
CLIME: An Environment for Constrained Evolution
Demonstration Proposal

Steven P. Reiss, Christina M. Kennedy, Tom Wooldridge, Shriram Krishnamurthi
Department of Computer Science

Brown University
Providence, RI 02912

{spr,cmkenned,twooldri,sk}@cs.brown.edu

Abstract

We have built a software development environment that
uses constraints to ensure the consistency of the different
artifacts associated with software. This approach to soft-
ware development makes the environment responsible for
detecting most inconsistencies between software design,
specifications, documentation, source code, and test cases.
The environment provides facilities to ensure that these
various dimensions remain consistent as the software is
written and evolves. The environment works with the wide
variety of artifacts typically associated with a large soft-
ware system. It handles both the static and dynamic
aspects of software. Moreover, it works incrementally so
that consistency information is readily available to the
developer as the system changes. We propose to demon-
strate this environment and its capabilities.

1. Introduction

Software is multidimensional. Software systems
consist of a wide variety of artifacts such as specifications,
design diagrams and descriptions, source code, test cases,
and documentation. Each of these dimensions describes
only a limited part of the software — the actual system is
properly the combination of all the artifacts.

Software evolution is the process whereby software
changes to meet changing requirements, systems, or user
needs. A major problem with software today is that the dif-
ferent artifacts of a software system tend to evolve at dif-
ferent rates. The result is that developers learn not to trust
and thus not to use anything other than the source code,
making software less reliable and much more difficult to
understand and evolve.

We are in the process of developing a software devel-
opment environment that addresses these issues using a
constraint-based mechanism. The environment defines and
analyzes the consistency of constraints on the software
system, including ones that span different dimensions.

This environment provides several capabilities. First, it
automatically extracts relevant information from each of
the software artifacts. Second, the environment stores and
maintains this information in a database, doing incremental
updates automatically as the software changes. Third, the
environment uses this information along with a description
of the types of constraints to be generated to build the com-

plete set of constraints for the software system. Fourth, it
uses the information in the database to incrementally test
the validity of these constraints. Finally, it provides facili-
ties for presenting the results of these tests to the develop-
ers so that they may take steps to resolve inconsistencies.

2. Related Work

Conceptually, the simplest approach to ensuring the
consistency of different aspects of software is to combine
them all within a single programming language. Several
environments such as Xerox Cedar Mesa environment [20]
and Common Lisp [18] have combined documentation
with code. These efforts led to literate programming [3,12]
and, more recently, the use of javadoc and its correspond-
ing conventions. Environments like Visual Studio combine
code and user interface design. Proponents of UML
propose writing complete systems within its framework,
thus making it a programming language that combines
design with code. Batory [2] lifts this idea to the level of
modules that encapsulate code, documentation and other
dimensions; however, these must all compose through the
same mechanism. This it not only very restrictive, it is
unclear how, for instance, to compose text the same way
we compose code. Other recent work looks at the impact of
evolution of code but ignores the other dimensions [17].

There are a number of systems that check the consis-
tency of single aspect of software. Lint [16] and successors
such as CCEL [5] and LCLint [7] perform static checking
of programs. Style checkers such as Parasoft’s tool suite or
the checkstyle project perform style and convention check-
ing of programs. Systems such as ViewIntegra [6] and
xlinkit [11] have been used to check the consistency of
UML diagrams. There are also a broad range of tools for
doing test coverage, languages such as Eiffel that include
checkable specifications in the code, and systems such as
Flavors [4] do static checking of external specifications.

The closest work of these to ours is the xlinkit
approach [14] as applied to software engineering. Xlinkit
provides the general ability to check the consistency of
multiple XML documents. XML documents can either be
specified directly or can be derived from other artifacts.
The constraints use a set-based XML query language based
on XPath and XLink. The current system is able to handle
very large documents using a disk-based representation
and is able to do limited incremental checking of con-

straints by looking at what portions of the XML tree have
changed.

Our efforts differ in several respects. First, rather than
using XML and XPath, we use a relational framework and
SQL queries. This provides a more powerful query lan-
guage and eliminates the need to treat large documents sep-
arate from small ones. Second, our system does
incremental update of both the internal representation and
the constraints and does incremental constraint update at
the constraint level rather than the rule level and thus can
be used continuously throughout the development process.
Xlinkit would require that XML files be generated for any
changes and does incremental update of constraints at the
rule level. Third, our system handles a broader range or
software artifacts, both static and dynamic. For example,
we handle test cases and coverage, UML interaction dia-
grams, and behavioral specifications. Finally, our system
works within existing programming environments, existing
programming tools, and existing methodologies, and does
so without requiring any action from the programmer.

3. Environment Architecture

The overall environment consists of the components
shown in Figure 1. The components can be broken into two
parts: the first part manages extracting the necessary infor-
mation from the source artifacts while the second part uses
this information to find, update, and display information
about the constraints.

The first problem that we had to deal with was to iden-
tify the artifacts of a particular software system. In our
environment this is done by the project manager compo-
nent of Figure 1. This component lets the developer define
a project using an XML file that describes the components.
It assumes that artifacts are represented by files in the file
system. The project description file then provides either a

list of particular files or a list of directories to search for
files. It also lets the developer specify which subdirectories
or files should be excluded from the search (e.g., version
information and editor backups are candidates for exclu-
sion).

Once we know what the artifacts are, we need to
process them. This involves identifying the particular
information that is needed to describe and understand a
specific software dimension and then extracting that infor-
mation from the artifact and putting it into a form that can
be easily understood by later tools. The environment
handles such abstractions for a wide variety of different
artifacts. The current abstractors include:
• Symbol table information from compiler analysis.
• Documentation information from a JavaDoc doclet.
• Semantic information derived from Soot Java Optimi-

zation Framework [21].
• UML class and sequence diagram information derived

from the XMI representation or from Rational Rose’s
mdl files.

• Test cases and test coverage information derived from
Junit [10], and a run time instrumenter based on IBM’s
JikesBT package [13].

• History information derived from the CVS version
management system [8].
In addition to information that is abstracted directly

from source artifacts, we allow additional information that
is not directly reflected in the artifacts. Some of this infor-
mation represents global information such as style and lan-
guage usage rules. Other information represents design
patterns (and have done so for several of the patterns in
Gamma, et al. [9] and our previous work [15]), where we
specify the instances of patterns that occur in the system.
We also allow specifications of usage conventions for
classes or packages. Though there have been efforts, both
old [19] and new [1], to validate software against such
specifications, usage information is usually specified
through informal comments and documentation, and
cannot be easily captured in a tool. We allow extended
automaton-based specifications to be defined and then
checked within the system.

The database management component of the environ-
ment is responsible for taking the information that is gener-
ated by the various abstractors and inserting it in the
database. It consists of three modules shown in Figure 1:
an activity monitor, a command generator and a database
manager. The activity monitor runs periodically to detect
which software artifacts have been modified by the devel-
oper. When it detects such modifications, it runs all the
appropriate information abstractors, and collects the names
of the resultant data files. The command generator con-
sumes the information in these data files and packages it as
a set of additions and deletions to w the database.

The database manager itself has three primary respon-
sibilities. It first needs to process the commands that are
provided by the command generator, adding and removing

Software
Artifacts

Information
Abstractors

Database
Manager

Database

Activity
Monitor

Updates

Constraint
Definitions

Constraints

Constraint
Manager

Presentation
Manager

User
Output

FIGURE 1. The architecture of the environment.

Project
Manager

tuples in the database. Second, it needs to manage unique
identifiers so that references in previous constraints are
maintained and incremental constraint checking is possi-
ble. Finally, it needs to generate a file describing what has
changed in the database for incremental update.

Our environment differentiates between metacon-
straints and constraints. Metaconstraints are rules for gen-
erating specific constraints. These have the form

. Here S is a relation in the data-
base and x represents a tuple of that relation, ϕ(x) indicates
the conditions under which the constraint is applicable, and
Θ(x) is a qualified predicate the specifies the conditions the
constraint must meet.

These formulas are translated into SQL queries. In
particular, the constraint manager is able to generate two
types of queries from each formula. The first is designed to
generate the set of UIDs that correspond to particular
instances of a metaconstraint along with a Boolean value
indicating whether the constraint holds or not. This query
can be issued over the whole database or only for a particu-
lar set of UIDs. The query is issued over the whole data-
base when the constraint set is initially created and when
the query definition file has changed. Otherwise, the query
is restricted to the set of UIDs that have been added or
changed for the source table. The second type of query that
is built by the constraint manager from the metaconstraint
definition is used to generate the dependencies for the con-
straint. These dependencies are used in two ways. First,
they are used to report information to the developer about
why a constraint may or may not hold. Second, they are
used by the constraint manager to determine when a partic-
ular constraint instance needs to be rechecked after an
update to a set of software artifacts. The information about
the individual constraints in then stored in the database.

The last part of the environment, the presentation man-
ager, provides information about the constraints and their
state to the user. We currently provide two interactive inter-
faces here, one that is a standalone interface for browsing
over the constraint information as seen in Figure 2. and the
other which is a plugin to IBM’s Eclipse environment.

4. Consistency Checking

The above architecture can be used to check a broad
range of consistency conditions among software artifacts.
The current conditions that are checked include:
• Constraints from UML class diagrams on the source

code that indicate that every class has a corresponding
source class, that every interface matches a source inter-
face, that class and interface generalizations match the
actual class hierarchy, that UML operations correspond
to methods, that UML attributes correspond to fields,
and that UML associations are reflected in the source.

• Constraints from the source code on UML class dia-
grams that ensure that all public classes and interfaces
appear in the UML model, that all generalizations
among public classes and interfaces are reflected by

UML generalizations, that public methods and fields of
public classes are reflected in the UML, and the associ-
ations based on fields are reported in the UML.

• The sequence of calls in a UML interaction diagram is
realizable by the code.

• Constraints from test cases on the source code that
ensure that a test case that covers a particular method
has been run since the method was last modified.

• Constraints from documentation on the source code that
ensure that any specification of parameters, see also
links, and throws clauses correspond to the current
source code.

• Constraints from the source code on documentation that
ensure that all public methods of public classes or inter-
faces are documented.

• Naming conventions for classes, interfaces, methods,
fields, local variables and constants.

• Pattern constraints for the Facade and Singleton pat-
terns.

• Language usage conventions including the fact the all
parameters not starting with an underscore are actually
used, that all fields are read and written at least once,
that all methods are called at least once, and that data
fields are either private or protected.

• Test consistency checking that ensure that all proce-
dures are covered by at least one test case which has
been run since the procedure was last changed.

• Dynamic specifications of class usage such as Java Iter-
ators must always call hasNext before calling next and
files that are opened must be closed.

x S∈()ϕ x()Θ x()∀

FIGURE 2. Standalone constraint interface.

• Configuration management checking to ensure that all
files that are checked in through CVS have a corre-
sponding log message.

5. Experience

We have been using our constraint-based environment
both on itself and for a small set of development projects,
mainly to validate that the underlying systems work and
that the approach is a viable one.

The system is currently used in its own development
(40,000 lines of Java plus about 250,000 lines of external
Java libraries). Our experience has been that we did not
even notice when the updates were occurring. Moreover,
periodic checks of the violated constraints showed them to
be accurate and helpful in finding potential (or in some
cases real) problems with the system. This experiment also
validated our approach to incremental update of both the
abstraction information and the constraints.

Finally, we ran experiments to see how and whether
the approach can scale to larger systems. Specifically, we
defined a project for the SOOT package for Java code anal-
ysis and optimization and generated the set of abstraction
information and constraints. SOOT has approximately
200,000 lines of Java source The generated database here is
about 140Mb in size and has about 15,000 constraints.
While the initial setup of this database took about an hour,
incremental updates have been extremely fast, i.e. well
under a minute.

6. Demonstration

We plan to demonstrate various aspects of the system.
The demonstration will take the viewer through the defini-
tion of a constraint through to seeing where and how the
constraint is violated in the system. In doing this we will
show how the system does incremental constraint analysis
and how it is able to pinpoint the source of violations.

The demonstration will show both static and dynamic
constraints, show our modified test coverage tool, and
illustrate how both the standalone and the Eclipse-based
user interface can be used.

Finally, the demonstration will illustrate the perfor-
mance of the environment both in terms of setting up the
initial set of constraints and for doing incremental update
of that set.

7. References
1. Thomas Ball and Sriram K. Rajamani, “The SLAM project:
debugging system software via static analysis,” ACM Principles
of Programming Languages, pp. 1-3 $K ballslam (January 2002).

2. Don Batory, David Brant, Michael Gibson, and Michael
Nolen, “ExCIS: an integration of domain-specific languages and
feature-oriented programming,” in Workshops on New Visions for
Software Design and Productivity: Research and Applications,
(dec 2001).

3. Bart Childs, “Literate programming, a practitioner’s view,”
TUGboat, Proceedings of the 1991 annual meeting of the Tex
User’s Group Vol. 12(3) pp. 1001-1008 (1991).

4. J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil, “FLAVERS:
A finite state verification technique for software systems,” IBM
Systems Journal Vol. 41(1) pp. 140-165 (2002).

5. Carolyn K. Duby, Scott Meyers, and Steven P. Reiss, “CCEL:
a metalanguage for C++,” Proc. Second Usenix C++ Conference,
(August 1992).

6. Alexander Egyed, “Scalable consistency checking between
diagrams -- the ViewIntegra approach,” 16th IEEE Intl Conf on
Automated Software Engineering, (November 2001).

7. David Evans, John Guttag, James Horning, and Yang Meng
Tan, “LCLint: a tool for using specifications to check code,”
Software Engineering Notes Vol. 19(5) pp. 87-96 (December
1994).

8. Karl Fogel, Open Source Development with CVS,
CoriolisOpen Press (1999).

9. Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns, Addison-Wesley (1995).

10. E. Gamma and K. Beck, “Test infected: Programmers love
writing tests,” http://www.junit.org, (1998).

11. Clare Gryce, Anthony Finkelstein, and Christian Nentwich,
“Lightweight checking for UML based software development,”
2002 Workshop on Consisteny Problems in UML-based Software
Development, (2002).

12. Donald E. Knuth, “Literate programming,” The Computer
Journal Vol. 27(2) pp. 97-111 (1984).

13. Chris Laffra, Doug Lorch, Dave Streeter, Frank Tip, and John
Field, “What is Jikes Bytecode Toolkit,” http://
www.alphaworks.ibm.com/tech/jikesbt, (March 2000).

14. Christian Nentwich, Licia Capra, Wolfgang Emmerich, and
Anthony Finkelstein, “xlinkit: A consistncy checking and smart
link generation service,” ACM Transaction on Internet
Technology, (To appear).

15. Steven P. Reiss, “Working with patterns and code,” Proc.
HICSS-33, (January 2000).

16. D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W.
Kernighan, “The C programming language,” Bell Systems Tech. J.
Vol. 57(6) pp. 1991-2020 (1978).

17. Barbara G. Ryder and Frank Tip, “Change impact analysis
for object-oriented programs,” ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering, pp. 46-53 (June 2001).

18. Guy Lewis Steele, Jr., Common Lisp: the Language, Digital
Press, Bedford, MA (1990).

19. Robert E. Strom and Shaula Yemini, “Typestate: a
programming language concept for enhancing software
reliability,” IEEE Transactions on Software Engineering Vol.
12(1) pp. 157-171 (1986).

20. Warren Teitelman, “A tour through Cedar,” IEEE Software
Vol. 1(2) pp. 44-73 (April 1984).

21. Raja Vallee-Rai, Laurie Hendren, Vijay Sundaresan, Patrick
Lam, Etienne Gagnon, and Phong Co, “Soot - a Java optimization
framework,” Proceedings of CASCON 1999, pp. 125 -135
(1999).

	CLIME: An Environment for Constrained Evolution
	Demonstration Proposal
	Steven�P.�Reiss, Christina�M.�Kennedy, Tom�Wooldridge, Shriram Krishnamurthi
	Department of Computer Science
	Brown University
	Providence, RI 02912
	{spr,cmkenned,twooldri,sk}@cs.brown.edu
	Abstract
	1. Introduction
	2. Related Work
	3. Environment Architecture
	FIGURE 1. The architecture of the environment.
	FIGURE 2. Standalone constraint interface.

	4. Consistency Checking
	5. Experience
	6. Demonstration
	7. References

