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Abstract

Many of the problems that occur in long-running
systems involve the way that the system uses memory.
We have developed a framework for extracting and
building a model of the heap from a running Java sys-
tem. Such a model is only useful if the programmer can
extract from it the information they need to understand,
find, and eventually fix memory-related problems in
their system. This paper describes the visualization
strategy we use for interactively displaying the model
and related information to achieve these goals.

1.  Introduction
Memory-related problems are common in many

programs. This is especially true for long-running
server-style systems where small problems such as
memory leaks or excessive storage overhead can mush-
room into major problems over the course of a run. In
order to avoid or fix such problems, programmers need
to understand how their system uses memory.

Our goal is to provide a visualization of memory
that can help the programmer achieve this understand-
ing. Because memory utilization in a large system can
be very complex and involved, we needed a visualiza-
tion that would let the programmer focus on potential
problems and on the major components rather than
showing all the underlying details.

To this end, one first has to understand what types
of problems programmers might be interested in and
what are the major components of memory utilization.

The latter is relatively easy. Memory usage that is
trivial, say that accounts for less that 0.1% of the heap,
is probably not particularly relevant. Note there that
one must take into account not only the storage used by
a particular object, but also all the storage for which
that object is responsible. Moreover, details such as the
layout of objects in memory, especially with a language
such as Java where the user has no control over the
layout, is probably not relevant.

The set of potential problems is more interesting.
Some of the problems are obvious. Programmers are
first interested in memory bugs. In Java, this is reflected
in memory leaks, objects that are no longer needed by
the program but which are still referred to by some
other object.

A second problem involves inefficient use of
memory. Java programmers tend to create several levels
of objects between the accessor and the actual data. For
example, strings are abstract objects where the actual
data is contained in a character array. The intervening
objects are not free in terms of memory usage, with
each incurring some overhead. If the underlying data is
relatively small but there are many instances of it, the
result can be that a significant chunk of memory is lost
in the overhead.

A third problem involves churn. If the number of
objects of a given type is large but remains relatively
stable, and if these objects are always being created
anew, then the program is spending a lot of time doing
possibly unnecessary memory allocation and garbage
collection.

A fourth problem involves unexpected increases in
memory size. While it is common for the size of
memory to fluctuate over the course of a run, the pro-
grammer might be surprised if memory usage suddenly
jumped or if the objects of a particular class suddenly
starting consuming more space than expected.

A related problem involves correlating the memory
usage with program behavior. Long running server
applications typically experience different levels of
demand and go through different phases. It is important
that the programmer be able to understand memory
behavior in these terms.

Our visualization is designed to let the program-
mer both understand overall memory behavior and
address these and other memory-related problems. In
the next section we describe the model of memory
behavior we use and how it is built. Then the actual
visualization is described. The subsequent section
describes how the visualization and its framework
address memory problems. We finish by describing
related work and our planned future work.

2.  Background
Most of these memory problems can be understood

in terms of a memory ownership graph. In such a graph
there is a node for each object and links from an object
to all the other objects for which it is responsible [13].
Creating and using such a graph is problematic. First
the graph is impractical large when there are large
numbers of objects on the heap. One can’t make much



sense of a graph with millions of nodes. Second, the
notion of ownership is difficult to determine precisely.
An object might be referenced by multiple other
objects. In this case one must determine which of these
objects is its owner, or, if ownership is effectively
shared, what fraction of the ownership should be
assigned to each reference. A third problem involves
cycles in the graph which typically arise from linked
data structures. These make it difficult to assess and
hence accurately assign ownership without insights
from the programmer.

The typical solution is to do graph manipulations
to simplify the graph. This involves both finding
strongly connected components to eliminate cycles,
and then grouping nodes with similar in links and out
links. The result is a much simplified directed acyclic
graph [8,13,14,20]. This approach is costly both in
terms of the amount of time and space required to get
the initial memory graph and the time required to
process and analyze a very large graph.

Our approach is to ignore individual objects and to
assume that most objects of a given class will be used
alike and hence can be grouped. This allows us to start
with much less information, notably just the number of
objects of each class and the number of references of
objects from each class to objects of another class, and
to work with much smaller graphs.

One major problem with this simplified approach
is that the assumption of similarity, while true for most
classes, is not true for the Java collection classes. Java
uses a single class to represent an array list, another for
a map, another for a linked list, etc. They are used in
different ways in different parts of the program. Our
approach deals with this problem by creating pseudo
classes for each of the collection classes (and the inter-
nal classes they use) based on the source reference.
Thus, we create what is effectively a new class for a
HashMapreferred to by aBT_Classusing the name:
HashMap←BT_Class. Once this is done, our approach
tends to yield a graph that is similar to the ones com-
puted by simplifying the complete graph.

A second problem is that not all instances of a
class have the same memory footprint. In Java, this
only happens for arrays. To deal with this we create
new pseudo classes for different sized arrays, where we
only consider the order of magnitude of the size. Thus
arrays that have between 1,000 and 10,000 elements
have *1000 appended to their name; arrays with
between 10,000 and 100,000 elements have *10000
appended to their name; and so forth.

We build this model of classes referencing other
classes using a JVMTI [12] agent that is part of our
controlled dynamic performance analysis tool [23].
This agent periodically uses the JVMTI to walk
through the heap counting objects and references. The
result is converted into an acyclic graph using a cycle-
finding algorithm similar to gprof [6]. This introduces
new nodes for cycles, nodes that effectively represent a

complex data structure. Finally, we use the relation-
ships in multiple memory samples to statistically allo-
cate objects that have multiple incoming references
among their referees using a constrained least-squares
fit and quadratic programming.

The result of this analysis is a directed acyclic
graph where the nodes correspond to classes, one of the
pseudo classes we created, or nodes representing
cycles, and the arcs represent memory ownership. The
nodes contain information about the class, the number
of objects and the size of those objects. The arcs
contain information about the number of references
and the fractional ownership represented by the arc.

3.  Display
We wanted to display this graph in a compact

manner so that the programmer could quickly get an
overview of the memory behavior. This view had to
highlight potential memory problems and provide the
programmer with an understanding of memory behav-
ior relevant to types of memory issues discussed ear-
lier.

While we could display the result directly as a
graph, the result would be complicated and would not
be compact nor easy to understand. The graph is rela-
tively complex, with some nodes, such as that repre-
senting theStringclass, being linked to by a relatively
large number of nodes, and generally with a total of
several hundred or more nodes.

The first step is to convert the directed acyclic
graph into a tree which is easier to display. This is done
by taking each node that has multiple predecessors and
creating copies of that node so that each predecessor
has its own copy. While this results in many more
nodes, it greatly simplifies the display. Moreover, it
allows us to use space efficient representations since
arcs can become implicit and do not have to be dis-
played directly.

The default display has the tree rooted at the left to
growing toward the right, as shown in Figure 1. This
figure shows the memory usage of a multi-body simu-
lation program using Barnes-Hut. Each block in the
diagram contains information as detailed in Figure 2.
Vertical size is used to represent the amount of memory
owned by the class. The children of a node are dis-
played to its right starting at the top, and are ordered
from top to bottom by the amount of memory they
own. This make it easy for the user to see where
memory is being used in the application and to follow
the ownership relation for a particular class. Moreover,
each class has a gap on the right at the bottom of its
display that represents the storage used just for the
objects of that class. For simple classes likeString, this
shows the overhead inherent in the String object as
opposed to itschar array contents.

Next, we color the nodes based on the fraction of
memory that the objects of that class actually occupy



disregarding ownership. Here we use a scale that goes
from green to red where red represents the class with
the largest local memory usage. We also vary the inten-
sity of the color of a node based on the fraction of the
memory that it represents. This means that nodes that

are replicated due to the conversion from a graph to a
tree are shown in a lighter shade, with the actual shade
being dependent on the amount of duplication.

Each of the nodes of the graph is also cross-
hatched at the top and bottom to show additional infor-

FIGURE 1. Sample memory visualization.
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FIGURE 2. Graphical Encodings for a Node

HUE: The amount of storage this class’s objects take up

SATURATION: The fraction of this class represented by this node

HEIGHT: Amount of storage owned by this class’s objects

TOP HATCHING: % of the objects that are new

GRAPH: Amount of storage owned by this class over time

BOTTOM HATCHING: Increase in size of owned storage



mation. The blue lines from the top of the bar represent
the fraction of the objects represented by the node that
are new, that is that were created between the prior
heap sample and the current heap sample. The white
lines at the bottom of the bar indicate the increase in
the memory owned by this class from the prior heap
sample. Classes that continually grow will have both
white and blue lines. Classes that are undergoing
churn, will have blues areas but little white.

Finally, the blue line in the root element shows the
history of the size of ownership for that particular
element over the multiple heap dumps. In this case, the
amount of memory used is going down as objects
collide and merge. The white fork within the node
shows the time that the heap being visualized was sam-
pled. A fork is used here to indicate that the graph is an
approximation with actual data points only at the times
of a heap dump. The width of the fork provides an esti-
mate of the accuracy of the graph. The use of a fork
also ensures that the line is visible even when it is at the
end of the area.

Note that the combination of color and shape helps
the programmer find common patterns that represent
duplicated subtrees. Also, the use of color brings the
programmer’s attention to the classes that occupy the
most space and the underlying hierarchies show how
that space is being used. We considered other tree rep-
resentations such as tree maps [25], but decided that
the simpler unidirectional representation we use was
more intuitive for the programmer.

We restrict the display to the set of relevant nodes.
In this case, we discard all those classes whose objects
that take up less than a user-settable fraction of
memory, currently 0.1%. This tends to eliminate clutter
on the display while not hiding problems and the items
of interest.

We also provide the user with the option of dis-
playing only additional relevant types of root nodes.
Our data collection process separates initial pointers
based on the class of static fields, the thread id for stack
variables, and whether the initial references is a system
or a user reference. The user can enable or disable the
display of static class nodes, thread nodes, or a global
system node. If the nodes are not displayed, the refer-
ences are accumulated in the root node, if they are dis-
played they are shown as immediate children of the
root node.

The bar on the right of the display is a time line
showing heap memory usage over time as reported by
the Java management facilities. Dark blue indicates
more memory, light blue less. The pattern of dark and
light here shows the garbage collector in action. The
magenta lines in the otherwise blue display indicate
when the actual heap samples were gathered. The
yellow line indicates the currently selected user time.
This time bar can be used to go back and investigate
the state of the heap earlier in the run. The time line
and the point at which the heap is displayed is also syn-

chronized with the displays and time line provided by
our performance analysis tool. We considered using a
graph here rather than light and dark, but decided that
the limited space, the approximate nature of the data,
and the potentially large number of data points would
be better served with the current display.

The system is designed to display the state of the
heap live as the program runs as well as letting the user
review the history of the run. When displaying the
current state of memory, there is no yellow line in the
time bar and the current display is periodically and
automatically updated.

The display is designed to be interactive. As the
user moves the mouse around the display, tool tips
provide more detailed information about the various
nodes. This can be seen in the first part of Figure 3.
From here the user notes that CYCLE_8 represents
about three-quarters of the heap. Looking at the pattern
of colors, one can see several instances of this cycle in
the overall tree. A permanent window with this and
additional information can be obtained by middle-
clicking on the node as seen in Figure 4. Here the three
graphs show local (red) and total size and counts. The
time line also provides tool tips, with the tool tip
showing both the actual time and the heap memory
usage.

The user can zoom in on a particular node such as
CYCLE_8 by clicking on it. This produces the display
show in the second part of the figure. The resultant
display is the tree induced by looking at that node in
the original directed acyclic graph and thus includes all
duplicates of the node from the original display. Note
that the newly selected root now has its time-usage
drawn as a graph. The history buttons at the top let the
user go back and forth among these specialized views.

The tree can also be displayed horizontally rather
than vertically as in Figure 5. We find that this display
does not highlight the usage of memory as effectively
as the vertical display. However, the horizontal display
makes some of the text easier to read and makes the
line showing memory usage over time in the root node
easier to interpret. It also can be used to make more
effective use of landscape displays.

4.  Assessment
Based on our experience, the display has been

effective in providing an understanding of how
memory is being used. At the same time, it has high-
lighted many of the common memory-related problems
that arise in software development.

The basic display highlights two things. Color
coding draws the programmer’s attention to those
classes that are actually using memory. The ownership
relationship then shows what this memory is being
used for. For example, in the various figures, it is easy
to see that most of the memory space is being used to
store 3D vectors (classSolarVector) and that this is



about evenly split between vectors contained in the
objects themselves and vectors used for gravity compu-
tations. In more complex situations, such as a code
search engine [24] whose memory display is shown in
Figure 5, we were able to determine that most of the
storage was used for storing Eclipse abstract syntax
trees from the cycle node CYCLE_44 which contains
the various syntax tree classes. In all the cases we have
been able to check, the reported ownership relationship

accurately reflects the programmer’s intuition of
memory allocation.

The tool has also proven itself useful in addressing
memory-related problems. We have used it to identify
memory leaks. These show up either as unexpectedly
large uses of storage or classes where the storage
requirements keep growing over time. For example, in
the multi-body simulation of our examples, we at first
noted a large chunk of memory that included XML-
based classes. The root of these was the XML parser

FIGURE 3. Different views of memory utilization.

FIGURE 4. Data view for a single node



object which we keep and share. We did not realize that
the parser kept a handle on the last XML that was read
and thus was tying up a significant portion of memory.
The space-used graph in the root object provides a clue
to slower memory leaks; if it is continually increasing
and yet the programmer doesn’t expect that it should
be, then it represents a potential leak.

In another example, our performance analyzer
would run fine for a few hours and then would run out
of memory. Using the memory display we were able to
see that memory usage grew slowly at first and then
suddenly jumped, with all the storage being put into
arrays of integers owned by the history mechanism.
This was unexpected and, by looking at the code, we
found a simple bug was causing the system to continu-
ally allocate a new array rather than using the just allo-
cated array.

The layout and display also address the other
memory-related problems that we cited. Overhead
involved in using multiple objects shows up as empty
space to the right of an item. For example, clicking on
the String class in the example of Figure 3, one quickly
finds that Strings take up about 40% more than their
underlying character arrays.

While the basic display does not show where
objects are continually reallocated or the changes from

one time to another, these are highlighted by cross-
hatching. A class where most of the objects have been
reallocated since the previous heap dump, will be
covered in blue cross-hatching. Similarly, a class that
has grown considerably in size since the last dump will
have corresponding white cross-hatching. In both
cases, the class will stand out and the programmer will
note that there is a potential problem.

Finally, the time bar on the right of the display
allows the programmer to correlate memory behavior
with time. This can be done either through tool tips
where moving the mouse over the time bar shows the
actual clock time represented at that point. or by the
programmer inserting markers into the display to
remind themselves of particular program behaviors
they want to investigate. The time view is also synchro-
nized with the time displays provided by the underly-
ing performance analysis tool.

5.  Related Work
Memory analysis and visualization tools have

been available for some time. The early analyses typi-
cally gave a picture of the heap without regarding the
actual structure of object references [4,9,21,22]. More
recent visualizations along these lines concentrate on
multiple processes or garbage collection [4,19]. These

FIGURE 5. The alternative horizontal layout showing memory usage by a code search engine.



tools provided information about the types of storage
used and who allocated them.Heapview, for example,
showed a picture of the heap as the program run that
could be color coded by data type, allocation site, allo-
cation size, or age [22]. Later tools includingmprof
[27], Sun’sdbx, purify [7], and, for Java, Sun’shprof,
provide a post-mortem call site analysis of the heap,
telling the user the number and source of allocations
based on the call stack.

There have also been a number of tools that
monitor summary memory utilization of Java programs
as they run. These range from the tools distributed with
Java today includingjconsole[3] andjvisualvm[11], to
Eclipse plug-ins such astptp [5], to standalone open
source or commercial systems such asJMP [15], Bor-
land’sOptimizeit, Quest’sJProbe, or ourdyperprofiler
[23]. Most of these tools display only simple visualiza-
tions, for example, graphs of total memory used and
tables or lists of the space used by class.

A set of more sophisticated memory tools provide
a view of the actual objects in the heap.Jinsightpro-
vides views of the objects and their references [16,17].
Sun’s jhat provides a web front-end to let the user
peruse object space based on a dump. IBM’sHeapAna-
lyzeruses textual, tree-based viewers for the same pur-
pose. Ultrarise’sUCrawl provides a graphical front end
for viewing data structures.Foxprovides a query-based
interface for browsing the heap [18].

Another set of tools takes the object graphs pro-
duced by the heaps and abstracts them to produce a
more efficient display [8,13,14,20]. The main approach
here looks for strongly connected components and
dominators, effectively finding cycles and their entry
points. [10] takes this a step further by deducing data
structures and reporting memory usage by structure.
This is done, however, in the complete object reference
graph. Once it is done, the approaches collapse the
graphs by looking for similar subtrees. Our approach
tends to produce similar graphs, but we start with refer-
ence counts rather than the reference graph.

There have also been a variety of tools that spe-
cialize in helping identify memory leaks rather than
providing an overview of the heap. Some of these use
instrumentation to track writes and maintain data struc-
ture age [2]. Others modify the virtual machine to get a
fast approximation of object age [1]. Others look at dif-
ferences between collapsed object graphs [8]. Xu and
Rountev look at containers and how they are used to
assign probabilities to leaks [26]. Rayside and Mendel
use a combination of instrumentation to get lifetimes
and a better understanding of ownership based on
control along with a collapsed object graph [20].

6.  Future Work
We have used the system to look at memory usage

in a wide variety of applications. As noted, we have
used it to find memory leaks in our performance tool

and our particle simulator, and to understand the
memory behavior of our search tool. We have also used
it to look at the storage utilization of a peer-to-peer
network over time, a flow analyzer, a web crawler, and
a number of student projects.

While we have found the system relatively easy to
use and the visualizations easy to interpret, there are
several improvements to the system that we will be
working on.

We are continually improving the display front
end. Here we would like to provide a separate window
showing statistics, a way of selecting and highlighting
a node in place to make the identification of duplicate
trees simpler, providing an overview when a subtree is
displayed showing its parents, a search mechanism to
let the user quickly find a specific class, better cycle
names, and different color mappings so that a wider
range of colors are displayed.

We are also working on making the system easier
to use on its own. Currently, the system is implemented
as part of our performance monitoring package [23].
We want to provide a separate front end that makes it
possible to do memory visualizations without the over-
head of the remainder of the package. Also, we plan to
integrate the separated tool into the Eclipse framework.

Extensions we are considering include keeping
track of the age of objects and adding user-specified
time markers. Age information for objects can be com-
puted using the tags much as was done in Bell [1] and
could provide additional help in identifying potential
memory leaks. User time markers would make it easier
for the programmer to relate program events with the
memory display.

Our experience with the tool has shown that our
approach can use simple memory dump information to
produce graphical interactive views that are both accu-
rate and useful for understanding the memory behavior
of systems and for identifying potential memory-
related problems.

The code for this system is available as part of the
DYVISE package at:

ftp://ftp.cs.brown.edu/u/spr/dyvise.tar.gz
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