
Program Editing in a Software Development Environment August 3, 1995 1

Program Editing in a Software
Development Environment

(DRAFT)

Steven P. Reiss1

Department of Computer Science
Brown University

Providence, RI 02912
spr@cs.brown.edu

(401)-863-7641, fax: (401)-863-7657

Abstract

This paper describes an approach to program editing that is suitable for a modern software
development environment. Program editing involves editing whole programs and not just
files. Our approach uses the data integration facilities of the Desert environment to combine
information about the overall system with that of the file being edited. It is built on top of the
commercial word processing tool, FrameMaker, to provide high-quality presentations of both
text and graphics. It uses an API to provide both insets supporting different tools for non-tex-
tual software artifacts (e.g user interfaces, class diagrams, and visualizations) and formatted
program text. The API does minimal incremental parsing to enable the proper formatting and
to relate the text being editing to the rest of the system being developed.

1.0 Goals for a Program Editor

The key components in a software development environment are the editors
that allow the developer to modify the different software artifacts. Multiple editors
are typically provided: graphical editors for modifying design diagrams, direct
manipulation tools for building user interfaces, text editors for writing code, word
processing systems for producing documentation, etc. Our goal in developing a new
editor for a programming environment was to integrate these different editors as
much as possible, providing a common framework to handle all software artifacts.

At the same time we wanted to provide enhanced services to the programmer
through the editor. Our primary goal was to provide a true program editor. A
program editor must be designed for editing programs, not files. This does not mean
that it is a syntax-directed editor. Rather it implies that the editor must be aware
that the file being edited is only one small part of a much larger system. The devel-

1. Support for this research was provided by the NSF under grants CCR9111507 and CCR9113226, by DARPA order
8225, by ONR grant N00014-91-J-4052, and by support from Sun Microsystems and NYNEX.

Program Editing in a Software Development Environment August 3, 1995 2

oper and the editor should be aware of dependencies between files, of references to
definitions in other files and in libraries, etc. In short, the editor must be fully inte-
grated into an overall programming environment.

A secondary goal was to provide high-quality display of program text. Although
workstations have been used for programming for over twelve years, most program
editing is still done in a simple, single-font, single color, text editor. Although studies
have shown that using different presentation styles can enhance program readabil-
ity and understandability [2], little has been done to take advantage of this for stan-
dard editing.

All this had to be done using an open system. We needed an editor that would
be consistent with current software artifacts. It had to handle textual source files
that were acceptable as input to the compiler; it had to handle the database files
used by CASE tools such as Paradigm+ for OMT diagrams; it had to handle UIL files
generated by user interface builders such as Builder Xcessory; and it had to handle
word processing files for documentation, as well as natural language requirement
and specification files. We also wanted an editor that could be used on existing pro-
grams and legacy code.

We are attempting to accomplish these goals by extending the commercial word
processing system FrameMaker through the application program interface (API) it
provides. Our tool uses the FrameMaker API to offer intelligent program editing
with formatting and keystroke-based parsing and to integrate an external program
database relating the file being edited to the rest of the program. It uses the inset
capabilities of FrameMaker to offer access to other, specialized editors for different
types of software artifacts. It uses the input filter mechanism of FrameMaker to
allow different types of source files to be edited appropriately. An example can be
seen in Figure 1. This shows both an inset (a simple OMT diagram of the object
structure) and formatted C++ code. While our current implementation is heavily
dependent on FrameMaker, the concepts and techniques we use can be applied to
other editor frameworks or to the design of a complete editor.

2.0 Overview

FrameMaker provides a simple API consisting of four routines called using a
remote procedure call interface. The routines service initialization requests, notifica-
tions, commands, and messages respectively. Of these, the primary work in our
application is done using notifications. FrameMaker provides notification callbacks
for most external events (i.e. open, close, save, and revert) and a single callback that
is invoked after each command when control is being returned to the user. Our editor
interface maintains the display and its internal structures using this latter callback.

One of the objectives of our editor interface was to provide well-formatted text.
We wanted to utilize the formatting capabilities of a bit-mapped display to provide
detailed information about the program and to assist the user in program creation

Program Editing in a Software Development Environment August 3, 1995 3

and editing. This implied that we wanted to parse the resultant code as it was
entered. While parsing on a keystroke basis is not new — it was done in the early
1980’s in the COPE system at Cornell [1] — doing it outside of a syntax-directed
editor, without direct control over the user’s input, in the context of a powerful word
processing system, and in a language-independent manner is new.

Parsing presented several challenges. The first was obtaining the text to parse.
While FrameMaker notified the API that a command was over, it did not provide any
information about what the command did or what was changed. Our editor interface
maintained its own version of the text being displayed. This was updated locally as
much as possible using the current position before and after the command, with code
to check for consistency and to reload everything if inconsistencies arose. By only

FIGURE 1. Sample FrameMaker session with inserts and formatting

Program Editing in a Software Development Environment August 3, 1995 4

considering the local neighborhoods of the previous and new position, we have been
able to handle almost all commands with adequate performance. For those com-
mands that we can not detect cleanly (e.g. a global find/change operation), we
provide the user with a simple command to reload the text.

The second complexity that arose was determining how to represent the parse.
We wanted to do incremental parsing to minimize the amount of work that was to be
done on each keystroke. We wanted to handle incorrect programs since the editor
will be used for initial program editing. We also wanted to handle a variety of differ-
ent programming languages including some (such as C++) that are notoriously diffi-
cult to parse. The obvious choice here, parse trees, had several drawbacks. It was
much more complex than necessary since we only needed enough information for for-
matting. Parse trees are suitable when the program is correct, but it is difficult to
define a parsable grammar that handles incorrect programs in a clean way. They are
also typically used to represent the language-portion of the program and ignore com-
ments and white space which we needed to maintain and format properly. Parse
trees also imply that full parsing must be done, and even incremental parsing can be
complex and time-consuming. For example, adding a left brace in a C program would
normally invalidate the remainder of the file and cause it to be reparsed.

We chose a simpler representation that meets our needs without the difficulties
of parse trees. We represent the parse as two structures, a stream of tokens, gener-
ated on a line basis, and a symbol table. The token stream serves multiple purposes.
It provides input for the simple parsing that is needed to maintain the symbol table
and to find the proper indentation for a line. It also provides a basis for formatting
using FrameMaker’s paragraph and character formats.

In the next three sections we look at symbol table management, parsing, and
formatting in more detail.

3.0 Symbol Table Management

Symbol table management in our editor interface is similar to that provided by
a compiler in offering the capability to define and lookup scopes and names inside
scopes. It differs in three aspects. First, it provides incremental facilities whereby
symbols can be dynamically defined and undefined to support incremental parsing.
Second, it provides the facilities to support incomplete programs by maintaining the
implicit type of undefined symbols. Finally, it provides a connection with the system
database to facilitate lookup and cross-referencing of names defined and used in
other parts of the system.

The basic components of the symbol table are scopes and objects. Scopes have a
scope type, a parent scope, an alternate parent, a set of super class scopes and a list
of the symbols defined in the scope. The scope type determines how the scope
behaves for lookup and definition, i.e. whether definitions are allowed, what types of
names should be defined in this scope, etc. The parent scope reflects the actual scope

Program Editing in a Software Development Environment August 3, 1995 5

nesting. The alternate parent is used when the scope is actually nested twice, for
example a method body in C++ is nested in both the class scope and the file scope.
Symbols contain their name, the symbol type, the scope of the definition, and the
scope associated with the symbol (i.e. a class scope for a type name).

Scopes support the normal operations of defining names and looking them up.
An undefine operation is provided to support incremental parsing. An assume opera-
tion is used to handle undefined symbols due to incomplete programs. The assume
operation takes a name and the symbol type and works similar to define except that
it only creates a name in the outermost scope regardless of what scope it is called on
and it sets a flag in that name indicating that the name is assumed. If the name was
already defined the assume operation is ignored. If the name had been previously
assumed, then the symbol type of the previous definition and the symbol type of this
definition are checked to determine a new symbol type for a name. This is needed to
handle names that can be used ambiguously such as type names that can be used as
functions (for casting or constructors) and functions that can be used as pointer-to-
function variables.

The symbol table is responsible for most of the interconnections between the
file being edited and the program database. This is managed through the outermost
scope. This scope automatically establishes a connection with the system database.
It determines the set of include files referenced by the file being edited and creates a
lookup context in that database consisting of these files and the files they include.
The first time a name is looked up in the global scope, a request is made to the
system database to find this name in the lookup context and the information
returned is used to define the symbol.

The global scope is also used for managing dynamic cross-reference links based
on uses and definitions. When the editor interface needs either the set of definitions
or the set of references for a name that is defined or could be accessed externally, it
sends a corresponding request to the system database. External definitions are actu-
ally handled by caching the information returned by the initial symbol table lookup.
External references (either based on use-def chains or a name pattern) are queried
explicitly when needed.

4.0 Parsing

Parsing in the API is done for two purposes. The first is to maintain the symbol
table and provide a local version of use-def chains to support implicit links within
the file. Relating identifier uses to the appropriate definitions is one of the key func-
tions of the system database and is crucial for program editing. The system data-
base, however, is not accurate for a file that is in the process of being edited or
created. The editor thus compromises, constructing use-def relations by consulting
the database for items from files that are not being edited, and using the local parse
structures for files that are being edited. The second objective is to allow the editor to
format the text to make it more readable along the lines proposed in [2]. This

Program Editing in a Software Development Environment August 3, 1995 6

required token-based formatting and required the editor to distinguish between
tokens representing different types of objects. It also required identifying and isolat-
ing block and in-line comments.

The simplest representation that offers these capabilities consists of a token
stream and a symbol table. The parsing algorithm builds this incrementally, looking
at lines as they change and updating the representation appropriately. It achieves
language independence by using language-specific routines for the actual generation
of an initial token stream for a line and the mapping of this token stream to a quali-
fied token stream with the appropriate symbol table manipulations.

Parsing within the editor interface is done in three phases. The first phase con-
sists of tokenizing the source. Figure 2a show a simple source example which is
tokenized as shown in Figure 2b. Tokenization is done incrementally one line at a
time. In order to handle complex tokens, the editor maintains a start and end state

int fct(Bool x) {
int a = 5;
return x+a;

}

a) Sample Program

KEY_INT ID=fct LPR ID=Bool ID=x RPR
LBR

KEY_INT ID=a EQ INT SEMI
KEY_RETURN ID=x OP ID=a SEMI
RBR

KEY_INT FCT_DEF=fct LPR_ARG1
ID=Bool VAR_DEF=x RPR_ARG1 LBR

KEY_INT VAR_DEF=a EQ INT SEMI
KEY_RETURN ID=x OP ID=a
RBR

c) After Declaration Parsing

KEY_INT FCT_DEF=fct LPR_ARG1
TYPE_REF=Bool VAR_DEF=x
RPR_ARG1 LBR

KEY_INT VAR_DEF=a EQ INT SEMI
KEY_RETURN VAR_REF=x OP VAR_REF=a
RBR

d) Final Token Stream

b) Original Token Stream

Outer Scope
Bool : Type (Assumed)

File Scope
fct : Function

Function Scope
Argument List Scope

x : Variable
Local Scope

a : Variable

e) Resultant Symbol Table

FIGURE 2. Parsing example

f) Resultant display

Program Editing in a Software Development Environment August 3, 1995 7

for each line. These indicate whether the line is a normal line, is in the middle of a
comment, is a macro definition, or is some other type of preprocessor line. When a
line changes, its previous tokens are discarded and new tokens are computed for it.
If the end state for the line does not match the starting state for the subsequent line,
new tokens will be computed for it and subsequent lines as needed.

Once tokens have been computed for a line, it can be parsed. The editor
attempts to support incremental parsing at the line level. The parser is designed to
scan a single declaration or statement at a time. To facilitate the combination of
these, it keeps track of the starting and ending scope for each line. It also maintains
two flags for each line. One indicates that this line is independent of the normal
parsing rules (e.g. it is a preprocessor directive). The second indicates that parsing
can be started with the first token on the line. When a line needs to be reparsed, the
editor interface will find the appropriate starting point using these two flags and will
start parsing at that point and continue until the line in question is parsed.

Generic parsing support is provided through a token stream object which
allows the parser to scan tokens and to look ahead arbitrary amounts. It automati-
cally notes when a line is being scanned and indicates that the parse for that line is
being redone and the current line format might be invalid. It supports incremental
parsing through a call from the parser that asks if the current token is at the end of
a line. If it is not, the token stream tells the parser to continue parsing. If it is, the
token stream sets the flag on the subsequent line indicating that parsing can start at
that point and parsing stops.

The next parsing phase is responsible for identifying declarations and marking
the items being declared by mapping the tokens of these items into appropriate defi-
nition tokens. In addition, it modifies other types of tokens to simplify the next
parsing phase. The tokens modified are shown in Table 1. Declaration scanning is
done with an extended FSA. The scanner builds a declaration structure that identi-
fies the name and type tokens of the declaration as well as sets flags when certain

Token New Token Situation

COMMA
COMMA_ENUM Comma in an enumeration list

COMMA_ARG Comma in function argument list

COLON
COLON_CLASS Colon separating class from superclass

COLON_INIT Colon starting initializer list for constructor

LPR

LPR_ARG0 Left parenthesis for external/static function

LPR_ARG1 Left parenthesis for ANSI or C++ function definition

LPR_ARG2 Left parenthesis for KR-style function definition

RPR

RPR_ARG0 Right parenthesis for external/static function

RPR_ARG1 Right parenthesis for ANSI or C++ function definition

RPR_ARG2 Right parenthesis for KR-style function definition

ID
TYPE_TAG_REF Superclass name

VAR_REF Variable in KR-style argument list

TABLE 1. Non-definition tokens modifies during first parsing pass for C and C++

Program Editing in a Software Development Environment August 3, 1995 8

keywords (i.e. static, extern, typedef) are detected. If no errors are detected, it uses
the initial scope and the accumulated information to change the token type of the
identifier being declared to one of the types shown in Table 2. The only symbol table
manipulation that is done involves identifying tokens representing types and using
the assume operator to define them as implicit types at the top level if they were not
previously defined. An example of this can be seen in Figure 2c. Here the declaration
scanner has identified three definitions (fct, x, and a) and replaced the corresponding
ID tokens with FCT_DEF or VAR_DEF tokens. In addition, the parenthesis sur-
rounding the argument list have been changed to LPR_ARG1 and RPR_ARG1
respectively to indicate an ANSI-style argument list, and the name Bool has been
defined as an implicit type even though its token has not been changed.

The final parsing phase maintains the symbol table. This is done using a left-to-
right scan through the source. Any token that starts or ends a scope causes the
current scope to be updated. The name corresponding to any DEF token assigned on
the first pass is entered into the symbol table in the current scope. Finally, any iden-
tifier token not modified by the first pass is looked up in the current scope. If it is
defined, the token type is set accordingly. Otherwise, the local context is considered
to determine if the token is implicitly a function, field, or method reference. If it is,
then the token is defined as an assumed token of the given type. Otherwise, the
token is either left as an ID token or changed to an UNDEF_ID token based on user
preference. Figure 2d shows the result of this second scan on the previous examples.
The ID tokens for the names Bool, x, and a have been changed to TYPE_REF and
VAR_REF as appropriate.

Token Description
ENUM_MEMBER_DEF Name inside enumeration list

TABLE 2. Tokens set for declarations

TYPE_DEF Type definition (from a typedef)

FIELD_DEF Field definition

VAR_SDEF Static variable definition

VAR_DEF Local variable definition

METHOD_EDEF External method definition

METHOD_DEF Method definition with body

FUNCTION_EDEF External function definition

FUNCTION_SDEF Static function definition

FUNCTION_DEF Function definition with body

VAR_EDEF External variable definition

VAR_DEF Variable definition

MACRO_DEF Macro definition

ENUM_TAG_DEF Enumeration type tag definition

TYPE_TAG_DEF Struct, union, or class type tag definition

LABEL_DEF Label definition

Program Editing in a Software Development Environment August 3, 1995 9

5.0 Formatting

The program text is formatted in two stages. The first involves assigning a
paragraph format to the line based on the tokens of that line, while the second
involves assigning a character format to each token based solely on the type of token.
This simple approach is made possible by the parsing strategy which encodes the
result of the parse in the token types.

This approach is quite flexible. Our objective was to approximate the work of
Baecker and Marcus in designing an appropriate color display of the program text.
Some changes had to be made to fit into the framework provided by FrameMaker
and the notion of the user editing the text directly. Accommodations also had to be
made so that existing source code could be read in and so that a readable ASCII file
could be regenerated from the FrameMaker file.

We used six different paragraph formats to for formatting. These are shown in
Table 3. Most lines are of type F_Code. More than one blank line in the middle of
code or three or more blank lines immediately following a block comment are con-
verted into paragraph type F_BlankLine. This is similar to F_Code except that it
allows a page break while F_Code attempts to keep the current line with the subse-
quent line. The effect of this is to have page breaks occur at logical places in the
program text and to provide the user with control over the breaks. The paragraph
type F_CmmtLine is used for a single line containing only a comment. The type
F_Preprocessor is used for all preprocessor lines.

The remaining paragraph types are used for formatting block comments.
Taking the advice of Baecker and Marcus, we wanted comments to stand out by dis-
playing them with an appropriate background. We accomplished this in Frame-
Maker by embedding the comment in a one-row, one-column table that is shaded
appropriately. We provide four different types of comments which differ only in the
color of the shading, gray for information, light red for warnings, light green for
notices, and light yellow for alerts. The lines inside the comment have paragraph
type F_CmmtTable, while the line containing the anchor for the table containing the
comment is of type F_CmmtStart. The latter both allows a page break and is small
enough to effectively be invisible.

Format Description
F_Code Normal line representing source code

F_BlankLine Blank line that can serve as a separator

F_Preprocessor Preprocessor line

F_CmmtLine Line containing only a comment

F_CmmtStart Blank line containing the anchor for a block comment

F_CmmtTable Line inside a block comment

TABLE 3. Paragraph formats used by the editor interface

Program Editing in a Software Development Environment August 3, 1995 10

The key part of formatting is handled by the character types. Different charac-
ter types are provided for different types of lexical units as shown in Table 4. In addi-
tion, a wide range of formats are provided for describing different types of identifiers.
For each of the identifier types shown in Table 5, three formats exist, Id_<type>_ref
to indicate a reference to an identifier of that type, Id_<type>_ext to indicate a refer-
ence to an external identifier of that type, and Id_<type>_def to indicate a definition
of an identifier of the given type. Function declarations without a body (and similar
method declarations) are viewed as external references rather than as definitions for
formatting purposes. The result of this can be seen in Figure 3. Type names, both
built-in and user-defined, are shown in dark green. Functions being defined have
their name highlighted in red in a large font to stand out from the rest of the text.
Functions being called are shown in bold italics. Names being declared, both in the
argument list and in declarations, are emboldened. Keywords are display in blue. All
other identifiers are shown in a standard font.

Character Format Description Sample
Comment In-line comment // comment
Token Single or multiple-character token ++
SymToken Single or multiple-character token in Symbol font ∗=
Keyword_Decl Keyword as part of a declaration static
Keyword_Stmt Keyword starting a statement while
Keywrod_Type Keyword representing a type name float
Keyword Any other language keyword this
String String or character constant “I’m a string”

Constant Numeric constant 1.2345

Id Identifier of unknown type identifer
Id_undefined Undefined identifier undef_id

TABLE 4. Basic character formats

Identifier
Type

Description
Sample

Reference
Sample

Definition
Constant Enumeration constant or named constant SAMPLE SAMPLE

Function Non-member function strcpy strcpy
Field Class, structure, or union field manages manages
Label Label as a goto target label label
Macro Preprocessor macro MACRO MACRO

Method Class member function method method
Type Class, structure, union or enum tag; typedef name EMPLOYEE EMPLOYEE
Variable Variable name variable variable

TABLE 5. Identifier types supported for formatting purposes

Program Editing in a Software Development Environment August 3, 1995 11

6.0 Insets for Software Artifacts

One of the goals of an editor in a software development environment is to
provide common access to the variety of software artifacts. Several of these artifacts,
particularly the graphical ones, are built and maintained using special purpose edi-
tors: OMT diagrams describing an object-oriented design are maintained with an
object design tool; user interface designs, recorded in UIL files, are edited using an
interface builder. Our editor interface accommodates such tools using the inset
mechanism provided by FrameMaker. The utility of insets or live-links goes beyond
special purpose editors for software artifacts. We also use insets to provide visualiza-
tions of the user’s program as part of the source files. This is done by providing an
inset-based interface to our program visualization tools [16].

Our editor interface provides a common front end for a variety of different inset
editors. The front end manages two files for each interface. The first file is the input
file to the tool, i.e. a file representing the software artifact. For Paradigm+ (and other
tools that use a central database rather than individual files), we use the scripting
extensions provided to generate a state file when the user saves the design. Our
script to run Paradigm+ uses this state file to recreate the windows open at the time
of the save. For Builder Xcessory, we use the UIL file that is saved by the tool. For
our 3D visualization tool, we use the state file generated when the user saves the
state of the diagram.

The second file managed by the front end is a file containing the image to
display in the inset. This can either be a postscript file or a X11 image file. We have
set up Paradigm+ to generate a postscript file when the state is saved (by editing the

FIGURE 3. Example of formatting in the editor interface

Program Editing in a Software Development Environment August 3, 1995 12

result of printing to a file). Similarly, our 3D visualization tool generates an X11
image file when the state is saved. Since we could not customize the interface builder
tool we had, we instead wrote a small utility that takes a uil file and generates a cor-
responding X11 image. The common inset interface detects when the tool input file is
older than the image file and, in this case, automatically runs the utility program to
generate a new image file as needed. Integrating additional tools through the inset
interface is simple and fast, taking less that half a day provided that the tool has a
state file or one can be easily generated and there is a logical way of generating an
image file to incorporate into FrameMaker.

7.0 Integration with Desert

The editor interface is designed to fit into our evolving programming environ-
ment, Desert. The editor needs to be able to take process requests from the environ-
ment. It also needs to use the environment both to understand the overall program
and to allow the user to initiate commands in other tools from the editor.

Most of the editor’s interaction is based on control integration and our experi-
ences with the FIELD environment [15]. The editor defines a set of messages that
can be sent to it by other tools to cause it to display a particular file and line. It
defines messages that add a file-line pair to the current stack of gotos. This allows
the editor to create a goto list consisting of all error messages generated by a compi-
lation. The editor also sends out informative messages whenever a file is saved,
opened, or closed. It also uses the message facility to provide commands to compile
the current file or to build the system containing the current file.

Besides the use of control integration to facilitate the editor’s interaction with
the environment, the editor uses the common database provided by Desert to access
information about names used in the current file but defined elsewhere in the
system. The database, among other information, contains enough data to construct
use-definition chains for each name in the system. The editor uses this to determine
the proper type of any name that is not defined in the current file. It also uses these
facilities to provide goto commands for the definitions or uses of a specified name,
whether they appear in the current file or in files scattered throughout the system.

The other key part of the interaction of the editor with the underlying program-
ming environment involves maintaining an open environment. While FrameMaker
normally saves files in a binary format, such files are not acceptable input to other
tools. In order to maintain an open environment, we had to insure that the editor
could use the original source files. This is done in the interface in two parts. First,
the interface provides a filter for Framemaker that takes an arbitrary source file and
generates a FrameMaker file. This allows the user to open, from within Frame-
Maker, any source file and have it properly formatted and then displayed. Second,
whenever the user requests that the current file be saved, the editor interface gener-
ates a copy of the modified source file and saves it as well. The interface attempts to
make this file readable, mapping block comments in FrameMaker into *-encircled

Program Editing in a Software Development Environment August 3, 1995 13

block comments in the source, while maintaining other indentation and formatting
information. It also insures that the FrameMaker file can be rebuilt from the saved
source file.

8.0 Related Work

There have been many editors written exclusively or primarily for program-
ming. Many of these are syntax-directed editors, editors that parse the program and
allow the programmer to work in terms of syntactic units of the underlying program-
ming language. Syntax-directed editors were widely proposed and implemented in
the early 1980’s [4,6,7,14,18]. While some syntax-directed editors continue to be
written, the general experience of those who wrote and used them was that users do
not generally edit in terms of syntactic constructs and the syntax-directed features
often get in the user’s way. Programmer-knowledgable editors such as the program-
mer’s apprentice have also been proposed [20]. These attempt to use artificial intelli-
gence techniques to provide direction to the programmer. More recently, the Pan
system attempts to use sophisticated semantic knowledge to provide programmer
feedback [3]. Neither of these semantic approaches has been demonstrated as practi-
cal for realistically-sized programs.

More popular for programming are language-knowledgable editors such as
emacs [10]. These editors know enough about the language being edited to do auto-
matic indentation and simple error checking (such as parenthesis balancing). The
primary example of such an editor is emacs. Extensions that have been included in
such editors include the use of a tags file for handling simple links between a defini-
tion and use (assuming the name is unique), and, in the latest version of emacs, color
highlighting based on regular expression patterns. Language-knowledgable editor
can offer many of the features that our editor interface does However, they do not
guarantee accuracy since the pattern matching (for indentation, links, and format-
ting) is all approximate. They are also not fully-functional word processing systems
that are able to display and combine graphics with text. Editors for single-language
systems, especially on PC’s, also are language knowledgable. These provide the
ability to automatically format the code, highlighting keywords, etc. as the user
types. Our editor interface provides many of these capabilities in an open, multiple-
language environment.

Other work that is related to ours includes work on literate programming [12].
This is a general attempt to use a single file for both documentation and code. A pre-
processor extracts the code from the file when compilation is needed. Other proces-
sors can extract documentation, function headers, or other relevant information. Our
editor interface can duplicate much of this. (For example, we currently only save
lines with a paragraph type beginning with “F_” into the original source file.) More-
over, we are able to do this using the inherent capabilities of FrameMaker rather
than extra formatting or punctuation characters added by the author to distinguish
code and documentation. Our approach is closer to that used in the Cedar Mesa envi-
ronment where the Cedar editor used the document structure and document tags to

Program Editing in a Software Development Environment August 3, 1995 14

distinguish code and comments in the same document [19]. Our approach also pro-
vides these capabilities in an open environment, not depending on a single language
or compilers that are aware of the document’s structures.

Another area of related work involves the use of hypertext editors for program-
ming. This is becoming more common with the advent of HTTP and editors built for
the world-wide web [8]. These editors allow the user to create implicit or explicit
links between the various parts of the program. Our approach can provide similar
facilities, using the hypertext capabilities of FrameMaker for explicit links and the
internal data structures and external database to provide implicit links. Multimedia
insets are supported both by HTTP and by FrameMaker.

Another related topic is incremental parsing and semantic analysis. Incremen-
tal parsing typically shows how to extend standard parsing techniques to support
incrementality [9]. A variety of techniques have been proposed for incremental
semantic analysis, including attributed grammars [5], model-based functions
[13],unification [17], and functions [11]. All of these techniques attempt to preserve
full semantic information and depend on having the full program available and
error-free. Our simplified techniques provide the information needed for editing
without the cost of maintaining the more detailed information needed by a compiler.
Moreover, they work well in the presence of syntactic and semantic errors.

9.0 Experiences

While the current version of the editor interface is still an early prototype, we
have been using it to develop significant portions of the underlying Desert environ-
ment. Our experiences to date have shown that the concept of using a word processor
such as FrameMaker for program editing is practical. Moreover, the additional for-
matting information and the feedback it provides is helpful during editing. We hope
to do more extensive studies of the benefits and drawbacks of the editor interface
once the interface and the environment that supports it is stable enough.

While the benefits of the editor in terms of the quality of the display, the addi-
tional information provided by formatting, the implicit links between uses and defi-
nitions, and language intelligent features such as automatic indentation are
apparent when using the editor interface, there are drawbacks.

The first drawback is the performance of the editor interface. We have put a lot
of effort into our editor interface to make common editing situations fast. Our experi-
ences shows that the current setup has satisfactory performance (on a SparcStation
10) for normal editing. The performance issues arise when loading a new file, in
saving a file to disk, and when reformatting the whole document is necessary. The
problem here comes primarily from the need for extensive communication between
our editor API and FrameMaker, with additional time required to access the exter-
nal database. We are hoping that enhancements to interprocess communication and
improvements to the FrameMaker API in the next version of FrameMaker will alle-

Program Editing in a Software Development Environment August 3, 1995 15

viate many of these problems. Delays caused by the interaction of the editor inter-
face and the environment arise primarily when the underlying database system
updates itself. We are beginning to work on minimizing these delays as well.

Other problems arise because our parsing methods are approximate. The
primary drawback here is that fields and methods inside expressions are not
resolved completely. This is alleviated somewhat by the use of unique method or field
names or by naming conventions that differentiate field and method names. Our
experience to date has indicated that this is probably not a serious problem since it is
easy for the programmer to scan a list of references or definitions and pick and
choose the ones that are actually relevant.

More general issues arise when the parser gets confused by some incorrect or
unparsable construct. We have done our best to code around most of these and are
correcting additional situations as they arise. The main problem left in this area
involves understanding preprocessor macros. Our current implementation can
detect the use of macros through the database system. However, it does not know the
contents or meaning of a macro. The formatter, when a macro is encountered, does
not attempt to set the type of names or do serious formatting inside a macro invoca-
tion. Because macros are used extensively in C and to some extent in C++ as well, we
are attempting to develop a framework that would allow the user to characterize
macro names for formatting, indentation, and symbol definition purposes. We hope
that such a framework would handle most uses of macros that typically confuse our
parsing approach without requiring that the parser actually find and expand
macros.

Most of the remaining problems represent bugs or missing features in the
current prototype implementation. For example, the current approach to determin-
ing what requires reformatting will miss some lines for some FrameMaker com-
mands (such as global find/change). It also does not currently follow semantic links
so that editing a definition does not automatically update all the uses. Similarly, the
heuristics for handling ambiguous names (either from the database or from internal
declarations) will sometimes associate the wrong type with a symbol. These prob-
lems only occur occasionally, and are easily handled by allowing the user to reformat
(and hence reparse) the whole program or a selected portion at any time. The only
drawback with this approach is that global reformatting currently involves consider-
able communications with FrameMaker and hence has performance problems.

In summary, we feel that the benefits to our approach to program editing,
notably in offering program rather than file editing through connections to an under-
lying database and message-based interaction with the underlying environment,
using a high-quality display, allowing the user to combine text and documentation in
a single document, allowing interconnections between the program source and other
software artifacts, and in offering all these capabilities in an open environment com-
patible with existing tools and programs, outweigh the current disadvantages. More-
over, we see that many of the current disadvantages can and will be overcome in the
future and that this approach to program editing will be practical.

Program Editing in a Software Development Environment August 3, 1995 16

As such, we are continuing to work on the editor framework. We are first
attempting to improve the performance, primarily through more sophisticated inter-
action with FrameMaker. We are working on adding additional languages and han-
dling multiple languages in a single file. Yacc input files, for example, involve a
language for defining the grammar and include both embedded and separate C or
C++ code. We are working on support of conditional compilation using Frame-
Maker’s conditional text facilities. We are working on support for multiple open files
where the internal database is used for all open files rather than just the current
one. We are working on better integration with the Desert environment including
support for virtual files, files that are constructed by the environment by taking
semantically related chunks from their different source files. Most importantly, we
are attempting to build up a user community for the editor framework that will
provide us with feedback and direction and a means for analyzing the utility and
effectiveness of both high-quality text formatting and full-program editing.

10.0 Bibliography

1. James Archer, Jr. and Richard Conway, “COPE: a cooperative programming environment,”
Cornell TR81-459 (June 1981).

2. Ronald M. Baecker and Aaron Marcus, Human Factors and Typography for More Readable
Programs, Addison-Wesley (1990).

3. Robert A. Ballance, Susan L. Graham, and Michael L. Van De Vanter, “The Pan language-
based editing system for integrated development environments,” ACM Software Engineering
Notes Vol. 15(6) pp. 77-93 (December 1990).

4. Norman M. Delisle, David E. Menicosy, and Mayer D. Schwartz, “Viewing a programming
environment as a single tool,” SIGPLAN Notices Vol. 19(5) pp. 49-56 (May 1984).

5. Alan Demers, Thomas Reps, and Tim Teitelbaum, “Incremental evaluation for attribute
grammars with application to syntax-directed editors,” Proc. 8th ACM Symposium on Principles
of Programming Languages (1981).

6. Veronique Donzeau-Gouge, Gerard Heut, Gilles Kahn, and Bernard Lang, “Programming
environments based on structured editors: the MENTOR Experience,” in Interactive
Programming Environments, ed. D. R. Barstow, H. E. Shrobe and E. Sandewall,McGraw-Hill,
New York (1984).

7. Robert J. Ellison and Barbara J. Staudt, “The evolution of the GANDALF System,” Journal of
Systems and Software Vol. 5(2)(May 1985).

8. James C. Ferrans, David W. Hurst, Michael A. Sennet, Burton M. Covnot, Wenguang Ji, Peter
Kajka, and Wei Ouyang, “HyperWeb: a framework for hypermedia-based environments,”
Software Engineering Notices Vol. 17(5) pp. 1-10 (December 1992).

9. Carlo Ghezzi and Dino Mandrioli, “Augmenting parsers to support incrementality,” JACM
Vol. 27(3) pp. 564-579 (July 1980).

10. James Gosling, Unix Emacs, Carnegie-Mellon Computer Science Department (August 1982).

Program Editing in a Software Development Environment August 3, 1995 17

11. Gail E. Kaiser, “Semantics for Structure Editing Environments,” Ph.D. Dissertation,
Carnegie-Mellon University (1985).

12. N. Ramsey, “Literate programming: weaving a language-independent WEB,” CACM Vol.
32(9) pp. 1051-1055 (September 1989).

13. Steven P. Reiss, “An approach to incremental compilation,” Proc. SIGPLAN ’84 Symposium
on Compiler Construction, (June 1984).

14. Steven P. Reiss, “PECAN: program development systems that support multiple views,” IEEE
Trans. Soft. Eng. Vol. SE-11 pp. 276-284 (March 1985).

15. Steven P. Reiss, FIELD: A Friendly Integrated Environment for Learning and Development,
Kluwer (1994).

16. Steven P. Reiss, “An engine for the 3D visualization of program information,” Journal of
Visual Languages, (To appear in 1995).

17. Gregor Snelting and Wolfgang Henhapl, “Unification in many-sorted algebras as a device for
incremental semantic analysis,” Proc. 13th ACM POPL, pp. 229-235 (January 1986).

18. Tim Teitelbaum and Thomas Reps, “The Cornell program synthesizer: a syntax-directed
programming environment,” CACM Vol. 24(9) pp. 563-573 (September 1981).

19. W. Teitelman, “A tour through Cedar,” IEEE Software Vol. 1(2) pp. 44-73 (April 1984).

20. Richard C. Waters, “The programmer’s apprentice: knowledge based program editing,” in
Interactive Programming Environments, ed. D. R. Barstow, H. E. Shrobe and E.
Sandewall,McGraw-Hill, New York (1984).

