Consistent Software Evolution
White Paper

Steven P. Reiss

Department of Computer Science
Brown University
Providence, RI 02912
spr@cs.brown.edu, 401-863-7641, FAX: 401-863-6757

Abstract

Software is multidimensional but the tools that support it are not. The result is that different software arti-
facts representing different dimensions tend to evolve at different rates and in different ways as the software
grows and ages. In order to ensure that software can evolve in a way that maintains its inherent multidimen-
sionality, one must ensure that the different dimensions evolve together in a consistent manner. While one
could imagine this being done through a common language or a common internal representation, the most
practical approach is to develop an integration framework that maintains consistency as the software
evolves. Such a mechanism can be built by viewing the design and other software artifacts as a set of con-
straints on the source code and then providing a means for checking and maintaining these constraints. This
paper describes what is necessary to make this work and what research needs to be done to make it practical.

1. Software Evolution

To most people software is the code that is the end result of the software development process. Here the

initial stages of development, the specifications and the design of the system in question, the documenta-

tion, and the test cases, are ignored once the code has been developed. This narrow view of software is one
of the primary causes of the many problems associated with software and its development.

Software is not just the source code; instead it is multidimensional. The specifications, design, architecture,
test cases, user interfaces, coding conventions, components, constraints, design patterns, and documenta-
tion are all as much a part of a software system as is the physical code. Software development and pro-
grammer productivity depend on being able to develop and relate all these different aspects of the software.

Today'’s software environments provide a wide variety of tools to handle the various dimensions of soft-
ware. There are tools for managing, editing, and debugging the source code. There are tools for developing
and experimenting with user interfaces. There are tools for specifying the design using UML or similar
notations. There are tools for creating and managing test cases for a system. There are tool prototypes for
managing design patterns, components, and constraints.

These tools, however, are not coordinated or integrated with one another and the result is that the software
tends to evolve inconsistently along the different dimensions. Typically, a design is created initially, but as
the code gets written and modified, the design is not updated to reflect the changes. The overall behavior of
the system might have been specified initially, but there is no guarantee to the programmer that this specifi-
cation is actually followed by the code several years down the line. Test cases tend to be written and then
become irrelevant to the evolving code. Coding conventions and constraints are emphasized initially, but
are not necessarily checked or present in the developing system.

This differential evolution of the various dimensions ensures that programmers get inconsistent views of
the system down the road. Programmers quickly learn to not trust design documents or the original specifi-

Consistent Software Evolution October 30, 2001 1

cations when they are faced with an evolving code base. Similarly, test cases become irrelevant and new
cases are not added appropriately as the code evolves. Component interaction, originally thought to be
simple, becomes much more complex and is never fully described or understood. These and related prob-
lems are bad in a moderate-sized system; they are often fatal as systems get larger and more complex.

What is needed is a software development framework that supports the consistent evolution of the various
dimensions of software. This framework should let the programmer specify the software along the differ-
ent dimensions. It should provide tools for design, code maintenance, test case generation and support,
user interface design, documentation, component specification, behavioral descriptions, constraints, etc.
More importantly, it should make sure that these different dimensions of the software remain consistent
with one another as the software evolves.

2. Approaches to the Problem

There are several approaches that can be taken to achieve consistent software evolution. The first is to
develop a comprehensive language that covers all the dimensions of software. A second involves develop-
ing an semantic representation for software development that handles all the dimensions and maintains
their consistency. A third approach, and the one we feel is the most practical and viable is to develop a
mechanism that integrates tools for the different dimensions.

Conceptually the simplest approach to ensuring the consistency of different aspects of software is to
combine all the aspects within a single programming language. There are already some attempts at com-
bining aspects with a language framework. For example, documentation is combined with code in Java
usingjavadocand its corresponding conventions. User interface design is combined with code in program-
ming environments such as Visual Studio or Forte for Java where the user can design the interface and the
system generates the code which the user never actually sees. Proponents of UML propose writing com-
plete systems within its framework, thus making it a programming language that combines design with
code.

This approach, however, is doomed to failure in the long run. Software has too many dimensions to
combine within a single framework. Not only do the different dimensions require different notations, but
they also do not interact hierarchically. Even something as simple as a design pattern can have conse-
guences in multiple methods in multiple classes throughout a system. Moreover, the set of software dimen-
sions is not fixed. Different types of software require different specifications and designs. As new types of
software systems are development, new design and specifications techniques and languages are developed.
It is difficult to conceive of a language where new specifications can be easily added, integrated, and actu-
ally used. Finally, this approach does not address issues of legacy systems or the legacy components that
are used in developing new software.

Rather than develop a single language that incorporates the different dimensions of software, one could
develop an intermediate representation that supports a variety of tools in an integrated fashion within a
software development environment. Already environments like Visual Studio provide facilities for editing
source, designing user interfaces, and creating UML diagrams. Environments such as Visual Age maintain
the full semantics of the system in memory for fast compilation and analysis. One could imagine extending
an existing environment first by providing tools for specifying other software dimensions and then by
using the internal representation to ensure consistency. For example, the environment could keep track of
the structure of the source and of the UML class diagrams and could, using its internal data structures,
ensure that the two are consistent.

Like a common language, this approach is doomed to failure. It requires that the representation be
designed to handle a much broader range of software aspects than is currently done. This involves reimple-
menting a broad range of tools within the environment in such a way that the environment can understand

Consistent Software Evolution October 30, 2001 2

the semantics of the different aspects. Given the broad range of tools, each with different notations, fea-
tures, and facilities, this quickly becomes impractical. This approach also will make it difficult to develop
and use new dimensions as they are needed for new types of software and will be difficult to use with
legacy systems. Most importantly, before such an intermediate representation can be developed, the central
guestion of how the different dimensions can be related must be answered.

The third alternative is to address this central question independent of the tools, languages, and notations
that are needed for defining the various software dimensions. Here software would be described as it is
now as a set of artifacts or documents each of which reflects a particular dimension. There would be a new
tool that acts as an integration mechanism to ensure that these artifacts remain consistent as the software
evolves.

This approach has the promise of solving the problem of inconsistent software evolution in a practical way.
It would allow the use of existing tools, languages, and notations. It would work on legacy systems as well
as new code as well as combinations of the two. It is simple enough to be adaptable to new dimensions,
new tools, and new notations. The question that remains is: can it be achieved in a reasonable manner?

3. Requirements

Any mechanism that insures the consistency of a variety of artifacts representing the different dimensions
of software must meet a broad set of requirements. In particular, to be practical and complete it should:

» Work with existing toolsPracticality implies that we should not have to reimplement (or even significantly mod-
ify) the broad range of existing tools. A good mechanism should be able to extract the necessary information from
the external representations used by the tools.

» Handle a wide range of software dimensioAsgood mechanism should not be geared to a specific problem such
as ensuring the consistency of a UML class diagram with the source code. Instead it should be flexible enough to
handle the broad range of dimensions that are actually involved in software development.

» Be bidirectional It is important that the mechanism handle changes in any aspect at any time. For example, if one
changes the design one wants to know what code is affected by the change and whether it is still consistent. At the
same time, one might change the code and want to know what aspects of the design are affected by the change and
whether they are still consistent.

» Be extensibleNew types of software are going to require new design techniques and approaches. The mechanism
must be able to encompass these approaches as they are developed.

» Support partial checkingThe different dimensions do not always provide a complete representation of the soft-
ware. It is important to be able to support such partial representations. For example, the programmer might pro-
vide a UML diagram for all the externally viewable classes, but might omit the diagram the diagram for some
internal support classes. It should be possible for the mechanism to handle this and related cases and not force the
programmer to provide design diagrams for low level details. Similarly, it might be appropriate to provide external
documentation for public and protected methods of a class and to omit it for private methods.

» Be able to locate points of inconsistendlot only does the mechanism need to determine when the dimensions
are inconsistent, it needs to provide the programmer or tools with information on exactly what is inconsistent and
why. At a minimum, this means identifying where in the different software artifacts the inconsistencies arise.

» Have low overheadl'he mechanism should not interfere with existing tools or with the programmer. It should not
take an excessive amount of time to find the inconsistencies. It should be as automatic as possible.

» Handle both static and dynamic checkingany design and specification notations state something about the
behavior of the software. While some of this can be checked statically, in general such checks are impossible
(equivalent to the halting problem). One way around this is to check constraints statically where possible, but then

to make additional checks dynamically by looking at actual runs of the system in which appropriate data is col-
lected.

If such a mechanism could be developed, it could be easily incorporated into a software development envi-
ronment by providing an additional tool that told the programmer what items were inconsistent and identi-
fied the locations of the inconsistencies.

Consistent Software Evolution October 30, 2001 3

4. A Possible Approach

A key insight in developing a mechanism for maintaining consistency isthiealesign and other soft-

ware artifacts are simply constraints on the source codelhe whole process of specification and design

can be thought of in general terms as specifying constraints on the final solution. Any implementation of
the system the satisfies the full range of such constraints should be an acceptable solution. This can be gen-
eralized to take into account situations where different design and specification dimensions impose con-
straints on each other and even situations where the source imposes constraints on what should be included
in the design.

A constraint-based approach to consistency maintenance is both flexible and feasible. Most of the existing
design notations can be viewed directly as a set of constraints on the source. For example a UML class
diagram imposes constraints that require the existence in the source of any class, method, or field specified
by the diagram along with constraints about the class hierarchy and use relationships between the classes.
It is possible to automatically take such a diagram and generate the corresponding list of constraints. Con-
straints can also be used for checking programming style, design patterns, coding conventions, as well as
detailed and system-specific design rules. Similarly, completeness of the design can be viewed as con-
straints imposed by the source. For example, a constraint can specify that every public class in the source
be reflected in some UML class diagram.

In order to make this work overall, however, care must be taken both in specifying the basis for the con-
straints and in specifying the constraints themselves. The constraints must provide for accountability; it
must be possible to determine what portions of the source or other software artifact are in conflict when a
constraint is not met. The constraints should also be easy to specify and relatively easy to check. The
former is required to accommodate system-specific constraints that programmers will want to impose. The
latter is needed to ensure that consistency maintenance is tractable even in the face of thousands of con-
straints. Finally, the basis for specifying constraints must be flexible enough to accommodate a wide
variety of different software dimensions.

The first step in this approach is to develop a common framework (but not a common representation) for
specifying all the software artifacts. This should be done by abstracting information from the different arti-
facts. Using an abstraction here provides independence from the actual tools being used and allows analy-
sis to be done in order to provide a more practical basis for specifying constraints. Our initial approach
here uses a relational database as the common form and defines a set of relations for each type of artifact to
represent the corresponding information. This approach is flexible in that the type of information
abstracted can be designed to reflect the underlying needs of the constraints. Moreover, it is possible to
abstract information in multiple ways from a single representation. This is most useful for the source code
where one could have separate abstractions (and hence sets of relations) based on structural information
(the symbol table), semantic information (program dependency graphs), and dynamic information (trace
data and performance summaries). Wherever possible, each item abstracted from an artifact identities its
source within that artifact

Constraints can then be specified as equations over the corresponding set of relations. We restrict con-
straints to be equations of the forif{x [1 S)$(X)©(x) where S indicates the relation containing the
source of the constrain,(x) indicates the conditions under which the constraint is applicable@éx)s

a qualified equation the specifies the conditions the constraint must meet. Constraints of this form allow the
consistency manager to handle accountability. It can determine, for each constraint, for each applicable
object from S, what objects specified Byare used to either verify or disprove the constraint. The corre-
sponding locations in the appropriate artifacts can then be presented to the user as the elements that are
inconsistent.

Consistent Software Evolution October 30, 2001 4

We have used this approach to build a simple prototype tool that can manage a small set of software arti-
facts. We have developed tools for abstracting information from UML class diagrams and source files. We
have developed a set of thirteen constraints that relate the source and UML class diagrams. In addition, we
have a set of five constraints to handle simple naming conventions, four sample constraints to handle pro-
gramming style and correctness, and a specific constraint to specify a system-specific design constraint.
The corresponding system has been tested through the development of a sample program and its corre-
sponding design as well as on itself. Our experiences to date show that the approach is quite practical and
workable and meets most of the requirements previously specified. Moreover, we can see easy extensions
of the concept to handle a much wider variety of software dimensions.

5. Research Issues

Our work to date has only demonstrated that the approach is feasible and has potential. Significant addi-

tional research is needed both to extend the concepts to handle the full range of software dimensions and to
demonstrate that the approach can be used effectively by programmers. The particular research directions
we foresee include:

» Extending this approach to handle other artifadtfere one needs to determine what are the relevant artifacts, cre-
ate appropriate abstractions, and then attempt to define constraints based on these abstractions relating the artifacts
to the source and to other artifacts. The dimensions we are particularly interested in include design patterns, other
aspects of UML beyond class diagrams, behavior specification, test cases, and documentation.

» Extending this approach to handle dynamic informatigiany of the design and specification artifacts imply con-
straints not on the source code itself but on the behavior of the system. One needs to determine ways of checking
such constraints. This could be done, for example, by analyzing the constraints to determine what information
needs to be collected at run time, minimally instrumenting the system to obtain this information, and then check-
ing that the constraints are satisfied when the program is run.

» Developing new approaches to software development based on this apprb&chse of a constraint framework
should enable and encourage new ways of specifying the design and behavior of software. Of particular interest
are specification techniques for component and web-based software.

« Determining the appropriate representations and constraint langua@es initial approach uses a relational
database and a set-oriented one-way constraint language. It is unclear if this is the best approach. For example, the
use of a relational database makes constraints that involve following links much more complex and requires the
creation of intermediate relations outside the database in order to handle constraints involving transitive closure
(such as X is a subclass of Y). This question should be addressed once constraints for a broader range of artifacts
have been specified.

» Developing an appropriate front end and determining the utility of the approHgis approach to software devel-
opment is useful only if programmers will actually use it to maintain consistency. This requires that the approach
be integrated into a programming environment in such a way that programmers will understand what is going on
and will want to use it.

» Extending the concept from detecting inconsistencies to fixing. theate are many cases in software develop-
ment where consistency among the artifacts can be maintained mechanically. It should be possible to augment the
constraints with the additional information needed to either automatically make things consistent or to at least
suggest alternatives to the programmer.

6. Conclusion

While maintaining the consistency of the various dimensions of software is not a panacea for making soft-
ware easier to write or enabling the construction of better systems, it is a good first step. We believe that an
approach such as we have outline is needed if one wants to move beyond the narrow view of the source
code being the system. Being able to view and maintain software along multiple dimensions should give
developers more confidence in their systems and should ensure that the resultant systems are more under-
standable and do what they are meant to.

Consistent Software Evolution October 30, 2001 5

	Consistent Software Evolution
	White Paper
	Steven P. Reiss
	Department of Computer Science
	Brown University
	Providence, RI 02912
	spr@cs.brown.edu, 401-863-7641, FAX: 401-863-6757
	Abstract
	1. Software Evolution
	2. Approaches to the Problem
	3. Requirements
	4. A Possible Approach
	5. Research Issues
	6. Conclusion

