
i-
re
n-
ne
ost
re
on-
his

tical.

ere the
menta-
re is one

ecture,
cumenta-
nd pro-
ftware.

f soft-
eloping
imilar
pes for

oftware
ut as

avior of
specifi-
d then
lly, but

ws of
pecifi-
Consistent Software Evolution
White Paper

Steven P. Reiss
Department of Computer Science

Brown University
Providence, RI 02912

spr@cs.brown.edu, 401-863-7641, FAX: 401-863-6757

Abstract

Software is multidimensional but the tools that support it are not. The result is that different software art
facts representing different dimensions tend to evolve at different rates and in different ways as the softwa
grows and ages. In order to ensure that software can evolve in a way that maintains its inherent multidime
sionality, one must ensure that the different dimensions evolve together in a consistent manner. While o
could imagine this being done through a common language or a common internal representation, the m
practical approach is to develop an integration framework that maintains consistency as the softwa
evolves. Such a mechanism can be built by viewing the design and other software artifacts as a set of c
straints on the source code and then providing a means for checking and maintaining these constraints. T
paper describes what is necessary to make this work and what research needs to be done to make it prac

1. Software Evolution

To most people software is the code that is the end result of the software development process. H
initial stages of development, the specifications and the design of the system in question, the docu
tion, and the test cases, are ignored once the code has been developed. This narrow view of softwa
of the primary causes of the many problems associated with software and its development.

Software is not just the source code; instead it is multidimensional. The specifications, design, archit
test cases, user interfaces, coding conventions, components, constraints, design patterns, and do
tion are all as much a part of a software system as is the physical code. Software development a
grammer productivity depend on being able to develop and relate all these different aspects of the so

Today’s software environments provide a wide variety of tools to handle the various dimensions o
ware. There are tools for managing, editing, and debugging the source code. There are tools for dev
and experimenting with user interfaces. There are tools for specifying the design using UML or s
notations. There are tools for creating and managing test cases for a system. There are tool prototy
managing design patterns, components, and constraints.

These tools, however, are not coordinated or integrated with one another and the result is that the s
tends to evolve inconsistently along the different dimensions. Typically, a design is created initially, b
the code gets written and modified, the design is not updated to reflect the changes. The overall beh
the system might have been specified initially, but there is no guarantee to the programmer that this
cation is actually followed by the code several years down the line. Test cases tend to be written an
become irrelevant to the evolving code. Coding conventions and constraints are emphasized initia
are not necessarily checked or present in the developing system.

This differential evolution of the various dimensions ensures that programmers get inconsistent vie
the system down the road. Programmers quickly learn to not trust design documents or the original s
Consistent Software Evolution October 30, 2001 1

nd new
t to be
d prob-
plex.

various
differ-
upport,
ts, etc.
istent

rst is to
evelop-
intains

elop a

e is to
at com-
n Java
ram-

and the
g com-

with

ns to
, but
conse-

dimen-
pes of
veloped.

d actu-
nts that

could
ithin a
iting
aintain
nding
n by
track of
ctures,

ion be
eimple-
rstand
cations when they are faced with an evolving code base. Similarly, test cases become irrelevant a
cases are not added appropriately as the code evolves. Component interaction, originally though
simple, becomes much more complex and is never fully described or understood. These and relate
lems are bad in a moderate-sized system; they are often fatal as systems get larger and more com

What is needed is a software development framework that supports the consistent evolution of the
dimensions of software. This framework should let the programmer specify the software along the
ent dimensions. It should provide tools for design, code maintenance, test case generation and s
user interface design, documentation, component specification, behavioral descriptions, constrain
More importantly, it should make sure that these different dimensions of the software remain cons
with one another as the software evolves.

2. Approaches to the Problem

There are several approaches that can be taken to achieve consistent software evolution. The fi
develop a comprehensive language that covers all the dimensions of software. A second involves d
ing an semantic representation for software development that handles all the dimensions and ma
their consistency. A third approach, and the one we feel is the most practical and viable is to dev
mechanism that integrates tools for the different dimensions.

Conceptually the simplest approach to ensuring the consistency of different aspects of softwar
combine all the aspects within a single programming language. There are already some attempts
bining aspects with a language framework. For example, documentation is combined with code i
usingjavadocand its corresponding conventions. User interface design is combined with code in prog
ming environments such as Visual Studio or Forte for Java where the user can design the interface
system generates the code which the user never actually sees. Proponents of UML propose writin
plete systems within its framework, thus making it a programming language that combines design
code.

This approach, however, is doomed to failure in the long run. Software has too many dimensio
combine within a single framework. Not only do the different dimensions require different notations
they also do not interact hierarchically. Even something as simple as a design pattern can have
quences in multiple methods in multiple classes throughout a system. Moreover, the set of software
sions is not fixed. Different types of software require different specifications and designs. As new ty
software systems are development, new design and specifications techniques and languages are de
It is difficult to conceive of a language where new specifications can be easily added, integrated, an
ally used. Finally, this approach does not address issues of legacy systems or the legacy compone
are used in developing new software.

Rather than develop a single language that incorporates the different dimensions of software, one
develop an intermediate representation that supports a variety of tools in an integrated fashion w
software development environment. Already environments like Visual Studio provide facilities for ed
source, designing user interfaces, and creating UML diagrams. Environments such as Visual Age m
the full semantics of the system in memory for fast compilation and analysis. One could imagine exte
an existing environment first by providing tools for specifying other software dimensions and the
using the internal representation to ensure consistency. For example, the environment could keep
the structure of the source and of the UML class diagrams and could, using its internal data stru
ensure that the two are consistent.

Like a common language, this approach is doomed to failure. It requires that the representat
designed to handle a much broader range of software aspects than is currently done. This involves r
menting a broad range of tools within the environment in such a way that the environment can unde
Consistent Software Evolution October 30, 2001 2

s, fea-
elop
e with

central

tations
as it is
a new

software

l way.
s well
nsions,
ner?

nsions
uld:
od-
n from

uch
ough to

if one
t. At the
nge and

hanism

soft-
ht pro-
some
force the
ternal

ions
nt and
e.

not

the
ossible
ut then
is col-

t envi-
denti-
the semantics of the different aspects. Given the broad range of tools, each with different notation
tures, and facilities, this quickly becomes impractical. This approach also will make it difficult to dev
and use new dimensions as they are needed for new types of software and will be difficult to us
legacy systems. Most importantly, before such an intermediate representation can be developed, the
question of how the different dimensions can be related must be answered.

The third alternative is to address this central question independent of the tools, languages, and no
that are needed for defining the various software dimensions. Here software would be described
now as a set of artifacts or documents each of which reflects a particular dimension. There would be
tool that acts as an integration mechanism to ensure that these artifacts remain consistent as the
evolves.

This approach has the promise of solving the problem of inconsistent software evolution in a practica
It would allow the use of existing tools, languages, and notations. It would work on legacy systems a
as new code as well as combinations of the two. It is simple enough to be adaptable to new dime
new tools, and new notations. The question that remains is: can it be achieved in a reasonable man

3. Requirements

Any mechanism that insures the consistency of a variety of artifacts representing the different dime
of software must meet a broad set of requirements. In particular, to be practical and complete it sho
• Work with existing tools. Practicality implies that we should not have to reimplement (or even significantly m

ify) the broad range of existing tools. A good mechanism should be able to extract the necessary informatio
the external representations used by the tools.

• Handle a wide range of software dimensions. A good mechanism should not be geared to a specific problem s
as ensuring the consistency of a UML class diagram with the source code. Instead it should be flexible en
handle the broad range of dimensions that are actually involved in software development.

• Be bidirectional. It is important that the mechanism handle changes in any aspect at any time. For example,
changes the design one wants to know what code is affected by the change and whether it is still consisten
same time, one might change the code and want to know what aspects of the design are affected by the cha
whether they are still consistent.

• Be extensible. New types of software are going to require new design techniques and approaches. The mec
must be able to encompass these approaches as they are developed.

• Support partial checking. The different dimensions do not always provide a complete representation of the
ware. It is important to be able to support such partial representations. For example, the programmer mig
vide a UML diagram for all the externally viewable classes, but might omit the diagram the diagram for
internal support classes. It should be possible for the mechanism to handle this and related cases and not
programmer to provide design diagrams for low level details. Similarly, it might be appropriate to provide ex
documentation for public and protected methods of a class and to omit it for private methods.

• Be able to locate points of inconsistency. Not only does the mechanism need to determine when the dimens
are inconsistent, it needs to provide the programmer or tools with information on exactly what is inconsiste
why. At a minimum, this means identifying where in the different software artifacts the inconsistencies aris

• Have low overhead.The mechanism should not interfere with existing tools or with the programmer. It should
take an excessive amount of time to find the inconsistencies. It should be as automatic as possible.

• Handle both static and dynamic checking. Many design and specification notations state something about
behavior of the software. While some of this can be checked statically, in general such checks are imp
(equivalent to the halting problem). One way around this is to check constraints statically where possible, b
to make additional checks dynamically by looking at actual runs of the system in which appropriate data
lected.

If such a mechanism could be developed, it could be easily incorporated into a software developmen
ronment by providing an additional tool that told the programmer what items were inconsistent and i
fied the locations of the inconsistencies.
Consistent Software Evolution October 30, 2001 3

n
ion of
be gen-
e con-
included

xisting
L class
pecified
classes.
s. Con-
well as

as con-
source

con-
ility; it
hen a
k. The
e. The
of con-
wide

n) for
t arti-
s analy-
roach
rtifact to
ation
sible to
code
rmation
(trace

tities its

ict con-
the

ow the
licable
re-
that are
4. A Possible Approach

A key insight in developing a mechanism for maintaining consistency is thatthe design and other soft-
ware artifacts are simply constraints on the source code. The whole process of specification and desig
can be thought of in general terms as specifying constraints on the final solution. Any implementat
the system the satisfies the full range of such constraints should be an acceptable solution. This can
eralized to take into account situations where different design and specification dimensions impos
straints on each other and even situations where the source imposes constraints on what should be
in the design.

A constraint-based approach to consistency maintenance is both flexible and feasible. Most of the e
design notations can be viewed directly as a set of constraints on the source. For example a UM
diagram imposes constraints that require the existence in the source of any class, method, or field s
by the diagram along with constraints about the class hierarchy and use relationships between the
It is possible to automatically take such a diagram and generate the corresponding list of constraint
straints can also be used for checking programming style, design patterns, coding conventions, as
detailed and system-specific design rules. Similarly, completeness of the design can be viewed
straints imposed by the source. For example, a constraint can specify that every public class in the
be reflected in some UML class diagram.

In order to make this work overall, however, care must be taken both in specifying the basis for the
straints and in specifying the constraints themselves. The constraints must provide for accountab
must be possible to determine what portions of the source or other software artifact are in conflict w
constraint is not met. The constraints should also be easy to specify and relatively easy to chec
former is required to accommodate system-specific constraints that programmers will want to impos
latter is needed to ensure that consistency maintenance is tractable even in the face of thousands
straints. Finally, the basis for specifying constraints must be flexible enough to accommodate a
variety of different software dimensions.

The first step in this approach is to develop a common framework (but not a common representatio
specifying all the software artifacts. This should be done by abstracting information from the differen
facts. Using an abstraction here provides independence from the actual tools being used and allow
sis to be done in order to provide a more practical basis for specifying constraints. Our initial app
here uses a relational database as the common form and defines a set of relations for each type of a
represent the corresponding information. This approach is flexible in that the type of inform
abstracted can be designed to reflect the underlying needs of the constraints. Moreover, it is pos
abstract information in multiple ways from a single representation. This is most useful for the source
where one could have separate abstractions (and hence sets of relations) based on structural info
(the symbol table), semantic information (program dependency graphs), and dynamic information
data and performance summaries). Wherever possible, each item abstracted from an artifact iden
source within that artifact

Constraints can then be specified as equations over the corresponding set of relations. We restr
straints to be equations of the form: where S indicates the relation containing
source of the constraint,ϕ(x) indicates the conditions under which the constraint is applicable, andΘ(x) is
a qualified equation the specifies the conditions the constraint must meet. Constraints of this form all
consistency manager to handle accountability. It can determine, for each constraint, for each app
object from S, what objects specified byΘ are used to either verify or disprove the constraint. The cor
sponding locations in the appropriate artifacts can then be presented to the user as the elements
inconsistent.

x S∈()ϕ x()Θ x()∀
Consistent Software Evolution October 30, 2001 4

re arti-
s. We
ion, we
le pro-
straint.
s corre-
ical and
ensions

t addi-
s and to
rections

cre-
e artifacts
s, other

-
hecking
mation
heck-

interest

l
ple, the

res the
closure
artifacts

-
roach
ing on

p-
ent the

t least

g soft-
that an
source
d give
e under-
We have used this approach to build a simple prototype tool that can manage a small set of softwa
facts. We have developed tools for abstracting information from UML class diagrams and source file
have developed a set of thirteen constraints that relate the source and UML class diagrams. In addit
have a set of five constraints to handle simple naming conventions, four sample constraints to hand
gramming style and correctness, and a specific constraint to specify a system-specific design con
The corresponding system has been tested through the development of a sample program and it
sponding design as well as on itself. Our experiences to date show that the approach is quite pract
workable and meets most of the requirements previously specified. Moreover, we can see easy ext
of the concept to handle a much wider variety of software dimensions.

5. Research Issues

Our work to date has only demonstrated that the approach is feasible and has potential. Significan
tional research is needed both to extend the concepts to handle the full range of software dimension
demonstrate that the approach can be used effectively by programmers. The particular research di
we foresee include:
• Extending this approach to handle other artifacts. Here one needs to determine what are the relevant artifacts,

ate appropriate abstractions, and then attempt to define constraints based on these abstractions relating th
to the source and to other artifacts. The dimensions we are particularly interested in include design pattern
aspects of UML beyond class diagrams, behavior specification, test cases, and documentation.

• Extending this approach to handle dynamic information. Many of the design and specification artifacts imply con
straints not on the source code itself but on the behavior of the system. One needs to determine ways of c
such constraints. This could be done, for example, by analyzing the constraints to determine what infor
needs to be collected at run time, minimally instrumenting the system to obtain this information, and then c
ing that the constraints are satisfied when the program is run.

• Developing new approaches to software development based on this approach. The use of a constraint framework
should enable and encourage new ways of specifying the design and behavior of software. Of particular
are specification techniques for component and web-based software.

• Determining the appropriate representations and constraint languages. Our initial approach uses a relationa
database and a set-oriented one-way constraint language. It is unclear if this is the best approach. For exam
use of a relational database makes constraints that involve following links much more complex and requi
creation of intermediate relations outside the database in order to handle constraints involving transitive
(such as X is a subclass of Y). This question should be addressed once constraints for a broader range of
have been specified.

• Developing an appropriate front end and determining the utility of the approach. This approach to software devel
opment is useful only if programmers will actually use it to maintain consistency. This requires that the app
be integrated into a programming environment in such a way that programmers will understand what is go
and will want to use it.

• Extending the concept from detecting inconsistencies to fixing them. There are many cases in software develo
ment where consistency among the artifacts can be maintained mechanically. It should be possible to augm
constraints with the additional information needed to either automatically make things consistent or to a
suggest alternatives to the programmer.

6. Conclusion

While maintaining the consistency of the various dimensions of software is not a panacea for makin
ware easier to write or enabling the construction of better systems, it is a good first step. We believe
approach such as we have outline is needed if one wants to move beyond the narrow view of the
code being the system. Being able to view and maintain software along multiple dimensions shoul
developers more confidence in their systems and should ensure that the resultant systems are mor
standable and do what they are meant to.
Consistent Software Evolution October 30, 2001 5

	Consistent Software Evolution
	White Paper
	Steven P. Reiss
	Department of Computer Science
	Brown University
	Providence, RI 02912
	spr@cs.brown.edu, 401-863-7641, FAX: 401-863-6757
	Abstract
	1. Software Evolution
	2. Approaches to the Problem
	3. Requirements
	4. A Possible Approach
	5. Research Issues
	6. Conclusion

