
DYVISE: Performance Analysis of Production Systems
Research Demonstration

Steven P. Reiss
Department of Computer Science, Brown University, Providence, RI. 02912

spr@cs.brown.edu

Abstract

Many of today’s complex systems are multi-
threaded servers that effectively run forever and need
to work under varying loads and environments. Under-
standing the behavior of such systems, both their nor-
mal behavior and any abnormal behavior, is a
necessary step in their development, deployment, and
use. We have developed a performance analysis frame-
work that is targeted for such systems. The framework
deals with a variety of performance issues including
cpu usage, memory utilization, I/O behavior, thread
interactions, and event handling. Data is collected
within a fixed overhead set dynamically by the user.
The tool’s user interface shows the behavior of the sys-
tem as it is happening and lets the user browse through
the execution history.

1. Introduction
Programmers often want to know about the

dynamic behavior of their systems. They want to know
about performance anomalies and how they can elimi-
nate them. They want to know where the system is
spending its time, what it is allocating, how long it
takes to respond to an event, where the memory leaks
are, and why they are not getting expected performance
out of multiple threads. They want to know how long it
takes to respond to an event. They want to know about
potential bottlenecks and memory leaks.

While a large number of tools have been developed
to address these issues, most of these tools do not
address modern software systems. Today’s systems are
typically more complex than previous ones and thus
harder to understand. They typically involve multiple
threads that can interact in non-obvious ways. They
involve significantly more code, with even a relatively
simple one incorporating millions of lines of source
when libraries are considered. Moreover, they are often
long running systems, servers that are designed to run
continuously and forever. A detailed summary of
related work and of our system can be found in [1].

Traditional profiling tools typically slow the
program down significantly, often by 25%-100% or
more, in order to get the necessary information. They
often provide only postmortem analysis which is not
helpful when considering systems that never terminate

or when one is interested in a particular time slice of the
execution rather than the overall execution. They are
also generally limited in domain, concentrating on one
aspect of performance or another, and not attempting to
address all aspects simultaneously. All this makes them
inappropriate for analyzing server systems.

Our tool, DYVISE, provides on-the-fly analysis of
complex systems within a user-settable overhead. It
deals with multiple performance domains and provides
the user with a flexible, details-on-demand interface.
The current implementation works for Java systems.

2. DYVISE Overview
DYVISE consists of a set of communicating pro-

cesses. Java agents (both library and JVMTI) are
attached to the user process as needed. These talk to a
monitor process that controls the instrumentation,
gathers the results, and does appropriate analysis. A
separate user interface gets the analyzed data from the
monitor. The components can all run on separate
machines so that the overhead of monitoring and the
user interface do not affect the original process.

DYVISE uses a combination of techniques to
achieve fixed-overhead performance analysis. It uses
sampling techniques to get a coarse view of perfor-
mance. Based on these results it then uses dynamic
instrumentation to get finer levels of detail. In order to
guarantee a fixed overhead, it varies the time between
samples and does detailed instrumentation only for rel-
atively short periods of time. This is accomplished by
treating instrumentation as a resource allocation
problem where the time between stack samples is
varied and code is instrumented and run based on
appropriate schedules determined from dynamically
established priorities.

Detailed instrumentation is achieved statistically.
For example, if the system wants to estimate the
number of times a routine is called over the run, it
would create a patched version of the class containing
the routine that counted entries, swap this instrumented
version in for ten seconds, and then project the counts
so obtained to the overall run. By changing the sam-
pling interval and the frequency and duration of the
instrumentation appropriately, the system provides
guaranteed limits on the overhead while offering statis-
tically significant performance information. In addition

to periodic detailed instrumentation, the system allows
continuous instrumentation when the overhead
involved is low enough and priorities allow.

To accommodate different types of analysis, the
framework supports performance agents we call prof-
lets. Proflets are split into several pieces to handle pri-
ority determination, data collection based on stack
sampling, detailed data collection using instrumenta-
tion, data analysis, and visualization. The overall
framework provides both run time and analysis support
for the proflets, an appropriate scheduling mechanism,
support for dynamic code instrumentation, support for
using JVMTI, and user interface support.

The current set of proflets provides for a variety of
different analyses including CPU performance, IO
behavior, socket usage, memory allocations, heap utili-
zation, thread interactions, thread timing, events and
callbacks, and program phase.

3. DYVISE User Interface
The user interface we developed is shown in

Figure 1. The view at the upper left shows the status of
the different proflets, with hue encoding whether the
proflet thinks there might be a problem and brightness
encoding the confidence the proflet has in that assess-
ment. This view is quite compact and unobtrusive so
that multiple visualizations can be displayed at one
time to monitor multiple servers or different processes
in a complex system. Clicking on the red dot for CPU
time in the first view animates the window to include
the second view, shown below the first, which shows
summary information from the CPU proflet. Tool tips
are used in this view to provide additional details on
the meter and the bar graph. Finally, clicking again
brings up the third view which shows the detailed per-
formance information. Each proflet provides its own
set of summary information and detailed tables.

An additional time view, show in the lower left,
provides a summary of the proflet states over the whole

run and lets the programmer zoom in and select a par-
ticular time frame for more detailed analysis.

All views are continually updated as the process
runs. This provides a view of immediate program per-
formance. In addition, the user can clear the statistics at
any point in the run and can dynamically enable and
disable performance gathering. These facilities let the
user focus on particular performance problems.

4. Experience
We have used DYVISE to analyze the perfor-

mance of a wide variety of long-running systems
including a particle simulation, a system for learning
coding style, a peer-to-peer programming framework, a
3D pinball program, a web crawler, a web server, and a
semantics-based code search engine, a news analyzer,
and a economic data crawler. From the results, we have
obtained the insights necessary to significantly improve
the performance of some of these, for example, we
were able to reduce the clock time for a test run of the
search engine by 50%.

We are continuing to work on the system, provid-
ing additional proflets, including application-specific
proflets and proflets for anomaly detection. Moreover,
we are working on additional user interfaces that will
provide insights into the immediate rather than cumu-
lative performance of the system.

The code for the framework is available at:
ftp://ftp.cs.brown.edu/u/spr/dyvise.tar.gz.

5. Acknowledgements
This work is supported by the National Science

Foundation through grant CCR0613162.

6. References
1. Steven P. Reiss, “Controlled dynamic performance
analysis,” Proc. 2nd Intl. Workshop on Software and
Performance, (June 2008).

FIGURE 1. Compact, intermediate, detailed and time views of performance

