tuple of that relation, ϕ(x)
indicates the conditions under which the constraint is
applicable, and Θ(x) is a qualified predicate the specifies
the conditions the constraint must meet. It is passed the set
of items that change in the database by the database man-
ager, and uses the metaconstraints to generate appropriate
SQL queries to create, update, and check the set of con-
straints that should be imposed on the system. This is done
incrementally and can generally be done in background as
the system changes.

Finally, the set of constraints are displayed to the user
though the Presentation Manager. This tool gives the user
the option of prioritizing the constraints and organizing the
constraints as well as providing an understanding of what
each constraint means and to what it applies.

3. Consistency Checking

The above architecture can be used to check a broad
range of consistency conditions among software artifacts.
The current conditions that are checked include:
• Constraints from UML class diagrams on the source

code that indicate that every class has a corresponding
source class, that every interface matches a source inter-
face, that class and interface generalizations match the
actual class hierarchy, that UML operations correspond
to methods, that UML attributes correspond to fields,
and that UML associations are reflected in the source.

• Constraints from the source code on UML class dia-
grams that ensure that all public classes and interfaces
appear in the UML model, that all generalizations
among public classes and interfaces are reflected by
UML generalizations, that public methods and fields of
public classes are reflected in the UML, and the associ-
ations based on fields are reported in the UML.

• The sequence of calls in a UML interaction diagram is
realizable by the code.

• Constraints from test cases on the source code that
ensure that a test case that covers a particular method
has been run since the method was last modified.

• Constraints from documentation on the source code that
ensure that any specification of parameters, see also
links, and throws clauses correspond to the current
source code.

• Constraints from the source code on documentation that
ensure that all public methods of public classes or inter-
faces are documented.

• Naming conventions for classes, interfaces, methods,
fields, local variables and constants.

• Pattern constraints for the Facade and Singleton pat-
terns.

• Language usage conventions including the fact the all
parameters not starting with an underscore are actually
used, that all fields are read and written at least once,
that all methods are called at least once, and that data
fields are either private or protected.

• Test consistency checking that ensure that all proce-
dures are covered by at least one test case which has
been run since the procedure was last changed.

• Dynamic specifications of class usage such as Java Iter-
ators must always call hasNext before calling next and
files that are opened must be closed.

• Configuration management checking to ensure that all
files that are checked in through CVS have a corre-
sponding log message.

4. Experience

We have been using our constraint-based environment
both on itself and for a small set of development projects,
mainly to validate that the underlying systems work and
that the approach is a viable one.

The system is currently used in its own development
(40,000 lines of Java plus about 250,000 lines of external
Java libraries). Our experience has been that we did not
even notice when the updates were occurring. Moreover,
periodic checks of the violated constraints showed them to
be accurate and helpful in finding potential (or in some
cases real) problems with the system. This experiment also
validated our approach to incremental update of both the
abstraction information and the constraints.

Finally, we ran experiments to see how and whether
the approach can scale to larger systems. Specifically, we
defined a project for the SOOT package for Java code anal-
ysis and optimization and generated the set of abstraction
information and constraints. SOOT has approximately
200,000 lines of Java source The generated database here is
about 140Mb in size and has about 15,000 constraints.
While the initial setup of this database took about an hour,
incremental updates have been extremely fast, i.e. well
under a minute.

5. Demonstration

We will demonstrate various aspects of the system.
The demonstration will take the viewer through the defini-
tion of a constraint through to seeing where and how the
constraint is violated in the system. In doing this we will
show how the system does incremental constraint analysis
and how it is able to pinpoint the source of violations.

The demonstration will show both static and dynamic
constraints, show our modified test coverage tool, and
illustrate how both the standalone and the Eclipse-based
user interface can be used.

Finally, the demonstration will illustrate the perfor-
mance of the environment both in terms of setting up the
initial set of constraints and for doing incremental update
of that set.

x S∈()ϕ x()Θ x()∀

