
Simplifying Data Integration:
The Design of the Desert Software Development Environment

Steven P. Reiss
Department of Computer Science

Box 1910
Brown University

Providence, RI 02912
spr@cs.brown.edu

(401)-863-7641, FAX (401)-863-7657

Abstract

This paper describes the design and motivations behind the
Desert environment. The Desert environment has been cre-
ated to demonstrate that the facilities typically associated
with expensive data integration can be provided inexpen-
sively in an open framework. It uses three integration
mechanisms: control integration, simple data integration
based on fragments, and a common editor. It offers a vari-
ety of capabilities including hyperlinks and the ability to
create virtual files containing only the portions of the soft-
ware that are relevant to the task on hand. It does this in an
open environment that is compatible with existing tools and
programs. The environment currently consists of a set of
support facilities including a context database, a fragment
database, scanners, and a ToolTalk interface, as well as a
preliminary set of programming tools including a context
manager and extensions to FrameMaker to support pro-
gram editing and insets for non-textual software artifacts.

1.0 Motivation

A software development environment is an integrated
set of tools designed to support all phases of software engi-
neering. Our research, first with the FIELD system and
currently with Desert, attempts to explore different inte-
grating frameworks for these tools. In the Desert environ-
ment we are attempting to augment control integration
based on broadcast messaging with a simplified form of
data integration and a common framework for editing. The
result of these additions is an environment that can support
new approaches to software development while remaining
compatible with existing tools and working on existing
programs.

Message-based control integration has been widely suc-
cessful in programming environments, forming the back-
bone of such commercial environments as Sun’s

SPARCworks, HP’s SoftBench, Digital’s FUSE, and SGI’s
CodeVision. It allows independent programming tools to
effectively communicate with each other, providing the
user with the impression of a seamless environment. How-
ever, because it only integrates tools that are running, has
no notion of history or time, and has limited information
about the system being worked on, it cannot provide
several desirable facilities and cannot easily extend to
handle other aspects of software engineering [11].

The alternative to message-based integration has been
data integration. Here the different tools in the environment
share data through a central database. The benefits of data
integration include the ability to share information between
tools, the ability to identify relevant portions of a system
based on semantic content, and the ability to define and
maintain links between different software artifacts. Data
integration, however, has not been particularly successful
because of the cost of maintaining the complex database,
the inability to use existing tools, and the difficulty in using
such environments on existing, multi-language systems.

Our objective in developing the Desert environment has
been to achieve many of the benefits of data integration
without the costs. We focused our efforts on three particu-
lar features that we wanted to provide: hypertext access to
software, viewing a system as a dynamic “electronic” doc-
ument, and supporting existing tools and systems.

Our first objective was to provide hypertext links that
interconnect all aspects of software engineering. We
wanted to provide explicit links, allowing, for example, the
user to select a requirement and find where in the system
that requirement is met. More importantly, we wanted to
support a wide variety of implicit links based on the under-
lying semantics of the system and on information stored by
different tools. We wanted the user to be able to select a
function or variable name and quickly go to its definition,
its set of uses, its documentation, or the OMT [22] diagram

where the object is defined. We wanted a performance
analysis tool to use dynamic links to show the user where
time is spent. Similarly, we wanted to link an entry in a
error database to the various changes that were made to fix
that error using information from the version control data-
base.

Our second objective was to enable the programmer to
view a software system as a single, dynamic document.
Currently programming is done in terms of files. To add an
additional parameter to a function, for example, the user
must bring up editors on the function definition in a header
file, the function body in a source file, and on each refer-
ence to that function in other source files. A dynamic view
would allow the user to construct a virtual file containing
the header declaration for the function, the function body,
and the various call sites. The user could then edit this one
file to effect the same change. Because the system would
find all the call sites based on the appropriate semantic
information, the user would be assured that all relevant
calls were included. Dynamic documents can be used for
debugging as well as editing. It should be possible, for
example, to construct a dynamic document containing all
sites where a particular global variable can be set. Dynamic
documents can also be used to span different software arti-
facts. If the user cites a class, the appropriate dynamic doc-
ument could include the OMT diagram for the class, its
documentation, and the header file and method bodies that
implement the class.

Our third objective was to maintain an open environ-
ment. One of the principal reasons that control integration
has been successful is that it is easily adapted to work with
existing tools and existing code. In order to remain com-
patible with existing tools, we needed to use the current file
structure, maintaining individual source files for use by the
compiler, debugger, and other tools. In order to support
existing systems, we needed to be able to support multiple
languages simultaneously. This includes both standard pro-
gramming languages and preprocessed languages such as
lex or yacc input. We also wanted to remain compatible
with the existing UNIX programming environment so that
our tools could be used in parallel with existing tools and
so that new tools could be adapted incrementally. Finally,
we wanted to make it easy to add tools, both our own tools
and tools from different vendors.

2.0 Integration Mechanisms

In order to meet these requirements, we have developed
a three part integration mechanism. The first part uses stan-
dard control integration. Here we are using the FIELD
message server interconnected with Sun’s ToolTalk
message bus. The second part uses a simplified form of
data integration we call fragment integration. This involves

creating a simple database, identifying logical portions of
files, and storing references to these portions as well as
additional information to define links and store associated
data. The third part uses a common editor framework that
can support hyperlinks, display, and editing of a wide
variety of software artifacts. Here we are using
FrameMaker along with our own APIs. An overview of the
environment showing how the components fit these catego-
ries is shown in Figure 1. The rectangular boxes represent
the components of the Desert environment. The rounded
boxes represent existing framework components, while the
elliptical boxes represent existing tools or tool sets.

2.1 Control Integration
The use of control integration in the environment fol-

lowed from its success in FIELD and the various commer-
cial environments. Control integration based on selective
broadcasting provides a simple foundation that allows
diverse tools to communicate. It is easily extended by
defining new messages for tools. Moreover, it is fast and
can be readily adapted to a wide variety of tools either by
doing minor modifications to those tools or by providing
wrappers. In Desert, we use the FIELD message server
(MSG) as the basis for our control integration [18].

Our use of control integration in Desert differs from its
use in FIELD in two ways. First, we are using the FIELD
policy tool as a mapping engine. Each tool defines its set of
input and output messages locally. A policy file then
defines mappings between tool output and tool input mes-
sages. An example of this is shown in Figure 2. This pro-
vides a very flexible framework where none of the tools
needs to know the messages produced or consumed by any
other tool. The second difference is the addition of a new

DEFINE
 FredGotoMsg = [FRED GOTO %1s %2d %3s %4s];
 FredAddGotoMsg=[FRED ADD_GOTO %1s %2d %3s %4s];

 FocusItemMsg = [%s USERFOCUS %1s %2d %s %s %3s];
 FormFocusMsg = [FORM USERFOCUS %1s %2d];
 FormErrorMsg = [FORM ERROR %1s %2d %s];
 FormWarningMsg = [FORM WARNING %1s %2d %s];

TOOL Fred
LEVEL User:
 WHEN FocusItemMsg(file,line,str) DO
 SEND FredGotoMsg(file,line,”Focus”,str)
 WHEN FormFocusMsg(file,line) DO
 SEND FredGotoMsg(file,line,”Focus”,”*”)
 WHEN FormErrorMsg(file,line) DO
 SEND FredAddGotoMsg(file,line,”Error”,”*”)
 WHEN FormWarningMsg(file,line) DO
 SEND FredAddGotoMsg(file,line,”Warning”,”*”)
END

FIGURE 2. Extract from Policy Message Mapping File

tool, TINT, that serves as an interface between the FIELD
message server and Sun’s Tooltalk message server. This,
combined with the mapping engine, allows our new envi-
ronment to communicate directly with Sun’s (or SGI’s or
any other vendor using ToolTalk) programming tools and
eliminates the need for tool modifications or wrappers.

2.2 Fragment Integration
The second piece of the Desert integration mechanism

provides services normally associated with data integra-
tion. Most approaches to data integration put as much
information as possible into a central database to allow the
various tools to share and reuse the information. We take
the opposite approach, attempting to store the minimum
amount of information needed to achieve our objectives.
Our current system generates a database that about five
times the size of the total source code, and hence is typi-
cally smaller than the object code with debugging informa-
tion.

Our design here was based on several insights. We first
noted that the basic program unit that the database needs to
refer to is relatively large. While the traditional unit of a
file is too large for our objectives, using the basic syntactic
constructs of the language (such as using Diana for ADA
[13] or as in ProCase [5]), stores more information than
necessary and is too language specific. For most applica-
tions it is sufficient to break a program down into lan-
guage-independent logical units such as files, functions,
type definitions and variable declarations since these are

the units the programmer will refer to. Other software arti-
facts can be broken down similarly. For example, an set of
OMT diagrams can be broken down into the individual dia-
grams and a user interface design can be divided into the
different windows and dialog boxes it provides. We call
this logical unit a fragment and use it as the basic element
of the database. Next we noted that in order to maintain
openness we needed to preserve the original source files.
Rather than effectively duplicating these source files in the
database, we keep indirect pointers to each fragment in its
original file. Finally, we noted that the other information
that was needed in the central database was either informa-
tion that was generated by one tool for use by another or
was information that would be used to identify a set of
fragments. Information sharing is done at the fragment
level using property-value pairs where each tool can define
a set of properties.

While there are many ways of identifying a set of frag-
ments in the database, most of the applications we antici-
pate require use-definition information. To facilitate these
applications, the fragment database also maintains enough
data to reconstruct use-def chains on the fly by effectively
maintaining the program’s symbol table using semantic
information garnered from the compiler and other sources.
Here fragments are used to represent program scopes The
database component of Desert is managed by two pack-
ages. The actual database is maintained in memory by the
SAND package. It uses the message server to listen for
query and update requests from other clients. It periodi-
cally checks all the files maintained by the database to see

Sun Tools FIELD Tools

ToolTalk TINT MSG

SAND

SAGEFRED

FINS
FrameMaker

Inset Editors

COMD

Common Editor New Tools Fragment
Integration

Control
Integration

FIGURE 1. Overview of the Desert architecture. The architecture can be divided into 4 parts. The portion dealing
with control integration includes the FIELD message server MSG and TINT to convert between ToolTalk and
FIELD messages. The common editor portion includes the FrameMaker APIs FRED for program editing and
FINS for inset editing of various software artifacts. The fragment integration portion includes the SAND
fragment and cross reference database, the PUMA project manager,and the SAGE scanner. The PALM position
and line manager and the DUNE interface provide SAND, PUMA, and SAGE functionality to other tools.
Finally, the new tools portion of the architecture includes the context interface COMD.

PALM

DUNE

PUMA

what has changed and uses the SAGE package to scan any
modified files and update the database.

2.3 Common Editor
The other key objective in designing Desert was to

provide a common editor for accessing software artifacts.
We wanted this editor to be fully integrated with the envi-
ronment so that users would feel they were editing the
whole program rather than individual files. This implied
the use of implicit and explicit hypertext links and live-
links to special purpose editors. We also wanted to make
full use of the power of modern displays by providing the
user with a high-quality textual display such as recom-
mended by Baecker and Marcus [1].

To meet these objectives we chose to build our editor on
top of the commercial word processing system
FrameMaker. FrameMaker is available on a wide variety of
platforms. It has built-in hypertext capabilities as well as
powerful editing operations. Moreover, it is user-extensible
using the Frame Developer’s Kit (FDK) [4]. This kit allows
the definition of inset editors that support a simplified
version of live-links and the definition of general purpose
APIs. We use the FDK both to provide an inset interface,
FINS, to external editors such as Paradigm+ for OMT dia-
grams and Builder Xcessory for user interfaces, and to
provide an intelligent program editor, FRED, that makes
use of the Desert integration facilities [20].

The editor makes extensive use of the capabilities of the
environment. It uses control integration to interact with
other tools, allowing other tools to specify a source posi-
tion to be viewed in the editor and allowing the editor to
initiate build, configuration, and debugging commands. It
uses the database to support name lookup for both defini-
tions and references over the whole system to allow the
editor to support the editing of programs rather than of
files, to provide implicit links based on program content,
and to support incremental parsing on a keystroke basis. It
uses the context manager to defined temporary contexts so
that even files that are not part of a defined system can take
advantage of Desert’s capabilities.

3.0 Desert Concepts

Central to the design of the Desert environment was the
detailed design of the fragment database, efficient identifi-
cation of fragments and associated information, the
concept of virtual fragment files as an approach to special-
ized documents, and the notion of a context. In this section
we provide details on these.

3.1 The SAND Database
The fragment database provided by Desert serves three

functions: it serves a repository of information about frag-
ments; it provides the auxiliary data and query mechanisms
needed to define and extract relationships among fragments
and to identify related sets of fragments for creating virtual
files; and it offers a repository of information about the
source code that can be used by other tools such as the
editor or visualization tools.

The actual database system is an in-memory relational
query engine with object-oriented extensions, including
object identifiers and method calls modeled on previous
work on extensible database systems [12,16]. Because the
size of the database is less than an order of magnitude
larger than the size of the source code, keeping the whole
database in memory is possible and allows us to simplify
the database system while providing fast access to the
underlying data. The database implements a SQL-like
query language that is accessible through a message inter-
face to other tools. In addition, it currently offers special-
ized message access for faster handling of more common
queries such as name lookup for the editor.

Simplicity of implementation was central to our design
of the database system. The system assumes that most
queries can be handled quickly and there is little need to
overlap query requests. As such, it processes one request at
a time and does not deal with concurrency control and
locking issues. The database itself can be rebuilt relatively
fast (currently it takes under five minutes per megabyte of
source code to completely rebuild the database), so that the
database system does not need to worry about backup and
recovery other than providing consistent caching of the
data on disk. Finally, because almost all updates are
handled internally to the database, there is little need for
integrity and security management.

The database implementation currently provides the
relations shown in Figure 3. In addition, it supports the
notion of temporary lookup contexts for the editor. These
are defined by specifying a base file and a set of include
files. The database supports lookup operations based on a
context for both the definition of a name and the uses of a
name. These operations can be qualified by the name of a
class defined in the context for looking up names defined in
a member function or names used in an expression.

3.2 Updating the Database
While fast query access was important to the design of

the database, the ability to quickly update the database as
files changed was more important. Unlike conventional
database systems, a database system providing data inte-
gration in a programming environment is updated as fre-
quently or more so than it is queried. Each time a file is

edited or compiled, information in the database potentially
needs to be modified.

SAND manages updates in three ways. First, at start-up
it checks for any new files, tests if any files that it is main-
taining have been modified, and updates its information
accordingly. Next, while it is running it periodically (cur-
rently every 30 minutes) updates any modified files.
Finally, it handles update requests through the message
server either for an individual file (generated by the editor
upon a save) or for the whole database (generated by user
request from some tool).

Updating the SAND database is done by a set of scan-
ners bundled together as SAGE. SAGE runs as a server
process accepting messages requesting that a particular file
be rescanned in a particular way. It currently provides
source scanners for C and C++ source files, OMT diagram
description files, UIL files, and VALLEY visualization
description files [19]. These define the file, fragment, and
use relations, identifying the fragments in the various files.
In addition, SAGE provides a scanner for Sun’s source
browser data files. These run as if they were additional
scanners for the corresponding source files, adding infor-
mation generated by the compiler to define the definition,
reference, call, hierarchy, and member relations.

The database was designed for efficient update on a file
basis. All links in the database are stored indirectly. Refer-
ences to fragments are defined via fragment names rather
than as actual links or pointers. This allows us to delete and
reinsert all entries for a particular file without having to
check the whole database to update link information for
other files. Each tuple of each relation has tags indicating
which file it came from and which scanner generated it.
When a scanner is run, the database removes all previous

tuples that were generated by that scanner for the particular
file, and then runs the scanner to add new tuples.

3.3 Virtual Files
One of the objectives of the Desert environment was to

allow the user to view a software system as a dynamic doc-
ument rather than as a static set of files. To achieve this the
environment uses virtual or fragment files. These are files
consisting of a set of fragments extracted from their origi-
nal source files. Each fragment is preceded by a brief
header containing its source file, unique name and addi-
tional information for the user. In addition, the file itself
contains a header describing how it was generated.

An example of such a file shown in the FRED editor is
seen in Figure 4. The fragment header lines all begin with
an at sign (@). The first five lines indicate that this is a
fragment file with default language C++ constructed based
on references to the identifier name in class EMPLOYEE.
Two fragments are shown on this page. Each is preceded
by four header lines which indicate which file it came from
and the unique name of the fragment in that file.

The environment offers several facilities to support frag-
ment files. First, a simple mechanism is provided to allow
tools to easily build fragment files from a list of fragment
names. This mechanism insures that duplicate fragments
and fragments nested in other included fragments are
ignored, and creates the file with all the appropriate
headers and the fragment bodies. Second, it provides the
logic for saving a fragment file after it has been edited.
Here it uses the headers to isolate the various fragments
from the fragment file. Then it checks the CRC (cyclic
redundancy code [21]) for each isolated fragment against
that of the original fragment to see if the fragment has actu-
ally been modified. If it has, it will replace the fragment in

File
pathname
date last modified
source language
compilation directory

Fragment
fragment name
CRC
date last modified
parent fragment name
scope parent fragment
fragment type
start position
end position

Use
from fragment
to fragment

type of use

Definition
name
source fragment name
object type
scope type
source line

Reference
name
source fragment name
reference type
source line
read/write access flag
local reference flag

Call
from name
to name

source fragment name
source line
virtual call flag

Hierarchy
from class name
to class name
source fragment name
source line
virtual flag
friend flag

Member
member name
source fragment name
source line
type of member
protection
virtual flag

inline flag
static flag
friend flag

Attribute
attribute name
redefinition scanners

Property
fragment name
attribute name
value

FIGURE 3. Relations contained in the SAND database

the original source file with the edited form, using an
appropriate replacement mechanism based on the fragment
type.

While we anticipate several mechanisms for generating
fragment files in the full environment, the current imple-
mentation only allows the user to generate such files from
the FRED editor through one of two mechanisms. The first
allows the user to select a name in the source and construct
a fragment file of all references to that name. The second,
more general, mechanism creates a fragment file based on
the set of gotos on the stack the editor maintains. The
editor keeps a stack of file-line number pairs corresponding
to locations of interest. Items can be added to this stack by
requesting all definitions or references to a name or using
the result of grep. Items are also automatically added for
compilation errors and warnings if the FIELD tool form-
view is used to initiate the build. The user can edit the stack
as well. For both of these cases, the editor first finds the

smallest fragment corresponding to each file-line pair and
then uses the mechanism provided by the environment to
build the fragment file.

3.4 Contexts
The Desert framework has been designed to handle

large-scale software engineering. This involved both
storing information about the set of systems that corre-
spond to a single project and offering common services to
multiple users. Desert manages this through a context data-
base.

Desert maintains information about projects in a context
database. It supports three types of contexts. Global con-
texts are shared among a set of users. Local contexts are
specific to a single user. Temporary contexts exist only
while they are being used and are deleted afterward. Con-
texts may be defined relative to a base context. In this case
they inherit the definitions of the base context and can

FIGURE 4. Sample fragment file

provide any additional definitions of their own. This allows
different contexts to represent different versions of a
system.

Each context has a set of associated information includ-
ing a unique context name, the location of the context’s
database, the type of context, a set of path names to use in
the context, a set of path names to exclude, and a set of
associations. Associations are mappings from files in the
context to data. A variety of different associations are pro-
vided. The INCLUDE association allows the user to
specify paths to be used to find include files while scan-
ning. Other associations are provided to allow contexts to
be integrated with both a version control and a configura-
tion management system.

The PUMA package serves as the context database. It
runs as an independent process and allows clients the
ability to query and set information about the various con-
texts. It also allows the client to identify the context that is
associated with a given source file for a given user.

4.0 Prototype Implementation

To test the various components of the system and to
experiment with the concepts involved, we have built a
prototype implementation and started using it for our own
development. There are two current user tools, the FRED
front end for editing and the context manager, COMD. In
addition, we have implemented an initial version of the
SAND database, SAGE scanners, and PUMA context man-
ager. All these are supported by PALM for accessing frag-
ments and DUNE utilities for accessing SAND, SAGE and
PUMA. In this section we describe the problems that arose
during this development and some of their solutions.

4.1 Fragment Scanning
While fragment scanning looked easy in principle, in

practice there were several difficulties. Many of these were
caused by the C preprocessor. In order to understand C or
C++ files we had to expand macros since they are often
used to define one or more functions and to define compos-
ite function names. In order to find all the macros we had to
scan all the files included by the source file. Our scanner
thus incorporates a simple implementation of the prepro-
cessor which scans include files only to find macro defini-
tions for later expansion. The first version of the scanner
read each include file as it was needed. This turned out to
take about 30% of the overall scanning time. We sped this
up by caching macro definitions so that each include file
needs to be read only once.

The other aspect of the preprocessor that complicates
fragment scanning is conditional compilation. If we are
interested in a particular instantiation of the system, we
would know which conditions are applicable. However,

because we are concerned with evolving the system in gen-
eral, we assumed that all conditions can apply for some
version of the system and thus we currently extract all the
code independent of conditional compilation. Our experi-
ence has shown that this assumption is not generally cor-
rect. There are many conditions that are never applied (i.e.
KERNEL in UNIX include files) to a system. Moreover,
the user might want to define contexts where only certain
conditions apply. We will be adding support for these situa-
tions in the scanner, the database, and the editor in the
future.

Another difficulty arose in dealing with comments. The
start and end positions of a fragment must take into
account comments and spaces that are not generally con-
sidered part of a programming language. The general
problem of determining which token a comment applies to
is quite difficult as has been shown in the Mentor [6] and
Sun’s Clarity environments. We are dealing with a more
limited case since we are only interested in comments for
fragments. Our approach is twofold. First, the end position
of a token is defined to include any blank spaces and com-
ments up to the end of the line in which the token occurs.
This associates end-of-line comments with the proper frag-
ments. Second, we check for comment lines that precede
the start of a fragment and associate these with the frag-
ment if there are not too many blank lines separating that
comment from the fragment. This handles block comments
that precede function or type definitions.

4.2 The Editor Interface
The primary user interface to Desert thus far has been

the API extensions we made to FrameMaker described in
[20]. The editor interface has shown the power of the
overall environment. We have had to augment our original
design in only minor ways to provide services to the editor.
The largest addition was the notion of a lookup context to
the SAND database to support queries for a file that was
new or modified since the database was last updated. The
current implementation is fast enough so that the editor can
query the database on each keystroke and the user will not
notice any slowdown. Other enhancements included the
ability to build fragment files from file-line number pairs, a
search capability that used the fragment database to find
the set of files relevant to the current context and then ran
the UNIX grep command over those files, the ability to
update a single file in the database, and temporary contexts
so that a database existed for the current file.

The primary unresolved issues dealing with the editor
interface involves fragment files. While it is convenient to
generate fragment files from the editor, fragment files are
generated purely from the database and hence do not take
into account fragments that are currently being edited. It is

easy then for the user to create a fragment file that contains
fragments from the file currently being edited and thus
have multiple versions of those fragments being edited at
once. This is a general problem that can occur whenever
multiple fragment files exist. Another problem occurs
when a fragment file is saved and the user has an editor
open on the original file. Ideally, the fragment should be
updated in the editor as well.

While these issues have not been serious yet, we antici-
pate that they will become more important. To manage
them we are working on developing a means for locking
fragments and for replacing fragments in an active editor
rather than just in the original source file. Ideally, we would
like to integrate this with a version control system.

4.3 The Context Interface
The COMD interface to Desert was originally con-

ceived as a simple front end for context management,
allowing the user to define and edit contexts as well as
control updates. As shown in Figure 5 it provides a set of
pull down menus for this purpose as well as a display area
showing what is in the context. For the display, we are
using the 3D facilities provided by the tools we developed
for program visualization [19]. White nodes represent
directories explicitly used in the context; black nodes rep-
resent directories explicitly excluded; otherwise a nodes
color represents the date last modified of that node or any
file in it. The height of a node represents the number of
files. The display can also show the particular files that are
included in the database.

As we gained experience with the environment, we have
assigned more functionality to this interface. This interface
provides a convenient location for selecting files to edit and
for defining fragment files using either prespecified or user-
defined queries. It provides a natural front end for configu-
ration management and version control similar to the form-
view tool provided by FIELD or the POEM system [9]. It
also offers a general framework for defining top-level visu-
alizations for program understanding. While none of these
has been implemented at this point, we have designed the
framework for this interface to accommodate these.

5.0 Related Work

Integration in a programming environment today is
usually viewed as a combination of control integration and
data integration. Most commercial environment rely solely
on control integration. PCTE [3] and evolving environ-
ments are emphasizing data integration as a needed facility.

Control integration, a technique that we pioneered for
programming environments in the FIELD system [17], is
very effective for integrating a concurrently running set of
tools. It is the basis for most current commercial program-
ming environments including HP’s Softbench and Sun’s
Tooltalk. It provides a backbone for tool communication
through a central message facility and broadcast messag-
ing. It is relatively inexpensive and allows the use of exist-
ing tools with only minor modifications or through simple
wrappers. Moreover, as we demonstrated in FIELD, it can
be completely compatible with the use of existing tools.
While control integration can make an independent set of
tools look like a single unified framework, it does not
provide complete integration, and does not store informa-
tion over time. It also forces all the tools to have a common
reference framework, typically a file name and line
number, which limits its applicability. Control integration
also only provides surface integration among the tools — it
does not provide for any permanent shared data or for inte-
grating multiple users over time and space.

Data integration combines tools by storing the program
and information about the program in a database that is
accessed by all the tools. Most proposed methods store
annotated abstract syntax trees. Some more general
systems extend this by using object-oriented databases to
include information from other tools and phases of soft-
ware development and relationships among the data. The
database connects the various tools by allowing the tools to
store their intermediate results for use by other tools. Fully
utilizing a database provides a high degree of integration.
Data integration has been used to some extent in the Ada
programming support environments [13], in software engi-
neering environments based on PCTE [3], and in commer-
cial tools such as ProCase [5]. More recent systems along

FIGURE 5. The COMD Interface

these lines include Centaur [2] and the Clarity environment
at Sun Microsystems.

Unfortunately, practical data integration is difficult to
achieve. The amount of data represented by intermediate
results, especially for a large system, can be immense (i.e.,
gigabytes). It is difficult to agree on a common intermedi-
ate representation for tools for a single language, and even
more difficult if the system has to handle a variety of differ-
ent languages in a unified way. To achieve the potential of
data integration, all existing programming tools have to be
substantially changed or completely rewritten. The data-
base that is required differs from most off-the-shelf
systems in that it must be update-centric rather than query-
centric. Finally, a database system capable of storing the
amount of information required and providing the required
performance and reliability is a large, complex piece of
software, possibly larger than all the other tools in the envi-
ronment combined.

An alternative to complete data integration has been to
provide a program database as another tool in the environ-
ment. Interlisp’s Masterscope package used an internal
database [25]. Linton proposed using relational databases
[10]. More recently, the FIELD environment provides a
cross-reference database of program information that is
used by a variety of tools in the environment [8], CIA and
CIA++ represent environment-independent program data-
bases for C and C++ respectively [7]. Sun’s programming
environment includes a similar tool, the source browser,
that maintains its own database. Similarly, cvstatic from
SGI uses either a compiler-based scanner or cscope from
Bell Laboratories for fast generation of approximate
semantic information. SNiFF also provides approximate
information for a program database [24]. The use of an
independent program database addresses some of the
issues of data integration, but not all. They are limited to
the source code and do not extend to other aspects of soft-
ware development. They provide detailed information
about variables, types, etc., but it is difficult for the systems
to handle multiple languages cleanly. Finally, most of these
systems require that the code compile in order to be
included in the database since the scanners are either built
into the compiler or are effectively full language parsers.

Another trend in programming environments today is to
have an environment based on control integration with spe-
cialized data repositories. This is essentially a formalism of
what current environments do. For example, FIELD uses
control integration, but provides separate servers that offer
cross reference data, profiling information, configuration
and version management information, symbol table data,
and run time tracing. Fragment integration is not an
attempt to replace these specialized data repositories with a

single one. Rather it is an attempt to provide a new reposi-
tory that will hold the data needed to integrate tools.

Literate programming [14,15] is another approach that
is related to ours. Here a the user creates a single file that
contains documentation and source code intermixed and
various tools exist to extract the source for the compiler or
the documentation for TEX. This approach provides the
user with a very readable program, but does not easily
scale up for large systems or handle other aspects of soft-
ware engineering. One of the benefits of our approach is
that we should be able to simulate much of literate pro-
gramming by choosing documentation and code fragments
from their existing files, presenting them to the user in a
single, editable form, and then extracting the fragments
from the result and storing them in their original files.

Our approach to integration is based on an interface to
the original source files that emulates data integration. The
general concept of providing a wrapper for a file or system
or of providing a view of an object has been around for a
long time. It can be seen in current technology in the inter-
faces that are being developed for Mosaic. Here there exist
virtual files at various sites that when accessed as a file,
actually invoke a computation of some sort. Other related
work can also be seen in databases that try to abstract
information from files such as the Rufus system [23].

6.0 Experience and Conclusions

We have had some experience with the Desert environ-
ment. While the prototype is still too premature to release
to even selective user communities, we have been using the
system to develop itself for the last two months. The proto-
type involves about 60,000 lines (1.5M) of C++ code.

One of our early concerns with the environment was
with performance. The performance of the various tools
has been adequate. Database response has not been a prob-
lem, nor has the fact that we are using multiple processes
communicating via the FIELD message server. The only
serious performance problems involve loading and storing
the database and opening a new file in the editor. The data-
base for Desert is about 12 megabytes long and takes con-
siderable time (i.e. a minute) to read in or store. To avoid
the start-up time, the database system will continue to run
for an hour after the last use. To avoid the store time, we
currently store the database in background while we con-
tinue to process queries. The problem with editor start-up
time involves the interaction of FrameMaker and our API
and the inherent limitations of FrameMaker. We are hoping
that the next version of FrameMaker which provides a
tighter integration of an external API will alleviate these
problems.

Other than performance issues, our experiences with the
system have been mainly positive. The environment is

capable of providing the services of data integration
without the costs and in an open framework. Fragment files
are generated quickly and are complete. Fragment editing
does provide a convenient framework for many of the
changes that are typically made in a set of source files.

We are continuing to work on the overall environment.
Our current efforts are concentrated mainly in improve-
ments to make the editor truly practical for a wide range of
users and on integrating the current facilities with both
version and configuration management. The current
COMD interface provides a good starting point for a
unified visual front end for version and configuration man-
agement. A fragment-based approach, however, requires
that locking and versioning be done on arbitrary, possibly
overlapping, sets of fragments rather than on files or direc-
tories as in current systems. We are investigating general
models for version and configuration management that
allow this and still are compatible with of a variety of exist-
ing tools. Finally, we are continuing to work on our inter-
face to Tooltalk in order to more fully integrate the
environment with programming tools from different
sources.

7.0 Acknowledgments

Support for this research was provided by the NSF
under grants CCR9111507 and CCR9113226, by DARPA
order 8225, by ONR grant N00014-91-J-4052, and by
support from Sun Microsystems and NYNEX.

8.0 References

1. Ronald M. Baecker and Aaron Marcus, Human Factors and
Typography for More Readable Programs, Addison-Wesley
(1990).

2. P. Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn,
B. Lang, and V. Pascual, “CENTAUR: the system,” SIGPLAN
Notices Vol. 24(2) pp. 14-24 (February 1989).

3. Gerard Boudier, Ferdinando Gallo, Regis Minot, and Ian
Thomas, “An overview of PCTE and PCTE+,” SIGPLAN Notices
Vol. 24(2) pp. 248-257 (February 1989).

4. Frame Technology Corporation, FDK Programmer’s Guide,
Frame Technology Corporation (Octover 1993).

5. PROCASE Corporation, “SMARTsystem Technical
Overview,” PROCASE Corporation (1989).

6. Veronique Donzeau-Gouge, Gerard Heut, Gilles Kahn, and
Bernard Lang, “Programming environments based on structured
editors: the MENTOR Experience,” in Interactive Programming
Environments, ed. D. R. Barstow, H. E. Shrobe and E.
Sandewall,McGraw-Hill, New York (1984).

7. Judith E. Grass and Yih-Farn Chen, “The C++ information
abstractor,” Proceedings of the Second USENIX C++ Conference,
pp. 265-275 (April 1990).

8. Moises Lejter, Scott Meyers, and Steven P. Reiss, “Support for
maintaining object-oriented programs,” IEEE Trans. on Software
Engineering Vol. 18(12) pp. 1045-1052 (December 1992).

9. Yi-Jing Lin and Steven P. Reiss, “Configuration management
in terms of modules,” Proc. 5th Intl. Workshop on Software
Configuration Management, (April 1995).

10. Mark A. Linton, “Implementing relational views of
programs,” SIGPLAN Notices Vol. 19(5) pp. 132-140 (May
1984).

11. Scott Meyers, “Difficulties in integrating multiview
development systems,” IEEE Software Vol. 8(1) pp. 50-57
(January 1991).

12. Gail Mitchell, “Extensible query processing in an object-
oriented database,” Brown University Computer Science
Technical Report CS-93-16 (May 1993).

13. Robert Munck, Patricia Oberndorf, Erhard Ploedereder, and
Richard Thall, “An overview of DOD_STD_1838A (proposed),
the common APSE interface set, Revision A,” SIGPLAN Notices
Vol. 24(2) pp. 235-247 (February 1989).

14. Norman Ramsey, “Literate programming tools need not be
complex,” Princeton University Department of Computer Science
Research Report CS-TR-351-91 (October 1991).

15. N. Ramsey, “Literate programming: weaving a language-
independent WEB,” CACM Vol. 32(9) pp. 1051-1055 (September
1989).

16. Steven P. Reiss, “Eris: the design and implementation of an
experimental relational information system,” Brown University
(1983).

17. Steven P. Reiss, “Connecting tools using message passing in
the FIELD environment,” IEEE Software Vol. 7(4) pp. 57-67
(July 1990).

18. Steven P. Reiss, FIELD: A Friendly Integrated Environment
for Learning and Development, Kluwer (1994).

19. Steven P. Reiss, “An engine for the 3D visualization of
program information,” Journal of Visual Languages, (To appear
in 1995).

20. Steven P. Reiss, “Program Editing in a Software
Development Environment,” Brown U. Computer Science (1995).

21. R. Rivest, “The MD5 message-digest algorithm,” MIT
Laboratory for Computer Science and RSD Data Security, Inc.
(April 1992).

22. James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, and William Lorensen, Object-Oriented
Modeling and Design, Prentice-Hall (1991).

23. K. Shoens, A. Luniewski, P. Schwarz, J. Stamos, and J.
Thomas, “The Rufus system: information organization for semi-
structured data,” Proc. 19th VLDB Conference, pp. 1-12 (1993).

24. TakeFive Software, SNiFF+ Version 1.0 Reference Guide,
TakeFive Software (1993).

25. Warren Teitelman, Interlisp Reference Manual, XEROX
(1974).

