
FIELD
Friendly Integrated Environment for Learning and Development

Man Pages

Department of Computer Science
Brown University

Providence, RI, USA

Direct comments, questions, and bugs to:

ATTN: Software Librarian
Department of Computer Science
Box 1910, Brown University
Providence, R.I. 02912 USA

or electronically:
arpanet/csnet: bwe@cs.brown.edu
uucp: uunet!brunix!bwe

Page 1 (5 January 1990) September 8, 1992

���� ����

FIELD(1) Eighth Edition FIELD(1)

NNAAMMEE
field, annotedit, annotview, formview, cbrowse, dbg, dbgview, flowview, viewevent, viewstack, viewtrace,
xprof, xref, xrefview, − A friendly integrated programming environment for learning and development

SSYYNNOOPPSSIISS
field [objfile [corefile]] [-options]

cbrowse [objfile] [-options]

flowview [objfile] [-options]

DDEESSCCRRIIPPTTIIOONN
FIELD is an open, integrated, UNIX-based programming environment that runs on top of X11. It offers a
rich set of tools, both standard UNIX tools and tools developed at Brown, all with consistent visual inter-
faces in an integrated setting.

The environment can be run as a single system via the field command, as paired tools via the dbgview or
xrefview commands, or as independent tools using any combination of commands. All tools that are run
by a single user on a single workstation will communicate and interact with each other on the system being
debugged. If field is run, then a control panel window is created from which the user can choose the
desired tools.

The FIELD environment provides annotation editors for the source file for actual editing, for program
viewing, and for interacting with the various tools. These editors consist of a text editor (EDT from the
Brown Workstation Environment currently), and an annotation panel that allows annotations to be placed
to the left of each line. Annotations are used to communicate from the source file to and from the other
tools of the environment. Multiple annotation editors can be active at one time. Different types of annota-
tion editors serve different purposes, by making different annotations available and by monitoring different
sets of annotations. The annotddt tool provides a source interface for debugging. It offers annotations for
setting break and trace points and will automatically change the file being displayed to show the current
debugger focus. The annotview tool provides a viewer for other environment tools. It will change the file
display to show various cross reference requests and compiler error messages. The annotedit tool pro-
vides an editor that will not change its focus automatically.

FIELD uses standard debuggers, either dbx or gdb, to control the execution of the system. A common tex-
tual interface to these debuggers is provided by the ddt front end which is used by FIELD. The command
language here is similar to that used by dbx, with some gdb-like extensions and some minor modifications.
While this interface can be used alone, in FIELD, it is generally used with the dbg tool. This tool provides
a transcript of the ddt session as well as a set of user-definable buttons. The tool dbgview offers a split
window that combines dbg with annotddt to provide a useful source-oriented debugger interface.

FIELD provides a full relational cross-reference facility. This facility, xrefdb, offers a textual relational
algebra interface. This is used primarily by other tools within the environment. One such tool is the
cross-reference interface xref. This provides for simple queries and displays the output in a text window.
The user can click on the displayed output to cause an annotation editor to display the corresponding
source location. This tool is also available as xrefview where it is paired in a split window with annot-
view.

There are also specialized, graphical viewers for the cross-reference database. flowview provides a view
of the call graph. It allows the user to display all or portions of the program’s call graph. The user can
click on any node or arc to have an annotation editor display the corresponding source. The call graph can
also be used to display program execution. The tool cbrowse provides a graphical browser on the C++
class structure of the user’s application. This again supports hooks to an annotation editor and to display-
ing program execution.

Other tools are viewers that allow the user to see the current state of the program being debugged. The tool
viewstack will provide a display of the execution stack that will be updated whenever the debugger gets
control. The tool viewevent will provide a display of all the user’s breakpoints. The tool viewtrace will
show the current value of all variables or expressions being watched within the debugger. It can also be

Page 1 (5 January 1990) September 8, 1992

���� ����

FIELD(1) Eighth Edition FIELD(1)

used to specify variables or expressions to watch.

Finally there are tools that provide visual interfaces to standard UNIX tools. formview offers a visual
interface to a variety of versions of make including gnumake, sun make, and system 5 make. xprof pro-
vides a visual interface to the various profilers including prof, gprof, fgprof and iprof.

OOPPTTIIOONNSS
The FIELD commands accept all the X11 options supported by the Brown Workstation Environment.
These can be specified on the command line or in an X11 resource file. Resources can be specified for all
field tools using the form field*resource. Resources can be specified for an individual tool using the form
field*tool*resource. The resource file $HOME/.fieldrc is used by FIELD in addition to the user’s current
X resources. In addition to all resources provided by the individual components of the BWE toolkit (not-
ably STEM and WIND), these include:

-background color or -bg color
Set the background color.

-bordercolor color or -bd color
Set the border color.

-borderwidth width or -bw width
Set the border width.

-display display
Set the display.

-font font or -fn font
Set the default font.

-foreground color or -fg color
Set the foreground color.

-geometry geometry
Set the geometry of the first window.

-name name
This option uses the given name as the command name. Running field with a command name of
one of its tools is equivalent to just running that tool.

-style style
This option lets the user specify the look and feel style that the FIELD tools will use. The style
can be one of 3D for the default 3-dimensional buttons, 2D for 2-dimensional buttons, or SIM-
PLE for simplified 3-dimensional buttons.

-simple This option allows the user to run a simplified version of FIELD. This version assumes that there
is only one source file for the executable. It provides fewer menus and buttons so as not to
overwhelm the beginning programmer.

+query This option will cause FIELD to request that the window manager not query the user for the loca-
tion of the windows.

In addition to these display options, all FIELD tools offer the following local options:

-auxd auxd_file
The FIELD tools use the Brown Workstation Environment resource manager AUXD for defining
many of their options, defaults, and internal workings. Normally, the default AUXD file for field
is used. This file can be overridden using this option. Note that environment variables can be
used to specify user-defined AUXD files that are specific to individual tools.

-msglock lock_file
The FIELD tools communicate via a TCP/IP sockets through a central message server. The mes-
sage server places its host name and port number in a lock file so that the various tools can find it.

September 8, 1992 (5 January 1990) Page 2

���� ����

FIELD(1) Eighth Edition FIELD(1)

Normally, that lock file is kept in /tmp (so its local to the given machine) and includes the user’s
name (so its specific to a particular user). This option allows the user to specify an arbitrary lock
file. All FIELD tools that are run with the same lock file will communicate with each other; tools
run with different lock files will not. This option, along with NFS, can be used to run different
FIELD tools on different machines or to run multiple instances of FIELD on the same machine.
The user should have write permission for the specified file.

XX1111 RREESSOOUURRCCEESS
In addition to the standard resources that can be specified on the command line, FIELD and BWE allow a
number of private resources to be specified as a means of customizing the user interface. These can be
defined in the user’s .Xdefaults, in the file ˜/.fieldrc, or in the file specified by the FIELDRC environment
variable. They include:

Resource Format Description���
Aspect x y Aspect ratio
btn.background color Background color for buttons
btn.foreground color Foreground color for buttons
btn.gray color Gray color for buttons
btn.gray_mix value Background:foreground ratio for gray color
btn.gray_size size Size of gray region of 3D buttons in pixels
btn.on color On color for buttons
btn.on_mix value Background:foreground ratio for on color
btn.select color Select color for buttons
btn.select_mix value Background:foreground ratio for select color
btn.set_colors flag If true, then let user set button colors
btn.shadow_size size Size of shadow region of buttons in pixels
dialog.box_size size Size of check box in dialog in pixels
dialog.cursor_color color Color of cursor in dialog box
dialog.fontsize size Size of default dialog box font
dialog.textoff_color color Color of non-current text boxes
dialog.texton_color color Color of current text box
edt_mode id Mode for EDT editor bindings
gelo.data.bg color Background color for boxes in graphics displays
gelo.data.fg color Foreground color for boxes in graphics displays
leaf.titlefill fill ASH Fill pattern number for title region
MaxSize x y Maximum window size in pixels
MinSize x y Minimum window size in pixels
menu.border_x size X border size for sticky buttons
menu.border_y size Y border size for sticky buttons
menu.hi_color color Select color for sticky buttons
menu.lo_color color Disable color for sticky buttons
menu.norm_color color Color for sticky buttons
menu.scroll_width size Size of scroll region for sticky menu in pixels
move_mouse flag If set, mouse moved into dialog box automatically
pdm.background color Background color for pull down menus
pdm.border_x size X border size for pull down menus
pdm.border_y size Y border size for pull down menus
pdm.btn_font font Font for pull down menu buttons
pdm.foreground color Foreground color for pull down menus
pdm.ripoff flag Flag to allow/disallow ripoff menus
pdm.ttl_font font Font for pull down menu title bar
scroll.color color Scroll bar color
scroll.space size Size of sides of scroll handle
setup style WIND setup style (NO SETUP, BUTTONS, or SOLO)

Page 3 (5 January 1990) September 8, 1992

���� ����

FIELD(1) Eighth Edition FIELD(1)

show_active flag If set, keep icons for all active windows
show_unique flag If set, keep icons for unique windows
SizeInc sz Size increment
state.background color Default background for state menus
state.box_size size Size of check box for state menus
state.foreground color Default color for state menus

RREESSOOUURRCCEE FFIILLEESS
FIELD uses the AUXD resource manager that is part of the Brown Workstation Environment. It reads in
an initial file that specifies the various resources and other files to be read in. The initial resource file is
determined as follows:

1) If the -auxd option is specified, then that filename is used.

2) Let name be the name specified using the -name option or the tail of the command name used to
invoke field if no -name option is specified. Let NAME be the upper-case translation of name.
Then if the environment variable NAME.AUXD is set, then the filename specified there is used.

3) The file ˜/.name.auxd is used if it exists.

4) The file ˜/.field.auxd is used if it exists.

5) The file $PRO/lib/field/rundata/$ARCH/name.auxd is used if it exists.

6) The file $PRO/lib/field/rundata/$ARCH/field.auxd is used.

The heading FIELD in this AUXD file specifies the overall environment to be used by the system. It can
contain the following items:

USE +
NAME = pathname
ENVIRON = environment_variable

These are additional files to use with AUXD at startup. The environment variable is used if it is
defined. Otherwise the pathname is used. If the pathname does not begin with a ’/’ and does not
exist, it is looked up in the FIELD rundata directory.

SETENV +
NAME = name
VALUE = value
IFNDEF = .

These are environment variables sets to be done. The IFNDEF option will only cause this set to be
done if the variable was not previously set.

LOAD +
FILE = pathname
CALL = routine

This allows arbirary routines to be dynamically loaded at startup. The entry point specified by
CALL is called if the load is successful. This item can be used with only a CALL definition to
cause routines in the bound version of field (or previously loaded items) to be called.

SERVICE +
NAME = name
CALL = routine
SYSTEM = pathname
ARGS = (a1 ...)

This allows various services to be started at initialization. The service name is given by name.
Then either the CALL field must specify a routine in field or that has been loaded, or the SYS-
TEM field must specify the system to be executed.

September 8, 1992 (5 January 1990) Page 4

���� ����

FIELD(1) Eighth Edition FIELD(1)

COMMAND +
NAME = name
CALL = routine
DATA = string
TWOARG = .

This item allows different commands to be run from the same binary. The NAME specifies the
command name (i.e. annotview, dbgview, ...). The CALL field specifies the routine to be called
in the binary. This routine is passed the root window as its first argument. The DATA field, if
given, will be passed as the second argument. The files specified on the initial command line will
be passed as the remaining arguments. Unless TWOARG is specified, only one such file can be
named by the user.

BUTTON +
NAME = name
CALL = routine
ICON_CHAR = char
ICON_FONT = font
MENU = menu
ACTION = string
KEY = keyname
UNIQUE = .
NOGENERIC = .
NOTHREADS = .
NOWINDOW = .

This item is used to define a command or window definition for the control panel by generating a
WIND_DEF structure. The NAME field must be specified. Either the CALL field should name a
routine or the ACTION field should contain a shell command to be executed. Either the
ICON_CHAR and ICON_FONT fields should be set or the MENU field should be set if the but-
ton is to be displayed at any time. The UNIQUE flag insures only one such window exists at a
time. The NOGENERIC flag means that the icon/window type is for internal use and no generic
button for it will be made available. The NOTHREADS flag indicates that the window should not
be started in a separate thread is Field is using threads. Finally the NOWINDOW field indicates
that no window is to be created for this button.

STARTUP +
SYSTEM = . -- only execute if system given
EDITOR = . -- only execute if source given
WAIT = . -- pause until command terminates
COMMAND = "command to exec"

This item allows the user to specify additional shell commands that should be executed when
FIELD starts. The SYSTEM and EDITOR entries allow the command to be selective -- i.e. only
execute when a system name or a source name are given on the command line respectively. The
WAIT entry tells field to wait for the command to complete before continuing. The command
string is executed within the users shell. In addition, the user can specify DEBUGGER and
DBGEDITOR strings at the top level to specify alternates to dbg and annotddt when a system is
given; and an EDITOR string to specify an alternative to annotedit when a source is given. The
later actually setenv’s ANNOT_EDIT (this is an alternative) unless the name begins with a ’*’. If
any of these is given as "*", then the corresponding tool is not run.

Other items in the AUXD file allow the user to customize the various FIELD tools. These are described in
more detail in the manual pages for the individual tools. Note that the resource files are used for defining
message patterns for the FIELD tools as well and care should be taken so that these definitions are
preserved if private resource files are created for the various tools.

Page 5 (5 January 1990) September 8, 1992

���� ����

FIELD(1) Eighth Edition FIELD(1)

UUSSAAGGEE
The environment provided by FIELD consists of a number of tools that can either be invoked separately or
that can be invoked as field using a control panel. The set of available tools will depend on the customiza-
tion done by the user. This section describes the default field environment, assuming no user customiza-
tion. The set of initially available tools that have icons on the control panel that can be invoked by clicking
on them include:

annotview
An annotation editor that will change file and line to view error messages and cross reference
requests.

annotedit
An general annotation editor.

annotddt
An annotation editor that will change file and line to keep in sync with the debugger.

aedit An annotation editor without any annotations, i.e. a plain text editor.

dbg A visual interface to the DDT debugger. This uses the standard system debugger, generally dbx.

gdbg A visual interface to the DDT debugger using the GNU debugger gdb.

viewstack
A stack viewer to be used in conjunction with the debugger.

viewevent
A viewer showing currently active breakpoints and other debugger events.

viewtrace
A viewer showing the current values of variables being traced.

formview
A visual interface to make.

transcript
A transcript window of makes done by the user. This is a simplified form of the formview com-
mand.

xprof A visual interface to prof, gprof, fgprof, or iprof.

xref A visual interface to the cross-reference facility (xrefdb) provided by FIELD.

fprof A visual interface to UNIX profiling.

typeedit An editor that allows the user to show how a data type should be displayed graphically.

display Graphical data structure display facility.

flow Call graph viewer.

cbrowse
Class browser for C++ programs.

VT Separate window for program input and output. Normally program I/O is part of the debugger
transcript. This tools allows it to be placed in a separate window.

In addition, on the Commands menu of the control panel, FIELD provides the following tools:

Help An interface to the hierarchical help facility of BWE. Note that the current set of help information
for field is incomplete.

Mouse Help
The mouse help window from the BWE help facility. It will attempt to dynamically show what
the mouse buttons do.

September 8, 1992 (5 January 1990) Page 6

���� ����

FIELD(1) Eighth Edition FIELD(1)

Refresh Invokes the xrefresh command.

Directory
Lets the user set the working directory for all FIELD tools currently running.

Quit Exit from field.

The UNIX menu of the control panel contains miscellaneous system commands including:

Shell Invoke a UNIX shell using the EDT editor.

Memory Info
This command is for debugging purposes only.

There are several keyboard accelerators and functions defined within the FIELD environment. These
include:

Key Effect���
Print Used to dump window or screen to file or printer
Help Requests help information
Meta-b Build the default system
Meta-q Quit out of FIELD

The Print key will cause a dialog box to come up asking the user to specify information on what window
should be printed or saved, which of these should be done, and the formats to be used. After the dialog is
accepted, the user should set things up for the print (i.e. wait for all refreshes to occur), and then hit the
Print key again. The Help key, when pressed, will attempt to provide help information about the button or
window that the cursor is over when the key is pressed. The current set of FIELD help information is
somewhat incomplete however.

EENNVVIIRROONNMMEENNTT VVAARRIIAABBLLEESS
FIELD and the Brown Workstation Environment both use environment variables to allow the user to cus-
tomize the environment. These include:
Variable Default Description��
ANNOT_EDIT annotedit Default annotation editor to create
BUILD_RULES User-specified default makefile
CC_COMMAND CC C++ 2.0 command name
DBX /usr/ucb/dbx Pathname for dbx
DDT_INIT $HOME/.ddtinit Initial command file for ddt
DISPLAY_DB ./.display_defs Directory for saving data structure pictures
FIELDRC $HOME/.fieldrc Default FIELD resource file
GDB /cs/bin/gnu/gdb Pathname for gdb (Gnu debugger)
INCLUDE_PATH Directories to search for include files in
MSG_GROUP File to be used for message server host/port (see -msg option)
SOURCE_PATH Directories to search for source files in
STDPASCAL Do case mapping for standard pascal
USE_GDB Use gdb rather than dbx if set
XRDB_FLAGS -D and -U options for C++ compilation
FIELD_TMP /tmp Directory for shared temporary files
FORM_BACKEND gnumake Default make to use���
ANNOT_AUXD User AUXD file for annotation editing
BUILD_AUXD User AUXD file for make interface
DBG_AUXD User AUXD file for dbg debugger interface
CBROW_AUXD User AUXD file for class browser
DISP_AUXD User AUXD file for data structure displays
FLOW_AUXD User AUXD file for call graph browser���
BACKUPS 1 Number of backup versions of sources to save
EDT_BASIS_CMD User defined editor command bindings

Page 7 (5 January 1990) September 8, 1992

���� ����

FIELD(1) Eighth Edition FIELD(1)

MOVE_MOUSE Jump mouse into dialog box if set
SHOW_UNIQUE Leave buttons for windows in control panel
NO_ICONS Don’t create icon buttons on control panel

FFIILLEESS
FIELD is designed to be installed in subdirectories of a given host directory. At Brown, this is either /pro
or /cs depending on the version of FIELD that is being used. In other installations, it may be an arbitrary
directory. We will designate it $PRO. The architecture name (via the arch command on suns) is used
where multiple systems must be supported from a common hierarchy. This is designated $ARCH.

$PRO/bin/field/*
$PRO/lib/field/help/*
$PRO/lib/field/rundata/$ARCH/*
$HOME/.ddtinit
$HOME/.fieldrc
$HOME/.edt.cmds
$HOME/.edtabbrev
$HOME/.field.auxd
$HOME/.command.auxd
$HOME/.dbgbtn
$HOME/.Buffers
./bBACKUP
./.dbgbtn
./.ddtinit
./.display_defs
./.field.auxd
./.fieldrc
.*.xref
.*.xrefrc
/tmp/msg.hostname.userid

SSEEEE AALLSSOO
annotedit(1), formview(1), cbrowse(1), ddt(1), display(1), flowview(1), viewevent(1), xprof(1), xref(1),
xrefdb(1), userio(1), ddtfilter(1), msgserver(1), xrefserver(1), The Brown Workstation Environment Refer-
ence Manual.

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

AAUUTTHHOORR
Steven P. Reiss, Department of Computer Science, Brown University.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

September 8, 1992 (5 January 1990) Page 8

���� ����

ANNOTEDIT(1) Eighth Edition ANNOTEDIT(1)

NNAAMMEE
annotedit, annotview, annotddt, aedit, codeview − FIELD annotation editors environment

SSYYNNOOPPSSIISS
annotedit [sourcefile] [-options]

annotview [sourcefile [-options]

annotddt [sourcefile [-options]

aedit [sourcefile [-options]

codeview [sourcefile [-options]

DDEESSCCRRIIPPTTIIOONN
These commands invoke individual annotation editors as part of the FIELD environment. These can be
used for editing, for program viewing, and for interacting with the other tools of the environment. They
can be invoked either as separate tools via the above commands are from the FIELD control panel. These
editors consist of a text editor (EDT from the Brown Workstation Environment currently), and an annota-
tion panel that allows annotations to be placed to the left of each line. Annotations are used to communi-
cate from the source file to and from the other tools of the environment. Multiple annotation editors can be
active at one time. Different types of annotation editors serve different purposes, by making different
annotations available and by monitoring different sets of annotations. The annotddt tool provides a source
interface for debugging. It offers annotations for setting break and trace points and will automatically
change the file being displayed to show the current debugger focus. The annotview tool provides a viewer
for other environment tools. It will change the file display to show various cross reference requests and
compiler error messages. The annotedit tool provides an editor that will not change its focus automati-
cally. codeview provides a simple annotation readonly editor on a file with a single annotation that is
displayed via highlighting for the current line being executed. It provides a more readable program visuali-
zation of the current line of execution than do the other annotation editors that use an iconic annotation for
this purpose. Finally, aedit provides an editor that uses no annotations, i.e. a simple text editor with the
same commands and interface as the other annotation editors.

OOPPTTIIOONNSS
The options, X11 resources, files, and environment variables used by these commands are the same those
used by the field command in general and the rest of the tools of the FIELD environment. See field(1).

RREESSOOUURRCCEE FFIILLEESS
The resource manager is used extensively by the annotation editor for defining both the different classes of
annotation editors and the different types of annotations. The resource file entries for the annotation editor
are grouped under the heading ANNOT. They allow the user to define different annotation editor types, to
define new annotations, and to define buttons. The formats are as follows:

WINDOW +
NAME = name
PARSE = .
USE = (annotation types)
SET = (annotation types)
SEARCH = (annotation types)
BUTTONS = (button names)
READONLY = .
CREATE = .
SENSITIVE = .
CONTROL = .
AUTOFILE = .
MSG_OPEN = (messages)
MSG_CLOSE = message
TITLE = title

Page 1 (5 January 1990) September 8, 1992

���� ����

ANNOTEDIT(1) Eighth Edition ANNOTEDIT(1)

MODE = EDT mode
CHOICEMENU = .
NOMENU = .
NOWINDOW = .
NOMONITOR = .
DISABLE = .
LEVEL = level

This defines a new annotation editor type. The name is the internal name; the title is the string
used as the window name. The USE set denotes the annotations that will be displayed by the edi-
tor; the SET list denotes the annotations that will cause the editor to change file or line; the
SEARCH list denotes the annotations that explicit search buttons will be created for. The flag
values include READONLY to make the editor readonly, CREATE to allow new files to be
created, SENSITIVE to denote the type of sensitive region used in the annotation panel, CON-
TROL determines whether EDT saves a control file or not, AUTOFILE determines whether the
editor should ask the user to set the initial file, and NOWINDOW denotes that the editor should
run without displaying anything. MSG_OPEN lists messages sent when the editor is opened and
MSG_CLOSE is the message sent when the editor is closed. The MODE parameter is passed to
EDT to determine key bindings. The CHOICEMENU and NOMENU parameters allow the
current annotation type selection to be made on a pull down menu or to be excluded from user
selection respectively. Finally, the LEVEL parameter denotes the maximum level of annotations
that will be displayed (although others in the USE list will be active).

ANNOTATION +
NAME = name
DISPLAY = text
DISPLAY_FONT = font
LEVEL = level
MSG_ADD = message
MSG_REMOVE = message
MSG_SET = message
MSG_UNSET = message
MSG_UPDATE = message
UNIQUE = .
UNIQUE_WITH = annotation type
IMMEDIATE = .
SAVE = .
PRIVATE = .
ACCUMULATE = .
QUERY = .
MULTIPLE = .
HILITE = .
ALTERNATE = .
JOIN = .
TOP = .
SPLIT_ONLY = .
COLOR = color
INFO = (info name strings)
KEY = "k" -- key to be used as shortcut
PRIORITY = priority (default is 10)

This defines a new annotation. The annotation is displayed using the given text in the given font.
Usually the font name is omitted and the text denotes an icon name (which can be defined using
the ICON descriptor below). The annotation will be drawn in the specified color. The level

September 8, 1992 (5 January 1990) Page 2

���� ����

ANNOTEDIT(1) Eighth Edition ANNOTEDIT(1)

denotes the annotation level. This is used along with the window level to determine if the annota-
tion should actually be displayed. The MSG_ADD message is sent when the user tries to add the
annotation; the MSG_REMOVE message is sent when the user tries to remove the annotation.
The user can add or remove the annotation explicitly unless the PRIVATE flag is set. The
MSG_SET message will cause the annotation to be added when it is received; similarly, the
MSG_UNSET message will cause the annotation to be removed. The MSG_UPDATE string con-
tains a message that will be sent for the given type of annotation whenever the file is saved. If
UNIQUE or UNIQUE_WITH is set, then there can only be one instance of this annotation in the
system. UNIQUE_WITH allows the specification of a group of annotations that are all unique
with each other. A user request to add an annotation will not actually add the annotation unless
IMMEDIATE is set. Setting SAVE causes the annotation to be saved with the file. Setting
ACCUMULATE will cause multiple annotations at the same line of this type to have their text
values concatenated and made into a single annotation. QUERY tells the editor that the user
should be prompted for the field values specified in the INFO list when the annotation is added
explicitly. Normally multiple annotations of the same type are ignored on a single line. MULTI-
PLE permits multiple anotations. HILITE, if set, will cause the annotation to select (and hence
hilite) the corresponding editor line rather than putting up an icon in the annotation window.
ALTERNATE will cause the editor to split the editor window and to use the bottom panel. JOIN
will cause the editor to merge a split window. SPLIT_ONLY will cause the annotation to only be
used if the window is currently split.

BUTTON +
NAME = name
OUTPUT = message
WAIT_MSG = message
SAVE = .
WAIT = .
FILE = .
NO_FINISH = .
FINISH1 = <string for <= 1 line of output>
REMOVE = (annotation types)

This defines a new annotation editor command. The name is the command name to be placed on
the menu. The output is the message to be sent through the FIELD message server to actually
execute the command. If either WAIT or WAIT_MSG is set, then the command will cause a dia-
log box to be put up while the command is executing. The WAIT_MSG determines a non-default
string to be placed in this box. If SAVE is specified, then the file is saved before the command is
executed. If REMOVE is specified than all annotations of the corresponding types are removed
before the command is executed. FILE indicates that the return value of the command message is
a filename that in turn contains the command output. This is used to display the result of the com-
mand.

QUERY +
NAME = name
OUTPUT = xrefdb output list
EXPR = xrefdb query expression
SEND = message to send
DESCRIPTION = query descriptor string
OUT_FORMAT = query output format string
DISPFILE = . -- put display in separate file
QUERYFILE = . -- put display in common query output file
SETFILE = (file# line#) -- set file argument numbers
DISPLAY = . -- force display of output

Page 3 (5 January 1990) September 8, 1992

���� ����

ANNOTEDIT(1) Eighth Edition ANNOTEDIT(1)

This defines an annotation command that is tied to the cross reference interface. It constructs a
query using the OUTPUT and EXPR strings. Escape sequences in the EXPR string allow the
inclusion of context-specific items. In particular, %L is replaced with the current line, %F with
the current file, %E with the current editor selection, %S with the current system, and %d or %s
with user-supplied parameters. Any of these can be of the form %’prompt’X to specify the
prompt name to be given to the user. In addition, the string can be prefixed with %Q to indicate
that the user shouldn’t be queried for inputs unless necessary. The description string can have
embedded %s’s in it. These will be filled in using the parameters of the EXPR string (in the same
order). The OUT_FORMAT string can also have embedded %s. These are replaced with the out-
put values in the specified order. Specifying the output parameter numbers (1..n) for SETFILE
will cause the editor to change files or lines after the query.

ICON +
NAME = name
XSIZE = size
YSIZE = size
DATA = (integer value list)

This defines an icon, presumably to be used to denote an annotation. The list of integers should
be ceil(XSIZE/32)*YSIZE long.

UUSSAAGGEE
The standard annotation editor window is divided into six panes (excluding the window decorations added
by the WIND package of BWE). At the top of the window is a menu bar containing the titles of the pull
dowm menus. The menus and buttons here are described below. Below this, to the left, is the annotation
panel. This is where annotations are displayed for each line and where the user requests annotations. The
center of the window is the actual display of the file. The scroll bar to the right of this display and the
status window underneath are both part of the underlying EDT editor. Finally, the panel to the right lists
the annotations that the user can create, highlighting the current default annotation.

This layout will vary based on the annotation editor chosen and the customization options that might be
selected. If no annotations are available in the editor that would be displayed in the annotation window (as
with aedit or codeview) then the annotation panel to the left is omitted. If there is only one annotation that
the user can add, or if there are two and the customization specifies that the customization specifies
NOMENU, or if the customization specifies CHOICEMENU then the menu of available annotations on the
right will be omitted. In the later case, the available annotations will be placed on a pull down menu.

Mouse clicks in the annotation panel to the right can be used to add, remove or display annotations. Click-
ing with the left mouse button will either add or remove the primary annotation type, the one highlighted in
the annotation panel to the right. The annotation will be removed if it already exists at the line and will be
added otherwise. To explicitly add the annotation, even if an annotation of the same type exists, shift-click
(or control-click or meta-click) the left mouse button. Note that adding an annotation does not always
cause it to be displayed immediately. Breakpoint annotations will only be displayed when the debugger
processes the request and the breakpoint is actually set. The right mouse button is handled similarly to the
left but works with the alternate annotation type rather than the default. The alternate annotation type is
not explicitly displayed, but is generally the second button on the annotation menu to the right or the previ-
ous value of the default annotation if pull down menus are used. The middle mouse button is used to
request information on an existing annotation. Clicking in the window with this button will cause a dialog
box to come up describing the leftmost displayed annotation on the given line. This leftmost annotation
can be changed using the Rotate button on the Annotate menu when necessary. The dialog box displays
whatever information the editor has about the annotation and gives the user the option of removing or
resending the annotation if these operations are allowed. Note that shift-clicking in the editor window on a
line can be used to add an annotation as well. In this case the left and middle mouse buttons will add the
primary annotation and the right button will add the alternate annotation.

September 8, 1992 (5 January 1990) Page 4

���� ����

ANNOTEDIT(1) Eighth Edition ANNOTEDIT(1)

The primary and alternate annotation types (used above) are selected off the annotation menu on the right
side of the annotation window. Clicking on a type with the left or middle mouse button will make it the
primary annotation type. Clicking on a type with the right mouse button will make it the alternate annota-
tion type.

The Annotate menu contains buttons for manipulating the annotations and the annotation editor in general.
These include:

Set System
Allow the user to set the system (object file and debugger) that this editor will talk to.

Remove All
Allow the user to remove all annotations of one or more types.

Rotate Rotate the annotations of the line the editor cursor is currently at.

Resend Resend all annotations that support the RESEND option.

Display Set the display level of the editor. Annotations whose display levels are greater than the editor’s
display level will not be shown. Levels range from 0 to 1024.

Annotations
Allow the user to select the set of annotations to be used or monitored by this annotation editor.
Used annotations will be kept and displayed (if the level is correct); monitored annotations will
cause the editor to change file and line to show a new annotation of the corresponding type when
one is added.

Monitor This button allows the user to turn off monitoring of all annotations immediately. It can be tog-
gled to restore monitoring to the currently monitored set of annotations.

Quit Exit the editor. If the file has been changed the user will be asked whether to save changes or not.

This and other menus supported by the annotation editor are dependent on the configuration. If the user
specifies any annotation types under the SEARCH option in defining the editor type, then a Search menu
will be present. This menu will contain two standard buttons and additional buttons for each annotation
type specified with the SEARCH option. If no SEARCH option is specified, then the two standard search
buttons will be placed on the Annotate menu. The buttons here are:

Search Search for an annotation of a given type after Requesting the type, a search direction, and whether
to start the search at the current location or at the start of the file.

Search Again
Repeat the previous Search starting at the current location.

Search for <type>
Search for the next annotation of the specified type starting at the current location.

The Select menu will be used if the configuration requests CHOICEMENU. It will list the different anno-
tation types that can be added by the user. Selecting a value here will make that value the new primary
annotation and will make the previous primary annotation be the alternate annotation. The Commands
menu will contain the buttons that have been defined for the editor in the resource file. The default buttons
include:

Compile
Save the file and send a request to the make interface to have it compiled.

Make Save the file and send a request to the make interface to have whatever systems it is a part of
rebuilt.

Make Default
Build the default system in the current directory.

Page 5 (5 January 1990) September 8, 1992

���� ����

ANNOTEDIT(1) Eighth Edition ANNOTEDIT(1)

SSEEEE AALLSSOO
field(1), The Brown Workstation Environment Reference Manual.

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

September 8, 1992 (5 January 1990) Page 6

���� ����

CBROWSE(1) Eighth Edition CBROWSE(1)

NNAAMMEE
cbrowse − FIELD C++ class browser

SSYYNNOOPPSSIISS
cbrowse [objfile] [-options]

DDEESSCCRRIIPPTTIIOONN
cbrowse is a graphical C++ class browser. It provides an interactive graphical interface to the xrefdb(1)
cross referencer’s information about the C++ class inheritance graph, classes and members. It allows the
user to see a local section of the inheritance graph, the full graph, or to get detailed information about
classes and members of the graph. It interacts with the FIELD environment, correlating items in the
display with locations in the corresponding source files and using the display to show program execution if
desired.

The class browser consists of one or two windows. The main window contains the visual display of the
class information. A second, optional window provides an information display that offers a textual sum-
mary of the information about the currently selected class.

The class browser constructs the full class inheritance graph for the user’s application using the xrefdb(1)
facility. It then allows the user to selectively display the desired portions of the inheritance graph. There is
a single class that is the currently selected class. This class is highlighted on the display and can be
automatically enlarged. The display can be restricted to only show the inheritance graph above and below
this class. Individual classes can be removed from either the global or a selective display.

The visual display of a class can be as simple as just showing the class name in a box, or as complex as
showing the class name, all the members, public, protected and private, data and function, the friends, and
links for the types of each member. Each of these various criteria can be individually displayed or not.

In the class display, the classes are shown as boxes of some type and the relations between them are shown
as arcs. Public subclass links are shown as thick solid lines, private subclass links are shown as thin solid
lines, friend links between classes are shown as dashed lines, and type links from members of the current
class are shown as dotted lines. The class boxes, when fully displayed, consist of the class name at the top,
an iconic region on the left denoting types of members, and, for each member, three fields, a state informa-
tion field, the member name, and a link field to the corresponding type. The class name will be in a shaded
region if the class is abstract. The icons on the left are either triangles or a box with an X. Triangles point-
ing to the left indicate data fields; triangles pointing to the right indicate function fields; solid triangles indi-
cate private members; shaded triangles represent protected members; empty triangles indicate public
members; the X box is used for friends.

A variety of different highlighting colors are used in the display. Light blue is used to denote the current
class. Green is used to denote the currently selected member. Yellow is used to denote members that are
inherited instances of the current member. Orange is used to denote the definition instance of the current
member if that member is inherited. Thistle is used to indicate members that are along the inheritance path
between this definition and the current member. Pink is used to indicate a member which is redefined by
the current member. Cyan is used to indicate those members which redefine the current member. Finally,
red is used to indicate a member that is currently executing if the browser is run in conjunction with the
FIELD environment.

OOPPTTIIOONNSS
The options, X11 resources, files, and environment variables used by these commands are the same those
used by the field command in general and the rest of the tools of the FIELD environment. See field(1).

RREESSOOUURRCCEE FFIILLEESS
The class browser resource file can be used to define the default settings that determine how to display the
class inheritance graph. The definitions include:

CBROW:
METHOD = 0x### -- GELO method
CONNMETHOD = # -- GELO connection method

Page 1 (5 January 1990) September 8, 1992

���� ����

CBROWSE(1) Eighth Edition CBROWSE(1)

FIXED = 0|1 -- use fixed size nodes
STANDARD = 0|1 -- use standard size nodes
CENTERED = 0|1 -- centered nodes
WHITE_SPACE = 0 .. 100
DISPLAY_ALL = 0|1 -- show all nodes or selected subset
DISPLAY_SUPER = 0|1 -- show superclasses
DISPLAY_SUB = 0|1 -- show subclasses
DISPLAY_LEVELS = -1 or 0... - levels to show in selected subset
DISPLAY_FORCE -- force update of display on new current
DISPLAY_SYSTEM = 0|1 -- show system classes
DISPLAY_NOEXPAND = 0|1 -- don’t expand classes if true
DCLASS_SIMPLE = 0|1 -- simple display of classes
DCLASS_DETAIL = 0|1 -- show member details (on left)
DCLASS_ZOOM = 1 .. n -- zoom factor for current class
DCLASS_FRIEND = 0|1 -- show friend links
DCLASS_HIER = 0|1 -- show inheritance links
DCLASS_FIXCUR = 0|1 -- attempt to show all of current class
DMEMB_PUBLIC = 0|1 -- only show public members
DMEMB_DATA = 0|1 -- show data members
DMEMB_METHOD = 0|1 -- show function members
DMEMB_INHER = 0|1 -- show inherited members
DMEMB_LINKS = 0|1 -- show type links for current class
DMEMB_STATE = 0|1 -- show state information for members
DMEMB_FULLNAMES = 0|1 -- show full member names for inherited menbers

CLASS_EXCLUDE = (pat) -- regex list describing classes to omit
CLASS_INCLUDE = (pat) -- regex list describing classes to show
MEMBER_EXCLUDE = (pat) -- regex list describing members to omit
MEMBER_INCLUDE = (pat) -- regex list describing members to show

SELECT_STYLE = 1-9 -- hiliting for primary selection
MEMBER_STYLE = 1-9 -- hiliting for member selection
SUBMEMBER_STYLE = 1-9 -- hiliting for member in subtypes
SUPMEMBER_STYLE = 1-9 -- hiliting for member in supertypes
DEFMEMBER_STYLE = 1-9 -- hiliting for member definition
EVAL_STYLE = 1-9 -- hiliting for evaluting member
REPLACE_STYLE = 1-9 -- hiliting for member replaced by current

MEMBER_MOUSE = 0|1 -- show members under mouse

The GELO method and GELO connection method are integer values that can be derived from the
$PRO/include/bwe/gelo.h include file. They determine the layout algorithms that are used in
displaying the graph.

UUSSAAGGEE
The main cbrowse window is divided into two parts, a pull-down menu bar at the top and the actual graph-
ical display below this. The menu bar contains two menus, Browse and Display. The Browse menu con-
tains commands that apply to the brower as a whole. It includes:

Info Window
This button will cause a new window to be created on the current display. This window will be
used by the browser to display more detailed information about the currently selected class in tex-
tual form. For more details on this window, see below.

September 8, 1992 (5 January 1990) Page 2

���� ����

CBROWSE(1) Eighth Edition CBROWSE(1)

Restart This button will discard all information about classes to be ignored and will then redraw the
current display.

Update This button will request that xrefdb reload the current system and will then redraw the display.
Any information about the current class or member as well as information about classes that
shouldn’t be displayed will be lost.

Set System
This allows the user to change the program that is viewed. This is effective both for viewing
another system and for interpreting and sending messages to the other tools of the FIELD environ-
ment.

Quit This removes the browser window(s) and exits the browser.

The Selection menu contains options that allow the user to set and modify the current selection. The but-
tons here include:

Set Class
This causes a dialog box to be put up that allows the user to enter the name of the class to be
viewed textually. If a new class is selected, the display will be updated accordingly.

Clear Class
This clears the current class selection. The display is then updated accordingly.

Select Class
This button causes a series of one or more dialog boxes to be put up that allow the user to go
through and select the classes to be displayed. For each class there is an ignore button. Checking
this button will cause the corresponding class to be omitted from further displays. The user can
also select a particular class, thereby making it the current class. If there are more classes than fit
in one dialog box, then the user will be provided with the option of going to the next (or subse-
quent or both as appropriate) set of classes.

Class Patterns
This button allows the user to select classes to be either included or excluded (or both) from the
current display using regular expression patterns (regex (3)).

Member Patterns
This button allows the user to select the members to be displayed for all classes of for a given set
of classes using a regular expression pattern.

The Display menu contains options that allow the user to customize the display. The buttons here include:

Options This button puts up a dialog box allowing the user to set any of the various display options other
than those affecting the layout algorithms. The Show all classes option will force the display to
include all the classes. The Force redisplay on selection option will cause the display to be
updated whenever a new class is selected. This is the default as selecting a new class typically
calls for a different display. The Show superclass and Show subclasses and the Levels options
allow the customization of the display of the local hierarchy surrounding the given class. The
option Expand size of selected class will attempt to make the current class large enough so that the
member information can be read. The Show friends and Show hierarchy options specify what
links (and associated classes) should be displayed. The Show selection option allows the user to
expand the size of the selection to make it stand out. The remaining options specify which
members should be shown. Show member details will cause the icons on the left to be drawn.
Show member links will cause links to be drawn showing the types of the members of the current
class. Show member state information will put up a state indicator to the left of the member name.
This will contain one or more of the letters CSPVFI for constant, static, pure, virtual, friend, and
inline respectively. Without the option Show full member names inherited members are just indi-
cated with an initial colon-colon. Show no members will draw all classes other than the current
one without members. Only show public members, Show data members, Show function members

Page 3 (5 January 1990) September 8, 1992

���� ����

CBROWSE(1) Eighth Edition CBROWSE(1)

and Show inherited members all control the set of members to be displayed. Several of these
options are individually settable using other buttons on this menu.

Show All
This option, if selected, will cause the browser to always show the full class inheritance graph as
opposed to the local hierarchy for a given object.

Show Friends
This option will cause friend classes to be shown and friend links to be drawn.

Public Only
This will restrict the members that are displayed in a class to only the public members.

Show Data
This will cause the data members of a class to be included in the display.

Show Functions
This will cause the function members of a class to be included in the display.

Show Inherited
This will cause the inherited members of a class to be included in the display.

Layout This will put up a dialog box allowing the user to change or play with the layout algorithms that
are used in drawing the class graph.

The mouse can be used within the graphics display for selecting the current class and member as well as
related operations, all by clicking (no dragging). The operations that can be done this way are:

Click On Button Operation��
Left/Right Make class current
Middle Show class information
Shift-Left Ignore class
Shift-Right Expand/contract class

Class

Shift-Middle Show class details
Left Make class and member current
Middle Show member information
Right Make member current

Member

Shift-Left/Right Make member current
Left Make subclass current
Middle Show arc informationArc
Right Make superclass current

Shift here indicates that either the shift, control or meta key was pressed while the mouse click occurred.
In addition, any click done without a shift/meta/control will cause a message to be sent through FIELD
requesting a source display of the associated line. For classes, this is the start of the class definition; for
members, if the left or middle key is pressed it is the declaration of the member in the class and if the right
key is pressed is the actual definition of the member; for relationships, it is the location where the relation-
ship is established.

In addition to mouse clicks, cbrowse provides a few keyboard accelerators. These include:
Key Operation���������������������������
r Redraw display
R Reset and redraw display
c,C Clear current class
a,A Toggle show all mode
u,U Update

The information window provides more detailed information about the current class. It is run as a readonly
EDT editor. When a class is made current, the information for that class will be displayed. If the informa-
tion was not previously displayed then it will be added at the end of the transcript being edited. The editor

September 8, 1992 (5 January 1990) Page 4

���� ����

CBROWSE(1) Eighth Edition CBROWSE(1)

will automatically scroll so that the start of the information is at the top of the window. The user can click
on any line of the display. Clicking on a line indicating a definition will cause a message to be sent
requesting an annotation editor display the corresponding source. Clicking on a class name will make that
class current and send an appropriate message. Clicking on a type or return type will make the correspond-
ing class current and send a message. Clicking on a member will make the member current. It will also
send a message requesting a source display of the declaration with the left or middle buttons and the
definition with the right button. The mouse clicks here can be done using shift or meta if it is desired (plain
clicks are also treated as editing operations).

SSEEEE AALLSSOO
field(1), xrefdb(1), annotview(1), The Brown Workstation Environment Reference Manual.

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

Page 5 (5 January 1990) September 8, 1992

���� ����

DBG(1) Eighth Edition DBG(1)

NNAAMMEE
dbg, gdbg, dbgview, gdbgview − FIELD debugger interface

SSYYNNOOPPSSIISS
dbg [objfile [corefile]] [-options]

gdbg [objfile [corefile]] [-options]

dbgview [objfile [corefile]] [-options]

gdbgview [objfile [corefile]] [-options]

DDEESSCCRRIIPPTTIIOONN
These commands form the workstation interface to the debugger. dbg provides an interface to the ddt(1)
debugger provided with the FIELD environment. It offers both an EDT editor-based transcript window
that allows textual interaction with ddt, and a user-definable set of buttons for frequently used commands.
dbgview is an combined tool, merging dbg with annotddt to provide a debugger interface with an
integrated source file window in a single tool. It splits its initial window in half and runs dbg in the top and
annotddt in the bottom. The commands gdbg and gdbgview are similar to dbg and dbgview except that
they use the Gnu debugger (gdb) rather than the standard system debugger dbx.

OOPPTTIIOONNSS
The options, X11 resources, files, and environment variables used by these commands are the same those
used by the field command in general and the rest of the tools of the FIELD environment. See field(1).

RREESSOOUURRCCEE FFIILLEESS
The initial set of buttons provided by the debugger interface is determined by the resource file. These are
defined under the heading DBG as follows:

BUTTON +
NAME = name
OUTPUT = output string
COLOR = color
CONTINUE = .
RUN = .

The NAME of each button is the text that will be displayed inside the button. The COLOR
parameter determines the button color. If the CONTINUE flag is set, then the button will be
highlighted whenever execution continues. If the RUN flag is set, then this button will be
highlighted when execution begins. If no button has a CONTINUE flag, then a button with the
RUN flag will also be highlighted when execution continues. At most one button should have a
RUN or CONTINUE flag set. The OUTPUT string is the text that will be generated and sent to
the debugger when the user hits the button. A newline character is automatically appended to the
end of this text. The text can contain embedded control sequences that will be filled in. These
include:

ˆ? user’s interrupt key
%Sreplace with current editor selection
%L replace with current line
%’name’s argument with given name
%F replace with current function
%’name’d integer argument with given name
%Q don’t ask user for values unless necessary

In general, if there is anything to be filled in in the output string, the user will be asked to confirm
that the parameters are correct and will be allowed to correct them otherwise. The %Q sequence
should appear at the start of the string if no confirmation is desired. The current line and function
are those that the debugger is currently focused on. The name parameters on %s and %d are the
prompts that will be placed in the dialog box when asking the user for the appropriate value.

Page 1 (5 January 1990) September 8, 1992

���� ����

DBG(1) Eighth Edition DBG(1)

The resource file can also contain the default font to be used for drawing the buttons under the heading
BUTTON_FONT. It can also contain a flag value POPUP_ERROR. If this flag is set, then whenever the
program being debugged halts because of a fault, a popup window will appear in the debugger interface
informing the user. A related field is POPUP_SIGNAL which contains a list of integer signal numbers
which this box should appear for (the default is all). It can also contain BUTTONS_PER_LINE, specify-
ing the number of buttons to place on a single line in the button window.

UUSSAAGGEE
The debugger interface window is divided vertically into 5 parts. The top portion contains the pull-down
menus. The second portion contains the transcript of the ddt debugger session in an EDT window. The
third portion contians the mouse buttons that can be used in place of typing the associated commands.
Beneath this are two lines, the first showing the current line of execution and the second showing the
current debugger focus.

The pull down menu bar contains one menu for dbg and other menus that are associated with the EDT edi-
tor. The Buttons menu contains commands for manipulating the button panel part of the interface and the
interface in general. It also provides an interface that allows the user to save a personalized button defini-
tion. It includes the buttons:

Remove This will pop up a dialog box asking the user which buttons to remove from the button panel.

Add This will pop up a dialog box asking the user to define a new button for the button panel.

Modify This will pop up a dialog box allowing the user to make changes to an existing button. Any aspect
of the button, its name, color, output or position, can be changed in this way.

Reload This will reset the buttons as if the user started the debugger up again, i.e. using the user’s saved
button definitions. The user’s button definitions are read in from the file ./.dbgbtn if this file
exists, and ˜/.dbgbtn otherwise. If no user button file is found, then the default buttons found in
the resource file are used instead.

Default This will reset the buttons ignoring any user definitions, i.e. using the definitions found in the
resource file.

Save Local
This will save a copy of the current button definitions in the file ./.dbgbtn.

Save Global
This will save a copy of the current button definitions in the file ˜/.dbgbtn.

Quit This will cause the interface to exit.

The current version of dbg offers seven default buttons. These are:

Step Single step the current program.

Next Single step the current program, skipping over subroutine calls.

Continue
Continue execution.

Run Rerun the current system using the previous set of arguments.

Stop Interrupt execution of a running system.

Kill Terminate the current running system.

Print It Print the current editor selection. To use this the user should first pick an expression in any EDT
editor window on the screen.

For information on the commands and the textual interface offered by dbg, see ddt(1).

SSEEEE AALLSSOO

September 8, 1992 (5 January 1990) Page 2

���� ����

DBG(1) Eighth Edition DBG(1)

annotddt(1), field(1), ddt(1), dbx(1), The Brown Workstation Environment Reference Manual.

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

Page 3 (5 January 1990) September 8, 1992

���� ����

DDT(1) Eighth Edition DDT(1)

NNAAMMEE
ddt, gddt − FIELD debugger interface

SSYYNNOOPPSSIISS
ddt [objfile [corefile]] [-g] [-C] [-s] [-l] [-f] [-c context] [-n]

gddt [objfile [corefile]] [-C] [-s] [-l] [-f] [-c context] [-n]

DDEESSCCRRIIPPTTIIOONN
ddt is an interface for FIELD to the system debugger. It provides a consistent interface to either dbx or
gdb on a variety of different machines. It provides and handles messages for the FIELD environment. It
does name mapping (mangling and demangling) for both C++ (AT&T 2.0) and Berkeley Pascal.

ddt offers a rich command set. This is based primarily on the syntax of dbx, with several useful gdb exten-
sions. The primary difference from a standard dbx syntax is that dbx uses the trace command for tracing
both lines, functions and variables while ddt uses trace to trace lines and functions and the watch command
to trace variables.

ddt operates by actually running the system debugger (either dbx or gdb) in a separate process and com-
municating to it via a pty. It can either be run in a standalone mode or as part of the FIELD environment.
It is run by the FIELD tools dbg, dbgtool, gdbg and gdbgtool. gddt is a version of ddt that will run the gnu
debugger gdb by default.

OOPPTTIIOONNSS
-g This option will cause ddt to run gdb. ddt -g is equivalent to gddt.

-C This option forces ddt to run in C++ mode, meaning that C++ name mangling and demangling
will be performed. Normally ddt will determine the mode by reading the symbol table of the pro-
gram being debugged.

-s This option places ddt into a mode suitable for standard Pascal (i.e. Berkeley Pascal with the -s or
-l options) where most names are mapped to lowercase.

-l This option places ddt in local mode. This is the default. In local mode the system does not use
the FIELD message facilities and cannot be used with other tools of the FIELD environment.
However, multiple copies of ddt can be run without interfering with each other and performance
is improved.

-f This option places ddt into FIELD mode. This is needed when ddt is to be run as part of the
FIELD environment. It is used implicitly when ddt is run using any FIELD tool.

-c context
This option allows the specification of a separate debugging context. This is a subcomponent of
the system name and, when fully implemented, will allow the debugging of separate threads of
control from separate front ends.

-n This option causes ddt to run as a front end only. Instead of interpreting commands, the interface
in this case will map the commands to messages for the FIELD message server. This assumes that
some other copy of ddt is already running to handle these messages.

UUSSAAGGEE
The command language of ddt is borrowed mainly from the UNIX debugger dbx with some commands
taken from from gdb. The whole command set includes:

Execution and Tracing
args break catch cont
delete display handle ignore
monitor next nextnext rerun
run return status step
stop stopexit trace update
watch when

Page 1 (5 January 1990) September 8, 1992

���� ����

DDT(1) Eighth Edition DDT(1)

Displaying and Naming Data
assign call down dump
info print printf up
whatis where whereis which
#

Accessing Source Files
cd file func list
unuse use / ?

Programming
define exec if loopexit
msgf undefine vset vsetq
while

Miscellaneous
alias context debug help
kill make
printenv pwd quit quote
setenv sh system xset

Machine Level
nexti stepi stopi tracei
watchi

The individual command formats are:

run
run - Begin execution of the program with the current

arguments
run <args> - Begin execution of the program with new arguments

rerun
rerun - Begin execution of the program with no arguments
rerun <args> - Begin execution of the program with new arguments

args
args - Use no arguments for next run command
args <args> - Use given arguments for next run command

trace
trace [<if cond>] - Trace each source line
trace in <proc> [<if cond>] - Trace each source line while in proc
trace <line#> [<if cond>] - Trace execution of the line
trace at <line#> [<if cond>] - Trace execution of the line
trace <proc> [<if cond>] - Trace calls to the procedure
trace in all - Trace all procedure calls
trace in all <pat> [<if cond>] - Trace all functions matching <pat>
trace all - Silently trace each source line

- NOTE: Optional <if cond> causes
tracing

to be performed only when
condition <cond> is true as

trace
point is reached

eg: trace 100 if i == 5

September 8, 1992 (5 January 1990) Page 2

���� ����

DDT(1) Eighth Edition DDT(1)

watch
watch <exp> at <line> [<if cond>] - Print <exp> when <line> is reached
watch <var> [<if cond>] - Trace changes to the variable
watch <var> in <proc> [<if cond>] - Trace changes to variable in

procedure
- NOTE: Optional <if cond> causes

tracing
to be performed only when
condition <cond> is true as

trace
point is reached

eg: trace 100 if i == 5

update
update at <line> [<if cond>] - Update views when <line> is reached
update in <proc> [<if cond>] - Update views when <proc> is entered
update - Update views whenever debugger can
update in all - Update on entry to all fcts
update in all <pat> - Update views for all fcts matching <pat>
updateq at <line> [<if cond>] - Quietly update views when <line> is

reached
updateq in <proc> [<if cond>] - Quietly update views when <proc> is

entered
updateq - Quietly update views whenever debugger

can
updateq in all - Quietly update on entry to all fcts
updateq in all <pat> - Update views for fcts matching <pat>

stop
stop at <line> [<if cond>] - Stop execution at the line
stop in <proc> [<if cond>] - Stop execution when <proc> is called
stop in all - Stop whenever a routine is called
stop in all <pat> - Stop in all functions matching <pat>
stop <var> [<if cond>] - Stop when value of <var> changes

NOTE: Optional <if cond> causes execution to
stop only if condition <cond> is true
when appropriate stopping point is

reached
eg: stop at 100 if i == 5

stop <if cond> - Stop if condition true
stop - Stop execution (interrupt)

break
break at <line> [<if cond>] - Stop execution at the line (temporary)
break in <proc> [<if cond>] - Stop execution when <proc> is called
break in all - Stop whenever a routine is called
break in all <pat> - Stop in all functions matching <pat>
break <var> [<if cond>] - Stop when value of <var> changes

NOTE: Optional <if cond> causes execution
to

stop only if condition <cond> is true
when appropriate stopping point is

reached
eg: stop at 100 if i == 5

Page 3 (5 January 1990) September 8, 1992

���� ����

DDT(1) Eighth Edition DDT(1)

break <if cond> - Stop if condition true

stopexit
stopexit in <proc> [<if cond>] - Stop execution at return of proc
stopexit in all - Stop execution at all returns
stopexit in all <pat> - Stop at return of all functions matching

<pat>

step step - Single step one line (step INTO calls)
step <n> - Single step <n> lines (step INTO calls)
step in <proc> - Continous single step in procedure
stepq in <proc> - Quietly continuous single step in procedure

next
next - Step one line (skip OVER calls)
next <n> - Step <n> lines (skip OVER calls)
next in <proc> - Continous single step in procedure (step OVER

calls)
nextq in <proc> - Quietly continuous single step in procedure

status
status - Print trace’s, when’s, and stop’s in effect

delete
delete <number> ... - Remove trace’s, when’s, or stop’s of given

number(s)
delete all - Remove all trace’s, when’s, and stop’s
delete in <proc> - Remove all events in given procedure
delete at <line> - Remove all events at given line

handle
handle - Print status of signals
handle <sig> ignore - Ignore given signal
handle <sig> catch - Catch given signal
handle <sig> printuse - Tell when signal occurs and use it
handle <sig> printign - Tell when signal occurs and ignore it

ignore
ignore - Print status of signals
ignore <sig> - Ignore given signal

catch
catch - Print status of signals
catch <sig> - Catch given signal

cont
cont - Continue execution
cont <sig> - Continue execution with signal

return
return - Continue until return (Not available on Suns)
return <proc> - Continue until return from proc (ibid for suns)

call
call <proc>([params]) - Call the procedure

assign
assign <var> = <exp> - Assign the value of the <exp> to <var>

September 8, 1992 (5 January 1990) Page 4

���� ����

DDT(1) Eighth Edition DDT(1)

print
print <exp> ... - Print the value of the expression(s) <exp> ...

printf
printf "format", <exp> ... - Print the value of the expression(s) <exp>
msgf "format", <exp> ... - Print the value of the expression(s) <exp>

up
up - Move up the call stack one level
up <number> - Move up the call stack <number> levels

down
down - Move down the call stack one level
down <number> - Move down the call stack <number> levels

file
file - Print the current context
file <filename> - Change the current file

func
func - Print the current context
func <proc> - Change the current function to function

or procedure <proc>

where
where - Print a procedure traceback
where <num> - Print the <num> top procedure in the traceback
where <top> <bot> - Print the <top> top procs and <bot> bottom

dump
dump - Print a procedure traceback with locals
dump <top> - Dump <top> top procedures
dump <top> <bot> - Dump <top> top and <bot> bottom procedures

list
list - List 10 lines
list <first>, <last> - List source lines from <first> to <last>
list <proc> - List the source to <proc>

use
use - Print the directory search path
use <dir> ... - Add to the directory search path

unuse
unuse - Clear the directory search path

kill
kill - Kill the process being run

quit
quit - Exit from the debugger

debug
debug - Print the name and args of the program being

debugged
debug prog [core] - Begin debugging <prog>
debug * [core] - Begin debugging same system, new core

cd
cd <dir> - Change the current <dir>

Page 5 (5 January 1990) September 8, 1992

���� ����

DDT(1) Eighth Edition DDT(1)

tracei
tracei <address> <if cond> - Trace execution of location <address>

stopi
stopi at <addr> [<if cond>] - Stop execution at location <addr>
stopi <var> [<if cond> - Stop execution when value of <var> changes

NOTE: Optional <if cond> causes execution
to

stop only if condition <cond> is true
as appropriate stopping point is

reached
eg: stopi at 0x1017 if i == 5

stopi <if cond> - Stop if condition true

watchi
watchi <var> <at addr> <if cond> - Trace changes to <var> at <address>

- NOTE: Optional <if cond> causes tracing
to

be performed only when condition
<cond> is true as trace point is
reached

eg: tracei 0x1017 if i == 5

monitor
monitor <exp> at <line> <if cond> - Trace value of expression
monitor <exp> [in <proc>] - Trace value of expression

whatis
whatis <exp> - Print the type of <exp>

whereis
whereis <name> - Print all declarations of <name>

which
which <name> - Print full qualification of <name>

quote
quote <command> - Pass command to dbx

info
info so <pattern> - Print all sources matching pattern
info fu <pattern> - Print all functions matching pattern
info va <pattern> - Print all variables matching pattern
info ty <pattern> - Print all types matching pattern
info fi - Print current system/core file names
info ru - Print current run arguments
info dy <expression> - Print dynamic type of C++ expression

while
while <expr> - Repeatedly execute commands

<commands> (see loopexit)
end

if
if <expr> - Conditionally execute commands

<commands>
[else

<commands>
end

September 8, 1992 (5 January 1990) Page 6

���� ����

DDT(1) Eighth Edition DDT(1)

loopexit
loopexit - Exit from innermost while

system
system id - Set system name
system id int - Set system and context

make
make - Request make of system
make <name> - Request make of given item

printenv
printenv - Print the current environment
printenv <name> - Print the name in the environment

pwd
pwd - print current working directory

sh
sh <command> - Execute the command in the shell

help
help - Provide general help
help <cmd> - Provide help on given command

display
display <exp> - Display expression at each stop point

stepi
stepi - Single step one instruction
stepi <count> - Single step <count> instructions

nexti
nexti - Single step one instruction over calls
nexti <count> - Nexti <count> times

xset
xset <variable> <value> - Set internal DDT variable

- The valid variables and values are:
FORCE_RUN 0 or 1 Run even if out of date (default)
CPLUSPLUS 0 or 1 Do CC name mapping
STDPASCAL 0 or 1 Do pc -s name mapping
STOP_UPDATE 0 or 1 Send update message at each stop
STACK_TOP 0 or n Display top n frames (all)
STACK_BOTTOM 0 or n Display bottom n frames (all)
STACK_GLOBAL 0 or 1 Display globals with stack
STACK_NO_MAIN 0 or 1 Skip main on stack (for Pascal)
IGNORE_TEMPS 0 or 1 Ignore C++ temporary names on stack

/
/pattern/ - Search forward for pattern

?
?pattern? - Search backward for pattern

#
<address> / <format> - dump address in given format
<address> / <count> <format> - dump count starting at address

when
when at <line> [<if cond>] <cmds> - execute cmds at given line

Page 7 (5 January 1990) September 8, 1992

���� ����

DDT(1) Eighth Edition DDT(1)

when in <proc> [<if cond>] <cmds> - exec cmds at procedure entry
- cmds can be { ... } or on
- separate lines

define
define name - define procedure

commands
end

undefine
undefine name - undefine procedure

vset
vset name = expression - set name to evaluated expression

vsetq
vsetq name = expression - set name to unevaluated expression

exec
exec name arg1,...,argn - execute procedure with args

EENNVVIIRROONNMMEENNTT VVAARRIIAABBLLEESS
GDB This specifies the pathname to be used in running the gdb debugger. The default is probably only

suitable for use at Brown. It is /cs/bin/gnu/gdb.

DBX This specifies the pathname for running the dbx debugger. The default is /usr/ucb/dbx.

DDT_INIT
This specifies a file that will be read in as part of ddt’s initialization. It typically includes com-
mands to customize an appropriate debugging environment.

USE_GDB
If this variable is set then ddt will use gdb rather than dbx as the default debugger.

STDPASCAL
Setting this variable is equivalent to running the system with the -s option.

CPLUS20
Setting this variable is equivalent to running the system with the -C option.

FFIILLEESS
FIELD and ddt are designed to be installed in subdirectories of a given host directory. At Brown, this is
either /pro or /cs depending on the version of FIELD that is being used. In other installations, it may be an
arbitrary directory. We will designate it $PRO. The architecture name (via the arch command on suns) is
used where multiple systems must be supported from a common hierarchy. This is designated $ARCH.

$PRO/lib/field/rundata/$ARCH/ddt.help
$HOME/.ddtinit
./.ddtinit

SSEEEE AALLSSOO
field(1), dbg(1), dbx(1), gdb(1).

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the

September 8, 1992 (5 January 1990) Page 8

���� ����

DDT(1) Eighth Edition DDT(1)

name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

Page 9 (5 January 1990) September 8, 1992

���� ����

DDTFILTER(1) Eighth Edition DDTFILTER(1)

NNAAMMEE
ddtfilter − C++ name demangler

SSYYNNOOPPSSIISS
ddtfilter [-cX] [infile [outfile]]

DDEESSCCRRIIPPTTIIOONN
ddtfilter is a C++ (AT&T 2.0) name demangling program that uses the name demangler built for the
FIELD ddt(1) debugger. It scans the input file (either stdin or infile), converting all C++ mangled names to
their full demangled equivalent and writes the result to the output file (either stdout or outfile). The input
file can be specified as - to denote stdin.

OOPPTTIIOONNSS
-cX This option, where X is an arbitrary character, will cause any spaces in the demangled names to be

replaced by the character X.

SSEEEE AALLSSOO
ddt(1)

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

Page 1 (5 January 1990) September 8, 1992

���� ����

DISPLAY(1) Eighth Edition DISPLAY(1)

NNAAMMEE
display, disptype, typeedit − FIELD data structure viewer

SSYYNNOOPPSSIISS
display [variable] [-options]

disptype [variable] [-options]

typeedit [typename] [-options]

DDEESSCCRRIIPPTTIIOONN
These three commands form the FIELD data structure display facility. They provide an interface to the
GELO component of the Brown Workstation Environment, mapping C, C++, and Pascal data structures
from the form used by ddt to the proper displays. They allow the user to define the display format interac-
tively as well as provide different default display formats for a variety of structures. For these tools to
operate correctly, there must be an active FIELD debugger.

The command display provides a display of a single user data structure. The structure name can either be
given on the command line or will be requested interactively when the display starts.

The command typeedit provides an editor that allows the user to specify the display format(s) for a given
type. The type can either be given on the command line or will be requested interactively.

The command disptype is a combined FIELD tool. It splits its initial window in half, running the display
facility in the top half on the specified or requested data structure and runs typeedit in the bottom half on
the type of this data structures.

OOPPTTIIOONNSS
The options, X11 resources, files, and environment variables used by these commands are the same those
used by the field command in general and the rest of the tools of the FIELD environment. See field(1).

RREESSOOUURRCCEE FFIILLEESS
The display and typeedit resouorces are kept in resource files under the heading DISP. The following
components can be defined:

BUILD_CLEAR = .
SIMPLE = .

The BUILD_CLEAR flag indicates that whenever a system is reloaded by the debugger, (typically after the
system has been rebuilt,) that saved type information should be cleared. This is a little slower than not
clearing, but insures that any changes made to datatype definitions are reflected in the display. This is set
in the standard resource file. The SIMPLE flag is another method (in addition to -simple on the command
line and *simple in the X11 resource file) of specifying that simplified menus should be used.

UUSSAAGGEE
The menus and interfaces provided by the data structure display facility, especially the type editor, are
probably the most complex and confusing in the FIELD environment.

The display package, if run from FIELD or if started without a variable name puts up a dialog box that lets
the user specify the variable to display. In addition to specifying the variable name, the box allows the user
to specify the file and routine of that variable to distinguish between variables of the same name. It also
allows the specification of the system being debugged that this display is talking to. Finally, the dialog box
allows the user to specify the default display types. Two options are available. The Nested display option
lets the user switch between a default display consisting of nested boxes and a display consisting of boxes
and arrows. The Use database option specifies that previously saved type definitions for this directory
should be used. This information is kept in a subdirectory .display_defs in the current directory.

Once the display tool finds an acceptable variable name, it segments its window. The top of the window
contains a title bar with the variable name and type. The user can click in this window with the mouse,
requesting that the above dialog box be put up so that the variable being displayed can be changed. Below
this title bar is a menu bar containing the pull down menus for the display package. These are derived

Page 1 (5 January 1990) September 8, 1992

���� ����

DISPLAY(1) Eighth Edition DISPLAY(1)

directly from the PEAR component of BWE. The main display is below this. To the right and below the
main display are scroll bars. These are used to pan over the display after zooming has occurred.

The user can use the mouse to select items in the display. The left mouse button is used to make the pri-
mary selection; the middle mouse button is used to make the secondary selection. The right mouse button
makes a tertiary selection. Currently there is no use for a tertiary selection. In each case, multiple clicks at
the same location will select up the display hierarchy and a second click (at a different location) in the
same object will deselect it. On a color display, the primary selection is blue, the secondary green and the
tertiary yellow. On a monochrome display the primary selection is inverted, the secondary selection is dark
gray, and the tertiary selection is light gray.

The Edit pull down menu contains buttons that allow editing of values in the display. The buttons here
include:

Set Value
This sets the value of the primary selection. If there is no primary selection then this button is
ignored. If there is a secondary selection, then the value of the primary selection is set to that of
the secondary selection. Otherwise, a dialog box is put up requesting that the user specify a value
and giving several options based on the expected datatype. Any value here should be in a format
acceptable to the debugger.

Copy Value
This is identical to Set Value.

Set Contents
This is identical to Set Value.

Copy Contents
This is identical to Set Value.

Delete This sets the value of the primary selection to 0 or an appropriate NULL value.

New Value
This is identical to Delete.

Expand This requests a new value from the user for the primary selection.

Make Current
This is a no-op.

Create This is a no-op.

Quit This closes the window and exits the tool.

The Layout menu contains additional editing commands for manipulating graphs. None of the buttons on
this menu are currently functional.

The Display menu contains commands for controlling the display. It contains the following buttons:

Update This button causes the display tool to go back to the debugger and reconstruct the value of the
structure being displayed. It also reverts to a non-zoomed, no-selections, display of that structure.

Emphasize
This command takes the primary selection and makes it larger if possible, shrinking the rest of the
display as necessary to accomodate the new size.

Deemphasize
This command takes the primary selection and makes it smaller if possible, enlarging the rest of
the display as necessary to accomodate the new size.

Zoom In
This commands zooms the display to show the central portion of the current window. After
zooming, the scroll bars on the right and bottom can be used for panning. Every second zoom will

September 8, 1992 (5 January 1990) Page 2

���� ����

DISPLAY(1) Eighth Edition DISPLAY(1)

cause the display tool to recompute items that were too small to display initially.

Zoom Out
This command zooms out.

Heuristics
This command allows the user to choose among a large set of heuristics for graph layout. The pri-
mary selection should be the layout that the heuristics are to apply to.
For more information see the GELO manual.

Show Item
This button takes the primary selection and makes it be the top item being displayed.

Show All
This button causes the value of the specified variable to be the current item being displayed. It
undoes the effect, for example, of a Show Item.

Match This button asks the user to set a match string for the top level object. Match strings are used to
specify different drawing methods for types. Thus, this button allows the user to choose between
different ways of drawing a type provided these ways have been set up correctly with the type edi-
tor.

Clear Choices
This button clears all current selections.

The Inset menu is used to control an inset panel that can be used in conjunction with the data structure
display. This window, originally in the lower right quadrant of the main display, can be used to show more
detail of some item being displayed. The buttons on this menu include:

Show Item
This takes the primary selection and places it in the inset window. The inset window will be made
visible if necessary. It will redraw the item as a top level item, thus the display may differ from
the nested display of the original selection.

Hide Inset
This makes the inset window invisible.

Show Inset
This makes the inset window visible. If nothing was previously displayed in the inset window,
then this button will cause the primary selection to be displayed there.

Clear This clears the display in the inset window, causing it to display a NULL value or a NULL type.

Refresh This will refresh the inset window.

Resize This will ask the user to rubberband a box to show where the inset window should be placed
within the parent display.

New Inset
This button is a no-op.

The Eval menu contains miscellaneous buttons, most of which do not apply to the data structure display
tool. The only buttons that are active here are:

Reload Types
This button will cause all type definitions to be recomputed, either from saved user files or by
requerying the debugger for type information. If the BUILD_CLEAR flag is not set in the
resource file, then this button should be used whenever the datatypes being displayed change and
the system is reinitialized in the debugger.

The display package also allows a number of keyboard accelerators. These are either equivalent to mouse
clicks at the current position or to selecting the appropriate menu buttons. They include:

Key Menu

Page 3 (5 January 1990) September 8, 1992

���� ����

DISPLAY(1) Eighth Edition DISPLAY(1)

�������������������
1
2
3

d,D Delete
e Emphasize
E Deemphasize

h,H Hide Inset
n,N New Value
s,S Show Item
t Set Contents
T Copy Contents
v Set Value
V Copy Value

u,U Update
z Zoom In
Z Zoom Out

The typeedit tool is used for describing and editing the display formats used by the display tool. When it
is started without a type name, or when the user requests a new type to be edited, it puts up a dialog box
asking the user to specify the type. The user must provide a type name. This should be the same name that
display shows when displaying the variable in question. The user can optionally provide a file and func-
tion name to further qualify which definition of that type is desired. Two additional options can be
specified as with display:, the type of default display and whether the local database of type definitions
should be used. If the database is used, it is used both for retrieval and for storage.

Once a type is correctly specified, the typeedit window is subdivided into a set of panels. The title bar at
the top contains the type name currently being edited. The user can click on this title to request that a dif-
ferent type be edited. Below this is a menu bar for the available pull down menus. Below this to the right
is a menu box containing options that can be used for display. This includes a number of standard options
and all the fields of the type being edited. To the left of this is a pictoral representation of the resultant type
format. Finally, below this representation box is a small box labeled Include that is also used as part of the
representation.

Types are displayed using the GELO package of the Brown Workstation Environment. This package pro-
vides for hierarchical displays. Each level of the hierarchy can be an object of a given flavor. It can be a
box object, in which case it is displayed as a rectangular region possibly containing a shape and text. It can
be a tiled object, in which case it is displayed as a rectangular region subdivided into non-overlapping rec-
tangular tiles. Each of these tiles can contain a value, either displayed according to the type of the value,
displayed as a box, displayed as a graph, or displayed as an arc to another item. The displayed object can
be an arc within a graph. It can also be a layout, that is a arbitrary graph with values being used to desig-
nate its contents, typically nodes and arcs.

Each type is specified as a series of top level objects along with conditions. The display for a type is deter-
mined by going through this series in order and selecting the top level object that satisfies all conditions.
This top level object determines how the resultant user data of this type is to be drawn. Any components of
this top level object are then filled in recursively. The conditions that can be used to differentiate types
include whether the user data is NULL, a match string, whether the display is occurring within a layout,
whether the display is at the top level or is nested, and whether this display is occurring within an array.
(An additional option, based on a user-specified condition, is currently not implemented.) Match strings
are arbitrary strings that can be specified either as part of the editing process or by the user to distinguish
different drawing strategies. They are typically inherited through the hierarchy.

The pull down menu contains menus that allow the user to do much of the editing. Additional editing is
done with the mouse in the representation window, in the menu to the right, or in the Include box at the
bottom. Before additional editing can be done, the nature of the top-level object for this condition and the

September 8, 1992 (5 January 1990) Page 4

���� ����

DISPLAY(1) Eighth Edition DISPLAY(1)

type being edited must be selected. The effect of the additional editing is determined by the flavor of this
top level object.

The File pull down menu contains general options for the type editor. It includes:

Finer Grid
This doubles the number of grid lines that are used in constructing rectangular tilings for tile-
flavored objects.

Courser Grid
This halves the number of grid lines that are used in constructing rectangular tilings for tile-
flavored objects.

Show Grid
This turns the grid display on or off for tile-flavored editing.

Clear This clears all information about the current type. It removes all alternatives.

Remove This removes the current alternative for the type being edited.

Save This saves the current type information. This command must be issued before any editing
changes will effect a data structure display. If the database is used, then this command will also
write the type display definition out to the database directory.

Restart This will reload the type definitions from the database or will effect a Clear if no database is used.

Quit This will terminate the type editor.

The Top menu is used for selecting the flavor of the top-level object and of selecting conditions for this
type display. It includes:

Default This will load the default ways of drawing the type into the list of alternatives. Several default
alternatives are automatically created for a type if no user-provided definition exists. This com-
mand allows the editor to explicitly specify these alternatives, thereby allowing the user to modify
them rather than starting from scratch.

Tiled This makes the top level object tile-flavored.

Layout This makes the top level object layout-flavored.

Box This makes the top-level object box-flavored.

Arc This makes the top-level object arc-flavored. It also implicitly adds the condition for this alterna-
tive that the display must occur in a layout. Note that adding an arc between two items will
automatically force those two items to be displayed.

Ignore This is an alternative to displaying an object. If this alternative is chosen, then nothing is
displayed for the object.

Next Alternative
This displays the next (subsequent) alternative in the series of alternatives.

First Alternative
This displays the first alternative in the series of alternatives.

New Alternative
This creates a new alternative BEFORE the current alternative. It puts up a dialog box asking the
user to specify the conditions for the new alternative.

Set Conditions
This puts up a dialog box allowing the user to set or edit conditions for the current alternative.

The Edit menu is used to select the flavor for components of a tiled object. It can only be used after a tile
component has been selected. (See discussion below on tile-flavor editing.) It includes the buttons:

Page 5 (5 January 1990) September 8, 1992

���� ����

DISPLAY(1) Eighth Edition DISPLAY(1)

Box Make the component box-flavored.

Layout Make the component layout-flavored.

Field The flavor of the component will be determined recursively based on the type and value of the
data that is put in that component.

Pointer The component will be drawn as a box with either a slash through it or a dot and an arc to the
object representing the data that is in the component. This is only useful when the display occurs
in a layout.

Ignore The component will be empty.

Empty The component will be drawn as an empty box. Note that this may differ from Ignore in the case
where different colors are used. This should be the used in most cases.

Finally, the Props menu contains one button, Options. If there is a current selection (either a tiled com-
ponent, an include component, or a layout component), then the drawing options for that component will be
provided to the user. Otherwise, the options for the top level object will be provided. If there is no top-
level object, the user will be asked to specify its type.

Layouts are specified by providing a list of items that should be drawn in the resultant graph. These can
either be drawn as nodes or arcs. Often it is the case that adding one item to a layout, for example an ele-
ment of a linked list, will cause other items to be added to the same layout, i.e. the next item in the list.
This is specified in the type editor using the Include box at the bottom of the window. This is only effec-
tive when the current alternative is conditioned on appearing in a layout. The user can add the additional
items by first clicking on the word Include and then selecting values from the menu at the right. Individual
items can be selected by clicking on their name in the Include box or on the corresponding button on the
right. Once an individual item is selected, it can be removed by clicking on the button on the right or
options can be specified for it. The options include whether the item should just be added, should be added
and an arc drawn from the current item to it, or should be added with an arc drawn from it to the current
item.

The menu to the right of the representation area contains a list of alternative values. These values can be
used to specify values for the components of various top-level objects. These include the tiles in a tiling,
the items to be drawn in a layout, the source, destination and label for an arc, and the include items. This
list contains a set of standard values followed by all the fields of the type being displayed. The standard
values include:

This allows the user to specify an arbitrary constant text string.

<Empty>
This specifies no value.

<Computed>
This option is not implemented for data structure display.

New Field
This option is not implemented for data structure display.

<From Source>
For an item that was added because of the Include option described above, this will designate the
value from which it was included.

<From Index>
For an item that is part of an array, this will designate the index number in the array for the item.

<From Self>
This designates the current value itself. This is useful, for example, in building a linked list. The
default way of drawing a link element in a list within a layout is as a tiling with the various values
and an pointer to the next link element. However, an initial display would not place the list ele-
ment in a layout. Thus the default display for a list element should be to draw a layout with itself

September 8, 1992 (5 January 1990) Page 6

���� ����

DISPLAY(1) Eighth Edition DISPLAY(1)

as the only element.

Tile flavor representations are edited using the mouse and the representation window.
The left mouse button is used for drawing new tiles and changing the size of existing ones. It should be
clicked down and then dragged to form an appropriate rectangle. Rubberbanding is shown during this pro-
cess. A new rectangle is drawn when the mouse starts in empty space or at a corner of an existing rectan-
gle. A rectangle is resized by starting in the middle of one of its edges. Where this is ambiguous, the
current selection will be chosen over other rectangles for resizing. Note that the editor will always force
the tiling to fit in a rectangle and to have non-overlapping tiles, and will create additional tiles as necessary.
The middle mouse button is used for selecting the current tile. Once a tile is selected, information about it
can be specified. The drawing type can be chosen off the Edit menu; options for it can be chosen from the
Props menu; and the contents of it can be chosen from the menu on the right. Note that the default type is
empty if no value is chosen, box if a string value is chosen, and field (recursive selection) otherwise. The
right mouse button is used to select optional characteristics of tilings, notably additional arcs and con-
straints. The button should be clicked down in one tile and up in another (possibly the same). It will then
ask the user whether to draw or edit an arc or constraint between these two tilings.

A layout flavored representation is depicted as a box with two arrows coming out of it. When a layout is
selected (either because it is the top level object or because it is the type of the currently selected tile), the
user can use the menu to the right to add or remove values from the layout. Selecting an item not in the
layout will add it, selecting an item in the layout will first select only it (so that options can be specified for
it), and will next remove it.

A box flavored representation displays as an empty box with the desired shape in the representation panel.
One value or field can be chosen for the box from the menu at the right. The Options button allows the
user to specify the shape, line style, fill style, and additional properties of the given box.

An arc representation is depicted as three boxes and an arrow, one box for the source of the arc, one for the
destination, and one for the label. The user can select any of these boxes by clicking in them with any
mouse button. Then the value to be used for this component of the arc can be chosen from the menu at the
right. The Options menu for an arc object allows the specification of the line and arrow styles as well as
the source and destination location for the arc.

The type editor allows several keyboard accelerators to simulate menu buttons. These include:
Key Menu Button�������������������������
a,A Top Arc
b,B Top or Edit Box
d,D Top Default
l,L Top or Edit Layout
o,O Props Options
f,F Edit Field
t,T Top Tiled

FFIILLEESS
./.display_defs/*

SSEEEE AALLSSOO
field(1), The Brown Workstation Environment Reference Manual.

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the

Page 7 (5 January 1990) September 8, 1992

���� ����

DISPLAY(1) Eighth Edition DISPLAY(1)

name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

The data structure facility cannot update itself when the debugger is not in control.
If the program is asking for input, the display will sit there doing nothing until the debugger gets control,
for example.

September 8, 1992 (5 January 1990) Page 8

���� ����

FLOWVIEW(1) Eighth Edition FLOWVIEW(1)

NNAAMMEE
flowview, flowclass, flowmemb − FIELD call graph browser

SSYYNNOOPPSSIISS
flowview [objfile] [-options]

DDEESSCCRRIIPPTTIIOONN
flowview is a call graph browser. It uses the FIELD cross reference database xrefdb(1) to find all functions
and calls in the given system. It then creates a hierarchical display and allows the user to selectively
change or view the display.

The call graph display is arranged hierarchically using the normal UNIX groups, i.e. directories, files and
then functions. All functions are considered to be contained in their source files, all files are considered to
be contained in their directory, and directories are viewed using the UNIX file hierarchy. This allows, for
example, a whole library of routines to be grouped as one node on the display.

Directories are displayed using hexagons. Files are displayed using rectangles. Functions are displayed
using circles (or ellipses). An arc between two nodes represents one or more calls from the source or a
function contained in the source to the target or a function contained in the target.

The browser is able to display the whole call graph or any part of it. It can be used to selectively view the
calls within a file or directory. It can be used to view the interaction between files or functions within a
program. It can also be used to view a localized call graph for a given function or file. Such a localized
graph only includes nodes that explicitly call or are called by the given function(s).

flowview is also tied into the rest of the FIELD environment. Generally, selecting a function node or an
arc in the browser will cause an appropriate message to be sent out requesting an annotation editor (typi-
cally annotview(1)) to show the corresponding source line for the function definition or the call. Moreover,
the browser looks for execution tracing messages and will highlight the currently executing function.

Three different highlighting colors are used in flowview. Light blue is used to indicate the currently
selected node. Red is used to indicate the currently executing node. This can either be a function or a file
containing the currrently executing function. Finally, green is used to show the call stack.

This system also supports user-defined groupings in addition (or in conjunction) with the groupings based
on the file system. Groupings are defined by specifying a pattern string. This string is similar to a scanf-
type string except that it should contain a %1s (or %1r for rest of line) for the part of the name that should
be used for grouping. For example, to gather all C++ class methods based on class name, the pattern %1s::
is used; while to gather all C++ class methods based on method name, the pattern %s::%1s(is used; while
to gather all C++ class methods based on full method name, the pattern %s::%1r is used. Different pat-
terns can be designed to adapt to different naming conventions. Predefined instances of this viewer based
on specified patterns can be defined using the resource files. User defined patterns can be specified dynam-
ically.

OOPPTTIIOONNSS
The options, X11 resources, files, and environment variables used by these commands are the same those
used by the field command in general and the rest of the tools of the FIELD environment. See field(1).

RREESSOOUURRCCEE FFIILLEESS
The class browser resource file can be used to define the default settings that determine how to display the
class hierarchy. The definitions include:

FLOW:
METHOD = gelo_method_value
CONNMETHOD = gelo connection method
FIXED = 0|1 -- fixed size nodes
STANDARD = 0|1 -- standard size nodes
CENTERED = 0|1 -- centered nodes
DIRECTORY_SHAPE = gelo_shape

Page 1 (5 January 1990) September 8, 1992

���� ����

FLOWVIEW(1) Eighth Edition FLOWVIEW(1)

FILE_SHAPE = gelo_shape
FUNCTION_SHAPE = gelo_shape
ARC_STYLE = ash_line_style
ARROW_STYLE = arrow style
PERT_ARROW_STYLE = arrow style
WHITESPACE = 0 .. 100

DISPLAY_ALL = 0|1 -- show full display
DISPLAY_FORCE = 0|1 -- force redisplay
DISPLAY_CALLBYS = 0|1 -- show callers
DISPLAY_CALLEES = 0|1 -- show called rtns
DISPLAY_FIXCUR = 0|1 -- fix size of current node
DISPLAY_CONN = 0|1 -- insure graph is connected
DISPLAY_LEVELS = -1, 0... -- levels of local display
DISPLAY_ZOOM = 0... -- zoom factor for current node

AUTO_UPDATE = . -- update on successful build
NO_STACK = . -- don’t display execution stack

NAME_EXCLUDE = (pattern) -- list of patterns of names to exclude
NAME_INCLUDE = (pattern) -- list of patterns of names to include

TRACE_MODE = (ALL|DISPLAY|NONE)
EXPAND_MODE = (ALL|FILES|NORM)
SHORT_NAMES = .

The GELO method and GELO connection method are integer values that can be derived from the
$PRO/include/bwe/gelo.h include file. The various shapes are GELO_SHAPE values converted to
integers. The arrow styles are GELO_ARC_ARROW values converted to integers. Both of these can be
found in the gelo.h include file as well. The first group of parameters are all used to control the layout
algorithms used in drawing the call graph. The various DISPLAY options control the default (initial) set-
tings to be used in setting up the call graph brower. The final two options control whether the flow graph
should be automatically brought up to date after a successful system build and whether the execution stack
should be highlighted or only the currently executing node. The patterns for NAME_INCLUDE and
NAME_EXCLUDE are regular expressions and apply to files, functions and directories.

In addition, the resource file can be used to defined different initial instances of pattern-based groupings.
These are defined as:

VIEWER +
NAME = command_name
GROUP_PATTERN = "pattern"
GROUP_ID = id_for_grouping
DEFAULT_NAME = group name for items not matching group pattern

In addition, the METHOD, CONNMETHOD, FIXED, STANDARD, CENTERED, WHITE_SPACE,
DISPLAY_ALL, DISPLAY_FORCE, DISPLAY_CALLBYS, DISPLAY_CALLEES,
DISPLAY_FIXCUR, DISPLAY_CONN, DISPLAY_LEVELS, DISPLAY_ZOOM, NAME_EXCLUDE,
and NAME_INCLUDE properties can be specified separately for each viewer.

UUSSAAGGEE
The main flowview window is divided into two parts, a pull down menu bar and the display area for the
call graph. The pull down menu consists of four different menus. The first, Flow is used to control the
overall window. It includes:

September 8, 1992 (5 January 1990) Page 2

���� ����

FLOWVIEW(1) Eighth Edition FLOWVIEW(1)

Info Window
This button will cause a new window to be created on the current display. This window will be
used by the browser to display more detailed information about the currently selected directory,
file or function in textual form. For more details on this window, see below.

Groupings
This button allows the user to dynamically change groupings, either to a predefined grouping
(including none), or to a new, user-defined grouping.

Restart This button will discard all information about nodes to be ignored and levels of the hierarchy to be
drawn that had been specified by the user and will then redraw the current display.

Reset This button will discard all information about nodes which levels of the hierarchy should be drawn
that had been specified by the user and will then redraw the current display.

Update This button will request xrefdb reload the current system and will then redraw the display. Any
information about the current class or member as well as information about classes that shouldn’t
be displayed will be lost.

Trace This button will cause flowview to issue debugger commands to trace entry and exit of all func-
tions so that execution can be fully monitored by the browser.

Trace Display
This option is similar to Trace above, but only causes the functions that are currently represented
by nodes on the display to be traced.

Set System
This allows the user to change the system that is viewed. This is effective both for viewing
another system and for interpreting and sending messages to the other tools of the FIELD environ-
ment.

Quit This removes the browser window(s) and exits the browser.

The Selection menu contains options that allow the user to set and modify the current selection. The but-
tons here include:

Set File This causes a dialog box to be put up that allows the user to enter the name of the file or directory
to be selected.

Set Function
This causes a dialog box to be put up that allows the user to enter the name of the function (and its
file if necessary) that should become the currently selected node.

Clear Selection
This clears the currently selected node. The display is then updated accordingly.

Set Selection
This button causes a series of one or more dialog boxes to be put up that allow the user to go
through and select what should be displayed. The user is asked to select items hierarchically. For
each item, there is an ignore button. Checking this button will cause the corresponding item (and
all its subitems) to be omitted from further displays. The user can also request to view the items
of a particular file or directory (in the next dialog box), or to make a particular item the currently
selected one (by selecting on the name). If there are more items at a particular level of the hierar-
chy than will conveniently fit in a dialog box, then multiple dialog boxes are used and the user will
be provided with the option of going to the next (or subsequent or both as appropriate) one.

Select Pattern
This button allows the user to specify regular expressions (regex(3)) to identify nodes that should
be ignored or included from the call graph. The patterns can be made to apply to directories, files
or functions.

Page 3 (5 January 1990) September 8, 1992

���� ����

FLOWVIEW(1) Eighth Edition FLOWVIEW(1)

The Display menu contains options that allow the user to customize the display. The buttons here include:

Options This button puts up a dialog box allowing the user to set any of the various display options other
than those affecting the layout algorithms. The user can first select whether to show a complete
graph or only a localized graph. The user can restrict the display to only nodes that are explicitly
reachable from the main program using the Only show reachable nodes option. The Force
redisplay on selection option will cause the display to be recomputed as necessary whenever a
new selection is made. This is the default setting. The Show calling routines and Show routines
called by options are used to limit a localized display to only the callers or the callees. The Levels
option allows the setting of how many levels of callers and/or callees should be displayed in a
localized graph. Finally, the options Expand size and Zoom selection can be used to highlight the
current selection by insuring that it is sized so that its text is readable and emphasizing it by a
given factor respectively.

Show All
This option, if selected, will cause the browser to show the complete call graph as opposed to the
localized display for a given node.

Connected
This option will restrict the nodes displayed to those that are reachable from the main program via
static calls.

Show Callers
This option causes the calling routines to be displayed in a localized graph.

Show Called
This option causes the called routines to be displayed in a localized graph.

Expand All
This button will cause all file and directory nodes to be expanded into the corresponding set of
function nodes in the current display.

Expand Dirs
This button will cause all directory nodes to be expanded into the corresponding set of group or
file nodes in the current display.

Layout This will put up a dialog box allowing the user to change or play with the layout algorithms that
are used in drawing the class graph.

Finally, the Node menu is used to select operations specific to the currently selected node. Note that this
menu is disabled if there is no selected node. The buttons here include:

Show Item
If the current selection is a file or directory, this option will cause the display to show the hierar-
chy contained in that node. In any case, it will cause the information window to display informa-
tion about the current selection.

Show Parent
This will restrict the current display to that of the parent of the current selection.

Ignore This button cause the current item to be ignored, i.e. neither it nor any of its subnodes will be
displayed.

Expand This button will expand the current selection, provided it is a file or directory node, causing it to
be replaced within the current graph with all its components.

Compact
This button will compact the current selection. This causes this node and any other nodes con-
tained within its parent to be replaced in the current graph by the node for its parent.

September 8, 1992 (5 January 1990) Page 4

���� ����

FLOWVIEW(1) Eighth Edition FLOWVIEW(1)

Show Info
This will cause a dialog box to be popped up showing additional information about the current
node. It will also direct the information window to display information about the selection.

The mouse can be used within the graphics display for selecting the current node as well as related opera-
tions, all by clicking (no dragging). The operations that can be done this way are:

Click On Button Operation��
Left/Right Make item current
Middle Show item information
Shift-Left Ignore item

Node

Shift-Right Compact item��
Left Show item
Middle Show item informationSelection
Right Expand item��
Left Make to item current
Middle Show arc informationArc
Right Make from item current

Shift here indicates that either the shift, control or meta key was pressed while the mouse click occurred.
In addition, any click done without a shift/meta/control on a function node or an arc will cause a message
to be sent through FIELD requesting a source display of the associated line.

In addition to mouse clicks, cbrowse provides a few keyboard accelerators. These include:
Key Operation���������������������������
r Redraw display
R Reset and redraw display
c,C Clear current class
a,A Toggle show all mode
u,U Update

The information window provides more detailed information about the current class. It is run as a readonly
EDT editor. When a node is made current, the information for that node will be displayed. If the informa-
tion was not previously displayed then it will be added at the end of the transcript being edited. The editor
will automatically scroll so that the start of the information is at the top of the window. The user can click
on any line of the display. Clicking on a reference to a line will generally send a message through FIELD
requesting that an annotation editor (typically annotview) display that line. Clicking on a reference to a
function or a file will cause that function or file to become the currently selected item. Clicking with the
right button will not select a new current item, but will only send out an appropriate message to the annota-
tion editor.

EENNVVIIRROONNMMEENNTT VVAARRIIAABBLLEESS
In addition to all the standard environment variables supported by field(1), the Pascal programmer should
be sure to set the variable STDPASCAL is names are case insensitive.

SSEEEE AALLSSOO
field(1), xrefdb(1), annotview(1), The Brown Workstation Environment Reference Manual.

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software

Page 5 (5 January 1990) September 8, 1992

���� ����

FLOWVIEW(1) Eighth Edition FLOWVIEW(1)

without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

September 8, 1992 (28 September 1990) Page 6

���� ����

FORMSERVER(1) Eighth Edition FORMSERVER(1)

NNAAMMEE
formserver − FIELD configuration management server

SSYYNNOOPPSSIISS
formserver

DDEESSCCRRIIPPTTIIOONN
formserver is the background process that serves as a clearing house for configuration management
requests for the FIELD environment. It caches information about the various projects (directories) that are
currently being used. It can handle requests to compile or to execute a given command for any project.

SSEEEE AALLSSOO
field(1), formview(1)

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

Page 1 (7 March 1990) September 8, 1992

���� ����

FORMVIEW(1) Eighth Edition FORMVIEW(1)

NNAAMMEE
formview, transcript − FIELD make interface

SSYYNNOOPPSSIISS
formview [sourcedir] [-options]

transcript [sourcedir] [-options]

DDEESSCCRRIIPPTTIIOONN
The make interface of FIELD provides two functions. First of all, it provides a service to other tools of the
environment, handling message-based requests to compile or make a system or to execute some makefile-
based command. Secondly, it provides in interactive interface whereby users can view their makefiles
graphically and can view the output of the various make commands.

The formview command runs the full make interface, providing a visualization of the user’s makefile. It
operates by running the appropriate back end, either the native version of make or GNU make at this point,
and interpreting the debugging output. From these is constructs an internal representation of the
configuration. This representation can be viewed graphically using the facilities provided. This command
also provides an editor showing a transcript of the most recent make commands.

The transcript command is a much simplified interface to this facility that does not allow viewing of the
makefile and that only provides the transcript view. Once started, it will show a full transcript of all make-
related commands. Normally, the transcript only reflects commands issued in the directory specified on the
command line. If the command is run without arguments or from the FIELD control panel, than all com-
mands issued in any directory will be reflected in the transcript.

The service handling part of this package, without any user interface, is started automatically with most of
the FIELD tools. Thus, the user does not have to explicitly create a build window in order to have the
COMPILE command in the annotation editor work.

OOPPTTIIOONNSS
The options, X11 resources, files, and environment variables used by these commands are the same those
used by the field command in general and the rest of the tools of the FIELD environment. See field(1).

RREESSOOUURRCCEE FFIILLEESS
The resource file for formview is used to define several aspects of the system. These definitions are
grouped under the heading FORM.

FORM keeps an internal database consisting of nodes, links and attributes. Nodes typically represent files,
links represent relationships between files, and attributes represent properties of either nodes or links.
There are some built-in attributes that are known to make, and additional attributes can be defined to sup-
port additional features of the back ends such as version control. FORM can support multiple back ends.
Each back end is essentially an interface to the appropriate UNIX tool. The current set of back ends
includes Sun’s version of make, the version of make running on the DEC 3100, and GNU’s version of
make. FORM also scans the output of executing make for compiler error messages that can be broadcast to
other tools in the FIELD environment FORM can also support multiple configuration management back
ends. In addition to running make over the directory, it will request information from the appropriate
configuration manager and set the appropriate file attributes. The resource file is used to define the set of
back ends, the set of configuration managers, the set of attributes, and the set of messages to be scanned
for.

Backends are defined by defining their properties and their entry points:

BACKEND+
NAME = name
INIT = initialization routine
EXEC_SCAN = scan execution routine
EXEC_BUILD = build execution routine
SCAN = output_scanning_routine

Page 1 (7 March 1990) September 8, 1992

���� ����

FORMVIEW(1) Eighth Edition FORMVIEW(1)

PATH = filename of system to execute

DEFAULT_BACKEND = name

Configuration managers are defined by defining their properties and entry points as well:

CONFEND +
NAME = name
INIT = initialization routine
EXEC_INFO = information scanning execution start
SCAN = information scanning routine
EXEC_CMD = command initiation routine
DIRECTORY = subdirectory name that is used

DEFAULT_CONFEND = name

Attributes are defined by providing their name and their type. Attribute types are defined by giving the
type class (one of Boolean, int, float, String, enum, or float), their name and any additional properites (i.e.
values of an enumeration type):

ATTR_TYPE +
NAME = name
CLASS = class
VALUES = (list of enumeration values)

ATTR_ID +
NAME = name
TYPE = type name
DEFAULT = value
SETABLE = .
DISPLAY = "format string"
ORDER = ordering value

The interface for monitoring the result of execution of make is described by one or more monitor events:

MONITOR +
TEXT = "pattern to match"
EVENT = output event name
FORMAT = alternative output format

The patterns are MSG-type patterns. The embedded arguemnt %1s refers to the filename, the
argument %2d refers to the line number, the argument %3s is the message text (unless provided
by FORMAT alternative), the arguments %4s, %5s and %6s are strings that are saved and can be
used in the FORMAT alternative. If the monitor does not contain an EVENT value, than values
are set but no message is broadcast. Values typically will be shared from one monitored event to
the next.

The display interface also allows the setting of various display properties through the resource file:

METHOD = gelo_method_value
CONNMETHOD = gelo connection method
FIXED = 0|1 -- fixed size nodes
STANDARD = 0|1 -- standard size nodes
CENTERED = 0|1 -- centered nodes
ARC_STYLE = ash_line_style
ARROW_STYLE = gelo_arc_arrow
PERT_ARROW_STYLE = gelo_arc_arrow
WHITESPACE = 0 .. 100

September 8, 1992 (7 March 1990) Page 2

���� ����

FORMVIEW(1) Eighth Edition FORMVIEW(1)

DISPLAY_ALL = 0|1 -- show full display
DISPLAY_FORCE = 0|1 -- force redisplay
DISPLAY_FIXCUR = 0|1 -- fix size of current node
DISPLAY_LEVELS = -1, 0... -- levels of local display
DISPLAY_ZOOM = 0... -- zoom factor for current node
DISPLAY_INLINKS = 0|1 -- show items depended on
DISPLAY_OUTLINKS = 0|1 -- show dependencies
PROJECT_SHAPE = gelo shape
COMMAND_SHAPE = gelo shape
SYSTEM_SHAPE = gelo shape
INTERMEDIATE_SHAPE = gelo shape
SOURCE_SHAPE = gelo_shape
CONF_SHAPE = gelo_shape
ITEM_EXCLUDE = (pattern) -- list of patterns of names to exclude
ITEM_INCLUDE = (pattern) -- list of patterns of names to include

In addition, automatic compilation when a file is saved can be requested by setting the flag
AUTO_COMPILE = . in the resource file. Also setting CLEAR_AT_START = . will cause the transcript
to be truncated at the start of each make rather than being accumulative.

In addition, formview uses the file .formrc in the project directory to allow for project-specific settings.
These settings are used to set attributes of the given project and consist of lines containing the attribute
name, an equals sign (=), and the attribute value. In particular, this feature can be used to specify an alter-
native make file for the project with a line
MAKEFILE=<alternative>

UUSSAAGGEE
A formview interface window is divided into two parts, exclusive of the window decoration provided by
the window manager(s). The top of the window consists of the title bar for the pull down menus. The bulk
of the window consists of graphical browser over the dependency graph. A transcript window, gotten
either by running the transcript command or through the appropriate menu button in formview, simply con-
sists of editor.

There are five pull down menus. The Form menu contains controlling buttons:

Transcript
This requests that transcript window be created to go along with the formview interface.

Restart This causes the interface to display the original dependency graph. It resets the set of ignored
items to the appropriate defaults.

Reset This will remove the current selections and display the full current dependency graph.

Update This will cause the interface to rerun the backend to update its dependency and attribute informa-
tion.

Set Project
This button allows the user to set the project or directory that this viewer is looking at.

Quit This button closes the window and terminates the interface.

The Make menu contains buttons to run the back end. These include:

Make Current
This will invoke the back end to make the currently selected item.

Make Default
This will invokde the back end to make the default item in the appropriate directory.
This will either be the directory of the currently selected item, the directory that formview was
invoked with, or the current working directory.

Page 3 (7 March 1990) September 8, 1992

���� ����

FORMVIEW(1) Eighth Edition FORMVIEW(1)

Make ... This will allow the user to interactively decide what to make.

The Configure menu contains buttons to run the configuration manager back end. These include: This will
update configuration information about the selected file(s) or the whole project. This will check in the
selected file(s) or the whole project. This will check in files selected by the user in a dialog box. This will
check out the selected file(s) or the whole project. This will check out files selected by the user in a dialog
box. This will remove unchanged locked versions of the selected file(s) or the whole project. This will
remove unchanged locked versions of files selected by the user in a dialog box.

The Selection menu is used to select items for the graphical dependency display:

Set Selection
This allows the user to enter a new selection textually.

Clear Selection
This clears the current selections.

Select Item
This puts up a dialog box (or a sequence thereof) that allows the user to pick the new selection and
to selectively ignore of view different items.

Item Patterns
This allows the user to specify regular expression patterns describing items (eg. files) that should
be included or excluded from the display.

Finally the Display menu contains options to control the graphical presentation of the make dependencies:

Options This puts up a dialog box to allow the user to set all the various display options.

Show All
Formview’s display operates in one of two modes. Either it always shows the whole dependency
graph, or it just shows the graph that is local to the currently selected node. This button toggles
between these modes.

Show Dependencies
When showing only the graph local to the current node, formview can selectively show either the
dependencies of the node, the items it is depended on by or both. This button toggles the display
of dependencies.

Show Uses
As above, this button toggles the display of items depended on by the current selection.

Layout This button provides a dialog box to allow the user to vary the layout heuristics that are used in the
display.

The mouse can be used within the graphics display for selecting the current item as well as related opera-
tions, all by clicking (no dragging). The operations that can be done this way are:

Click On Button Operation��
Left Select, expand if necessary
Middle Show item information
Right Select
Meta-Left Ignore item

Item

Shift-Left Add/remove item form selection set���
Middle Show item information

Selection
Right Cancel selection

Shift here indicates that either the shift, control or meta key was pressed while the mouse click occurred.

In addition to mouse clicks, formview provides a few keyboard accelerators. These include:

The user can also click on the transcript window. Clicking here on an error message will send an XREF
message out, causing an appropriate editor (such as annotview) to go to the corresponding line number.

September 8, 1992 (7 March 1990) Page 4

���� ����

FORMVIEW(1) Eighth Edition FORMVIEW(1)

Key Operation���������������������������
r Redraw display
R Reset and redraw display
c,C Clear current selections
a,A Toggle show all mode

SSEEEE AALLSSOO
field(1), make(1), The Brown Workstation Environment Reference Manual.

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed. This
interface needs a significant amount of work to become more relevant and more easily used. One possi-
blity is to use a browser interface such as with cbrowse(1) or flowview(1). Another possibility would be to
replace it with a reasonable interface to some public domain configuration management system that is more
powerful and comprehensive than make.

Page 5 (5 January 1990) September 8, 1992

���� ����

FREEX(1) Eighth Edition FREEX(1)

NNAAMMEE
freex, freeserver, freerem − FIELD remote execution facilities

SSYYNNOOPPSSIISS
freex [-sh] [-localsh] [-exec] [-localexec] command ...

freeserver

freerem host port hostname userid maxuser maxload

DDEESSCCRRIIPPTTIIOONN
freex is a remote execution startup runs it on a free machine somewhere in the network. To do this, it
requires that freeserver is run. This process is automatically started if it is not currently running (i.e. the
user should never have to run it). The command freerem is then run on the remote machine by freeserver
(i.e. the user should never need to use this command either).

Freeserver takes a file (˜/.freerc) that describes the hosts in the network and uses it to find idle remote hosts
to run on. Freex is now used by the version of gnumake that is distributed with FIELD if the user sets
REMOTE (either as an environment variable or in the Makefile). REMOTE should be set to the number of
remote jobs that should be run in parallel. The variable NO_REMOTE can be set to a space-separated list
of commands that should be run locally. If it is not set, reasonable defaults are provided.

UUSSAAGGEE
The actions of freeserver and hence freex are determined by the freerc files that are found. FREE will use
the system file installed in the appropriate FIELD rundata directory if there is one. It will also use the
.freerc file in the user’s home directory. This file consists of lines, one entry per host. The file must
include any machines to be used remotely as well as all machines from which remote execution is to be
attempted.

The file contains one line per host. Each line has the format:
hostname architecture filesystem freerem_command users load

The hostname is the name of the host (suitable for rsh). The architecture and filesystem allow free to be
used in a heterogeneous network. They are used by freeserver to compare the host initiating the commands
with suitable remote hosts. The architecture describes the hardware type (i.e. sun3, sun4, mips), while the
filesystem describes nodes that share a common NFS file system (i.e. pathnames will match). (free will
remove an initial /tmp_mnt from a pathname, but will assume that the rest of the pathname is valid on both
machines.) The freerem_command is a full pathname for the remote execution package freerem on the
remote machine. If it does not start with a ’/’, it is assumed to be in the FIELD binary directory accessible
in the same way on the host and on the remote machines. The users field indicates the maximum number
of users (the actualy number of users on the remote machine must be less than this value or the machine
will not be considered idle). A users value of zero will cause the machine not to be used. Finally, the load
is a real number which the load (given by uptime for the past 1 minute) must be less than for the machine
to be considered idle.

OOPPTTIIOONNSS
-sh Use /bin/sh instead of the user’s default shell.

-localsh Use /bin/sh and run the job locally.

-exec Execute the job directly (rather than going through the user’s shell).

-localexec
Execute the job directly on the local machine.

EENNVVIIRROONNMMEENNTT VVAARRIIAABBLLEESS
FIELD_TMP

This indicates the temporary directory to be used. It defaults to /usr/tmp. The directory cannot be
a tmpfs type file system on a Sun.

Page 1 (5 January 1990) September 8, 1992

���� ����

FREEX(1) Eighth Edition FREEX(1)

FREE_RSH
This contains the command name to start up freerem. It defaults to /usr/ucb/rsh.

FREE_LOCAL
If this is set, then jobs will be run on the local machine if no remote machines are available rather
than being queued.

FREE_DEBUG
If this is set, information about what FREE is doing is printed.

FFIILLEESS
˜/.freerc
$PRO/lib/field/rundata/$ARCH/freerc
$PRO/field/rundata/$ARCH/freerc

SSEEEE AALLSSOO
field(1), xref(1), flowview(1), cbrowse(1), cpp(1)

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

September 8, 1992 (5 January 1990) Page 2

���� ����

MSGSERVER(1) Eighth Edition MSGSERVER(1)

NNAAMMEE
msgserver − FIELD message server

SSYYNNOOPPSSIISS
msgserver [-D] [-force] [-msg file]

DDEESSCCRRIIPPTTIIOONN
msgserver is the background process that acts as the central message facility of the FIELD environment.
If it is not already running when a FIELD tool (other than ddt(1) without the -f option) starts up, then it will
be run automatically. It includes several locks and checks so that only one copy of the server is running at
a time. It can also be run manually if desired.

msgserver operates by creating a tcp/ip socket. It writes its hostname and the port number for this socket
in a file and locks this file using lockf(3). This file is generally the file /usr/tmp/msg.hostname.userid where
the hostname is the name of the host machine and the userid is the user’s login name. Another file can be
specified using the -msg option. Whenever a FIELD tool starts running, it looks for this file and, if found,
checks to make sure it is locked. If it is, then it reads the hostname and port from the file and connects to
the corresponding message server. If the file doesn’t exist or if there is a problem connecting, then it will
run a new message server on the given file.

The message serving utility will work across machines if the files are accessible network wide and the
lockf function works. Multiple messages servers can run on the same machine if they have different file
names.

OOPPTTIIOONNSS
-D This runs the message server in debugging mode. If it can, it will create a file msg.trace in the

current directory and will record a transcript of all messages received and sent in this file. If it
doesn’t have permission to write to this file, it will use stderr.

-force This causes the message server to start up regardless of the lock state of the lock file. This is use-
ful on machines where the lockf(3) utility is unreliable, as it is on our Decstations currently.

-msg file
The given file is used as the lock file for this server.

FFIILLEESS
/tmp/msg.hostname.userid

SSEEEE AALLSSOO
field(1)

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

Page 1 (5 January 1990) September 8, 1992

���� ����

USERIO(1) Eighth Edition USERIO(1)

NNAAMMEE
userio − FIELD user input/output window

SSYYNNOOPPSSIISS
userio [-options]

DDEESSCCRRIIPPTTIIOONN
This command provides a simple EDT editor window tied to a pseudo tty (pty). It uses the FIELD message
service to inform all active ddt(1) debuggers that the default user input and output (stdin and stdout) should
be directed to this pty. The effect is that program input and output goes to this window rather than being
intermixed with the debugger transcript in the debugger window.

userio places a header and trailer in the output stream whenever the program starts or stops execution.
Once a userio window is created, it will be used by all debuggers (there is no way currently to restrict it to
a single system) starting with the next time a program is run.

OOPPTTIIOONNSS
The options, X11 resources, files, and environment variables used by these commands are the same those
used by the field command in general and the rest of the tools of the FIELD environment. See field(1).

SSEEEE AALLSSOO
field(1), dbg(1), ddt(1), The Brown Workstation Environment Reference Manual.

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

The terminal simulation capabilities of EDT are primitive and this package probably will not handle pro-
grams that depend on intelligent terminal output. It should be possible to put up an xterm that does the
same thing rather than running EDT. Alternatively, the pty interface to EDT might be fixed sometime.

Page 1 (5 January 1990) September 8, 1992

���� ����

VIEWEVENT(1) Eighth Edition VIEWEVENT(1)

NNAAMMEE
viewevent, viewstack, viewtrace − FIELD viewers

SSYYNNOOPPSSIISS
viewevent [objfile] [-options]

viewstack [objfile] [-options]

viewtrace [objfile] [-options]

DDEESSCCRRIIPPTTIIOONN
These commands provide simple viewers onto the FIELD message facility. They each utilize a text editor
to show the current status of different classes of messages. In addition, they can provide the ability to issue
commands.

The command viewevent provides a listing of current debugger events. This would include breakpoints,
tracepoints, watchpoints, interesting events, displays, updates, etc. It currently provides no interface for
adding or removing events however. viewstack provides a display of the current execution stack. This
display is updated whenever the debugger gets control of program execution. viewtrace provides a display
of the most recent values of watched or displayed variables or expressions. It also provides a facility for
requesting such displays. When it is started, it asks the user to specify a variable to trace. This request can
be ignored if desired.

OOPPTTIIOONNSS
The options, X11 resources, files, and environment variables used by these commands are the same those
used by the field command in general and the rest of the tools of the FIELD environment. See field(1).

RREESSOOUURRCCEE FFIILLEESS
These three commands are actually instances of the same package. The resource file for this package is
used to define the particular commands by defining the message patterns that each monitors. Each message
pattern can be used to add or remove a displayed line of text. The lines are ordered by a key found in the
messages. The resource file heading for these commands is VIEW.

Messages are grouped together in classes. Each class defines a potential display line by giving the message
that causes that line to be displayed, the message that causes it to be removed, and the format of the
display. The definition is:

CLASS +
NAME = name
DISPLAY_MSG = pattern
DELETE_MSG = pattern
END_MSG = pattern
DISPLAY_FMT = format

The NAME field identifies the class. The various MSG fields are used to define message patterns.
These are registered directly with the message server. They can contain up to six arguments and
must contain at least one. The first argument (%1s) must be a string argument. It is used as the
key, i.e. it associates the incoming message with a display line and provides a sort order. Note
that while it is handled here as a string, it can still be a number for sorting purposes. A message
matching the DISPLAY_MSG pattern will cause a display line to be created (or replaced). The
format of this display line is given by the DISPLAY_FMT line. This can contain references such
as %3s to the arguments in the message pattern. A message matching the pattern DELETE_MSG
will cause the corresponding message to be removed. A message matching the pattern
END_MSG will cause any displays whose key is greater than or equal to that of the given mes-
sage to be removed.

The different viewers are defined in the resource file by defining the classes of messages that they accept
and any additional properties that are relevant. The definition here is:

Page 1 (5 January 1990) September 8, 1992

���� ����

VIEWEVENT(1) Eighth Edition VIEWEVENT(1)

TYPE +
NAME = name
USE = (message class list)
NUMERIC_KEY = .
OPEN_MSG = message
CLEAR_MSG = pattern
OPTIONS = rtn
OPTIONS_NAME = btn_name
REMOVE = rtn
REMOVE_NAME = btn_name
ASK_FIRST = .

The NAME field identifies the viewer type. The USE field contains the classes of messages that
this viewer handles. The NUMERIC_KEY option indicates that the key should be interpreted as a
floating point number for sorting and matching purposes. The OPEN_MSG is a message that is
sent when the viewer is created. It is generally a command that will generate messages for an ini-
tial display. It can have one %s argument in it which will be filled in with the relevant system
name. The CLEAR_MSG is a message pattern with one argument, a key. If a message is
received matching this pattern, then all current displays are removed. The OPTIONS line speci-
fies a C function that will be tied to a button on the viewer pull down menu. This will either be
the Option button or will be the name specified by OPTIONS_NAME. Similarly, the REMOVE
line specifies the function and the REMOVE_NAME the button name for a button that will allow
the user to remove displays selectively. Finally, the ASK_FIRST option, if specified, will cause
the options buttons to be invoked implicitly when the viewer is started.

UUSSAAGGEE
A viewer consists of a pull-down menu window and a readonly EDT editor to contain the message
displays. The menu bar contains a View menu with options relevant to this particular viewer, and a series
of menus for the EDT editor. The View menu contains the following buttons:

Set System
This lets the user specify what system (object file) messages should be viewed for. The defualt is
all systems.

Options (viewstack only)
This puts up a dialog box that allows the user to specify whether the stack display should include
local variables and or global variables. It also allows the user to limit the amount of the stack that
is shown to some number of frames at the top of the stack and some number of frames at the bot-
tom.

Variable to trace (viewtrace only)
This puts up a dialog box that allows the user to generate a watch or display event for a given vari-
able or expression. The user can give an expression or variable name, restrict the location of the
trace to a given function or line (which is more efficient), and distinguish between a display event
(only updated at points where the debugger gets control) or a watch event.

Remove trace (viewtrace only)
This puts up a dialog box that allows the user to remove all watch or display events for any of the
variables or expressions currently being displayed.

Quit This terminates the viewer.

SSEEEE AALLSSOO
field(1), ddt(1), The Brown Workstation Environment Reference Manual.

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

September 8, 1992 (5 January 1990) Page 2

���� ����

VIEWEVENT(1) Eighth Edition VIEWEVENT(1)

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

Page 3 (18 April 1990) September 8, 1992

���� ����

XPROF(1) Eighth Edition XPROF(1)

NNAAMMEE
xprof − FIELD profiling interface

SSYYNNOOPPSSIISS
xprof [binary [monitor_data]] [-options]

DDEESSCCRRIIPPTTIIOONN
The profiling interface of FIELD, xprof, provides a consistent graphical interface to a variety of profiling
packages including prof (1), gprof (1), pixie on Decstations, the FIELD-modified version of gprof
(fieldgprof), and our instruction-level sun profiler iprof.

xprof takes a binary file as its argument. It presumes that the program has already been run and that
profiling data has been gathered. It automatically determines what profiler is being used, runs that profiler,
and provides an interactive graphical presentation of the data. In the future it should be possible to have
xprof actually run the program (either inside or outside of field), and to provide an incremental profile
while the program is running.

OOPPTTIIOONNSS
The options, X11 resources, files, and environment variables used by these commands are the same those
used by the field command in general and the rest of the tools of the FIELD environment. See field(1).

RREESSOOUURRCCEE FFIILLEESS
The profiling interface of FIELD allows the definition of display properties and the different profilers that
are available. These are all gathered under the heading XPROF. The drawing property definitions include:

OLD_COLOR = color -- color for default (and old) display
OLD_FILL = fill-number -- fill style for this
NEW_COLOR = color -- color for incremental updates
NEW_FILL = fill-number -- fill style for this
OUTLINE_COLOR = color -- color for outlining bars in bar graph
OUTLINE_FILL = fill-number -- fill style for this
MIN_FONT_SIZE = size -- smallest font size to use for labels

The different backends that are available to xprof are defined both with internal code and with a definition
in the resource file. The resource definition includes:

BACKEND +
NAME = name
INIT = initialization_routine
DATA_FCT = data_gathering routine
SCAN_FCT = output line scanning routine
INFO_FCT = information output routine
PATH = "pathname to exec"
KEYSYM = name -- symbol to look for in binary
AUXFILE = name -- filename to look for
RESOURCE = "resource name"
UPDATE_REQUEST = . -- can do update on request
UPDATE_TIMED = . -- can do update based on time
UPDATE_CONTINUOUS = . -- can do continuous updates

The code identified by the routines is currently in one source file for all the current profilers
(prof,gprof,fieldgprof,iprof,pixie). It should be reasonably straightforward to add other profilers.

UUSSAAGGEE
The xprof window is divided into four parts. At the top is the menu bar containing the various pull-down
menus. Below this, on the left half, is the tag window containing the names of the files, functions, or lines
that are being profiled and the value. On the right is a bar graph display of the current profile data. Finally,
there is a scroll bar all the way on the right for manipulating the label and bar graph windows.

Page 1 (18 April 1990) September 8, 1992

���� ����

XPROF(1) Eighth Edition XPROF(1)

There are three pull down menus. The Profile menu contains the basic operations for manipulating the
window. The buttons here include:

Info Win
This button puts up an editor window to contain additional information about the currently
selected profiling item.

Set System
This allows a different system to be profiled.

Restart This reinitializes the display with the current profiling data.

Reset This resets the display but does not reinitialize the various display options.

Update This causes the profiling data to be recomputed by rerunning the back end. The display is reini-
tialized.

Quit This terminates the make interface.

The second menu, Selection, is used to set or clear the focus for a more detailed look a the profile informa-
tion. It includes the buttons:

Clear Selection
Clear the current selection.

The third menu contains display options. The buttons here include:

Options This button pops up a dialog box of display options. The current display options include the sort
order (by value or by address as well as ordered within their parent, ie. lines ordered within func-
tions which are sorted); bar graph properties -- how to size the bar graph display based on either
the total value or the maximum value; display options including whether to make the display
scroll or to force it to fit, whether to include items that have zero counts, whether to show actual
values or percentages, and whether to put labels on each item or only on groups of items; and
finally what items to display, lines, functions, or files.

Full This button toggles between a scrollable and a full display.

Show Zeros
This button toggles whether items with zero counts are displayed.

Show Percent
This button toggles whether the numbers shown in the label window are the actual values or are
the percentages of the total.

Files This button indicates that files should be displayed. It implies no sorting by group.

Functions
This button indicates that functions should be displayed. It implies no sorting by group.

Lines This button indicates that lines should be displayed. It implies sorting by group.

The mouse can be used within the label and the bar graph displays. Any click will send an appropriate
FIELD message (XREF) that can be used by the annotation editor to display the corresponding line (if
xprof has enough information to determine the line). Clicking with the middle button in either view will
put up a dialog box showing more detailed information about the clicked-on location. Finally, clicking
with the left button a label will cause that label to be the current selection, providing more detailed infor-
mation about it only.

SSEEEE AALLSSOO
field(1), prof(1), gprof(1), The Brown Workstation Environment Reference Manual.

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

September 8, 1992 (18 April 1990) Page 2

���� ����

XPROF(1) Eighth Edition XPROF(1)

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

Page 3 (5 January 1990) September 8, 1992

���� ����

XREF(1) Eighth Edition XREF(1)

NNAAMMEE
xref, xrefview − FIELD cross-referencer interface

SSYYNNOOPPSSIISS
xref [file] [-options]

xrefview [file] [-options]

DDEESSCCRRIIPPTTIIOONN
xref is a mouse oriented interface to the cross-referencing facilities of the FIELD programming environ-
ment. FIELD uses the xrefdb(1) cross-reference database to gather and provide information about the
source files of a given system. It works for C, Pascal and for C++ (AT&T version 2.0). xref allows the
user to request information from this database using dialog boxes and uses an EDT editor to display the
result of the queries.

xref can be run with either the name of a object file or a single source file. If it is run with an object file
then all the source files that were used to build that object file (provided they were compiled with debug-
ging information) will be cross referenced. If it is run with a single source file, then only that file will be
used.

xrefview is a paired FIELD tool. It consists of a window that is divided in half, with the upper half running
the xref interface and the lower half running the annotview interface.

OOPPTTIIOONNSS
The options, X11 resources, files, and environment variables used by these commands are the same those
used by the field command in general and the rest of the tools of the FIELD environment. See field(1).

Two particular environment variables are needed to have the cross referencer work correctly when infor-
mation about source directories is not available or when preprocessor options are given. The environment
variable INCLUDE_PATH consists of a colon-separated list of directories in which include files should be
looked for. This corresponds to a set of -I options on a compilation line. The environment variable
XRDB_FLAGS consists of a string of -D and -U options that would be passed to the C preprocessor cpp.
Xrefdb will run the C preprocessor at times and, for accuracy, whatever options are given when the system
is built should be given to the cross referencer.

When using xref with C++ 2.0 additional care must be taken. Because of the way that C++ works, no
information about source directories is included in the object file. In this case, either xref should be run in
the source directory or all actual source directories should be included in the INCLUDE_PATH variable.
In addition, the environment variable CC_COMMAND should be set to the name of the CC command if it
not CC.

RREESSOOUURRCCEE FFIILLEESS
The AUXD resource file facility of BWE is used by XREF to define the queries that it will support. The
description is provided in terms of a set of QUERY blocks, each of which contains a set of FIELD blocks.
The FIELD descriptors include:

FIELD+
NAME = <field name>
WIDTH = field width
OWIDTH = field width for output
KEY = "R.field" -- for output
USE = "R.field ˜= ‘%s" -- for query
DISPLAY_FMT = <format string for output>
INIT = Selection | File | Function | <initial value>
COLUMN = column number for input menu
QUERY_SHOW = . -- ask user whether to output this field
MUTLIPLE = <# items/output line>
NOMATCH = . -- imply no match for output continuation
CONCAT = . -- concatenate output to previous field

Page 1 (5 January 1990) September 8, 1992

���� ����

XREF(1) Eighth Edition XREF(1)

MUST = . -- value must be given in input
BOTH = . -- use for both input and output
TYPE = Integer | String | File | Boolean | Enum | Mutliple
ENUMS = (val1 val2 ... valK) -- for Enum or Multiple

These are contained in QUERY descriptors that include:

NAME = <name of query>
NOSORT = . -- indicates output shouldn’t be sorted
HEADER = . -- indicates output should include header

in addition to the set of FIELD descriptors.

UUSSAAGGEE
A xref window consists of a pull-down menu bar and a readonly EDT editor to display the output of cross
reference requests. The pull down menu consists of two local menus, Xref and Query and additional menus
provided by the EDT editor.

The buttons on the Xref menu include:

Set System
This button allows the user to change the system being cross referenced in this window.

Reload System
This button requests that the cross reference database reload the system being viewed, thereby res-
canning any source files that have changed. This would be needed if source files change outside
of the FIELD environment. Any active cross-referencer is automatically reloaded after a success-
ful build within the FIELD environment.

Quit This button causes the cross reference interface to exit.

The buttons on the Query menu handle cross reference queries. They operate by popping up a dialog box
that allows the user to build a query, and then processing the query and putting the result up in the editor
window. Leaving entries in the dialog box empty causes the query to not specify that particular value.
Where strings are specified, they are generally pattern matched using regex(1) matching rules. The buttons
here include:

References
This initiates a query for a reference to a given name. The dialog box allows the specification of
the name, the file and the line number of the reference as well as whether the request should be
limited to assignments or not. The name field is filled in with the current editor selection. This is
the last selection made in and EDT editor. Output consists of the name, the file, and a list of line
numbers. An asterisk after the line number indicates an assignment.

Declarations
This initiates a query for a definition of a given name. The dialog box allows the specification of
the name, the file, the line number and the type as well as the class of definition. The name is
filled in with the last EDT editor selection. The output consists of the name, the file, the line
number, the declaration class and the data type.

Calls This initiates a query about function calls. The dialog box allows the specification of the function
being called, the function it is called from, and the file and line number of the call. The output
lines consist of the function being called, the function doing the calling, the filename and the line
number.

Functions
This initiates a query about a function definiton. The dialog box allows the specification of the
function name, the file and the line number. The function name is filled in with the current editor
selection. The output lines consist of the function name, the file and line number of its definition,
and the list of parameter names.

September 8, 1992 (5 January 1990) Page 2

���� ����

XREF(1) Eighth Edition XREF(1)

The editor portion of an xref window can also be used as part of the FIELD environment. The user can use
the mouse to click anywhere on the query output display. The cross-reference interface will then send out
a message through the FIELD message server requesting that any appropriate annotation editor display the
file and line corresponding to the query output that was clicked on. If xrefview is run, then the annotation
editor in the bottom window pane will change its display accordingly. Note that clicking will generally
move the current file position within the editor. If this is not desired, the user should shift-click or meta-
click. Where multiple line numbers occur on a given output line, the user can click on a particular line
number. This should be done, however, with either the left or the middle mouse button.

SSEEEE AALLSSOO
xrefdb(1), annotview(1), field(1), The Brown Workstation Environment Reference Manual.

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

Page 3 (5 January 1990) September 8, 1992

���� ����

XREFDB(1) Eighth Edition XREFDB(1)

NNAAMMEE
xrefdb − FIELD cross reference server

SSYYNNOOPPSSIISS
xrefdb [-b] [-l] [-C] [-Z] [-I directory] [system] [-Fflags]

DDEESSCCRRIIPPTTIIOONN
xrefdb is a UNIX cross reference utility. It builds a relational database by scanning the source programs
for a given binary system, a given directory structure, or a single source file. It provides a relational alge-
bra for accessing this information. The interface provided by xrefdb is aimed primarily at other programs.
This is the utility run, for example, by the xref(1), flowview(1), and cbrowse(1) tools of the FIELD
environment.

This package works by running a scanning program over the source. Scanners currently exist for C, C++
and Pascal. The result of the scanners is read in and compiled into the database. xrefdb is capable of
incrementally updating a system or directory database so that it just scans files that have changed since the
last time the database was used. The process of scanning a large system can be time consuming. The ini-
tial scan for the FIELD system (a total of about 100,000 lines of code and a 6 megabyte database) takes
slightly under 30 minutes on a Sun4. Once the initial scan is complete, loading the database is much faster
(a minute or two).

OOPPTTIIOONNSS
-b This option is used to indicate that xrefdb is being run in batch mode. In this case no prompts are

given and all messages sent back are terminated by a line containing only a special character
sequence, currently ten asterisks.

-l This option can be given to force xrefdb to rescan the database and not to use a saved database.
This is helpful when the saved database, for any of a variety of reasons, becomes corrupt.

-C This option forces the system to be treated as a C++ (2.0) program and scanned accordingly.

-Z This option causes the database to be saved in compressed form (compress(1)). If the database is
originally in compressed form, then it will be saved in that form regardless of the setting of this
flag.

-I directory
Multiple directories can be specified using multiple instances of this option. These are directories
in which to look for include files. The list here should include all the directories (in the same
order) that are included in compiling the components of the system. These can also be specified
using the INCLUDE_PATH environment variable.

-Fflags This options allows the specification of the compiler options that are to be used for cross-
referencing (such as -D and -U).

system The system given can be a single source file, a directory or a system file. If it is a directory, then
all source files (.c, .C or .p) in that directory are scanned. If it is a system, then the binary file
itself is read and all source files that were compiled with debugging turned on are scanned. In
either of these cases the resultant database is cached. If it is a single source file, then that file
alone is scanned and no database is saved.

UUSSAAGGEE
xrefdb offers a very simple input language. This language accepts a small set of general commands and a
query command. All commands are terminated by a semicolon. The general commands include:

Syntax Description��
@ system ; Load or reload the specified system
+ directory ; Add the directory to the include list
+ ; Clear the include list
? ; Provide a list of binarys included

Page 1 (5 January 1990) September 8, 1992

���� ����

XREFDB(1) Eighth Edition XREFDB(1)

A query command to xrefdb consists of a list of items to return and a selection expression that qualifies
which items should be returned. Items are identified by a relation id and a field name, separated (without
spaces) by a period. The relation id can either be the name of the relation or can be any alphanumeric
string begining with the key letter identifying the relation. This allows the same relation to be used multi-
ple times in a query in different contexts.

The Scope relation is used to describe scopes:��
Relation Key Field Type��

class SCOPE_CLASS
id SCOPE
start int
end int
file FILE

Scope S

inside SCOPE���
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

The class field can be one of EXTERN, INTERN, ARGS, or SUE. It denotes the type of scope. The start
and end fields denote the start and end line numbers in the given file. The inside field is used to reflect
scope nesting.

The Ref relation contains information about references to names. Each reference includes the file, line and
function (or *TOP* if it is outside of all functions), and a flag indicating whether the reference denotes an
assignment: �����������������������������������

Relation Key Field Type�����������������������������������
name NAME
file FILE
line int
assign Boolean

Ref R

function NAME������������������������������������
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

The Decl relation contains information about declarations.���
Relation Key Field Type���

name NAME
scope SCOPE
file FILE
type TYPE
class DECL_CLASS
line int
id DECL

Decl D

function NAME���
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

The scope field identifies the current scope at the point of declaration.
The file, line and function field identify the point of declaration. The class field denotes what is being
declared. It can be one of STATIC, EXTERN, AUTO, REGISTER, TYPEDEF, EXTDEF, PARAM, FIELD,
EFUNCTION, SFUNCTION, STRUCTID, UNIONID, ENUMID, CONST, CLASSID, or MACRO.

The Call relation contains information about function calls. It includes:��������������������������������
Relation Key Field Type��������������������������������

from NAME
call NAME
file FILE

Call C

line int����������������������������������
�
�
�
�
�

��
�
�
�
�
�

The Fct relation contains information about function definitions. The fields here are:

September 8, 1992 (5 January 1990) Page 2

���� ����

XREFDB(1) Eighth Edition XREFDB(1)

����������������������������������
Relation Key Field Type����������������������������������

name NAME
file FILE
line int
scope SCOPE
numarg int

Fct F

args char *�����������������������������������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

The args parameter is a comma-separated list of argument names.

The File relation describes files: ���������������������������������
Relation Key Field Type���������������������������������

name NAME
tail NAME
id FILE

file f

usedby FILE�����������������������������������
�
�
�
�
�

��
�
�
�
�
�

The name field denotes the full pathname. The tail field denotes the actual filename with directory infor-
mation removed. The usedby field reflects include dependency information.

The Hier relation contains information about C++ class hierarchies. It includes:����������������������������������
Relation Key Field Type����������������������������������

class NAME
parent NAME
file FILE
line int
public Boolean
virtual Boolean

Hier H

friend Boolean�����������������������������������
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

The Memb relation contains information about C++ class members. For each member it includes:��
Relation Key Field Type��

class NAME
member NAME
file FILE
line int
protect PROT_CLASS
isdata Boolean
inline Boolean
friend Boolean
virtual Boolean
static Boolean
pure Boolean

Memb M

const Boolean���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The protect field denotes the protection type for this member. It can be one of PUBLIC, PRIVATE, or
PROTECTED. Additional information about C++ class members is found in the mDef relation. This infor-
mation is actually computed by xrefdb from the other relations and is not found during scanning. It
describes the declaration associated with this member and includes:

Page 3 (5 January 1990) September 8, 1992

���� ����

XREFDB(1) Eighth Edition XREFDB(1)

����������������������������������
Relation Key Field Type����������������������������������

class NAME
member NAME
file FILE
line int
type TYPE

mDef m

name NAME�����������������������������������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

The name field here corresponds to the fully expanded, C++ demangled name.

The syntax for queries in xrefdb is as follows:
query ::= output_list selectors ;

output_list ::= (output_fields)
| (* output_fields)

output_fields ::= field
| output_fields , field

selectors ::=
| selector_expr

selector_expr ::= (selector_expr)
| selector
| selector_expr & selector_expr
| selector_expr || selector_expr

selector ::= field == expr
| field != expr
| field <= expr
| field < expr
| field > expr
| field >= expr
| field ˜= expr

expr ::= field
| ‘ integer
| ‘ float
| ‘ " string "
| ‘ ’ char ’
| ‘ name
| @text@

The field terminal is an identifier of the form R.f where R is the relation name and f is the field name as
described above. If the output list starts with an asterisk, then the output will not be sorted; otherwise it is
sorted on the fields in the order they are given and duplicate items are eliminated. The Boolean operators
& and || are left-associative and of equal priority.

Selectors depend on the field type of their left-hand operand. All types can be checked for equality or ine-
quality. Field types that are integer, string or name can have be tested for less than or greater than as well.
Field types that are NAME or string can be tested using regular expression patterns with the operator ˜=.
These are defined in regex(3). Note that complex patterns and names should be specified using the @...@
syntax. Also note that other constants are expected to have a backquote in front of them.

September 8, 1992 (5 January 1990) Page 4

���� ����

XREFDB(1) Eighth Edition XREFDB(1)

xrefdb needs to know how to use cc (CC,pc) on any C (C++,Pascal) source files in order to scan them.
This means that it needs to know the set of include files that are used and any options that need to be
specified. These can be specified on the command line (via the -I and -F options). This is not practical,
however, when xrefdb is run from another program. They can thus also be specified via the environment
variables INCLUDE_PATH and XRDB_FLAGS respectively. Finally, they can be set on a system-by-
system basis using a control file. This file is called stored in the same directory as the system. This file
consists of command lines. These lines currently have the form INCLUDE <name>, the form FLAGS
<flags>, the form CPLUSPLUS indicating that all source files in the directory should be assumed to be
C++ sources, or the form COMPRESS indicating that the database should be saved in compressed form.
Other commands might be added in the future.

EENNVVIIRROONNMMEENNTT VVAARRIIAABBLLEESS
CPLUS20

If this is set, then all .c source files are assumed to be C++ sources.

INCLUDE_PATH
This is a colon-separated list of directories that should be searched for include files.

CC_COMMAND
This is the command that should be used to run the C++ compiler. It defaults to CC.

XRDB_FLAGS
This is a string containing -D and -U options to the C preprocessor. Any options that are normally
specified during compilation should be defined here since the various scanners run the C prepro-
cessor.

FILT_COMMAND
This contains the command to demangle names (default $PRO/bin/ddtfilter).

XREF_CFRONT
This allows an alternate cfront to be provided. If this is given, the +X option is also passed to this
cfront.

XREF__CCARGS
This allows the user to specify a completely different set of arguments to CC_COMMAND for
xrefing. The default args are +e1 -c -F +d +a1.

XREF_INLINE
If this variable is set, then inlines will be expanded before cross-referencing.

XREF_NOUNLINK
If this variable is set, the g++ .gxref files will not be unlinked. This uses a lot more disk space, but
avoids the necessity of having to recompile a file before its cross reference is valid.

XREF_NOKEEPDB
If this variable is set, then no database is saved and any old one will be removed after it is read.

XREF_NOUPDATE
If this variable is set, then the database is not automatically brought up to date the first time it is
loaded. A subsequent reload will bring it up to date, however.

XREF_IGNORE
A colon separate list of regular expression patterns specifying files to ignore.

FFIILLEESS
FIELD is designed to be installed in subdirectories of a given host directory. At Brown, this is either /pro
or /cs depending on the version of FIELD that is being used. In other installations, it may be an arbitrary
directory. We will designate it $PRO. The architecture name (via the arch command on suns) is used
where multiple systems must be supported from a common hierarchy. This is designated $ARCH.

Page 5 (5 January 1990) September 8, 1992

���� ����

XREFDB(1) Eighth Edition XREFDB(1)

.*.xref -- stored databases

.*.xrefrc -- resource files
$PRO/bin/field/$ARCH/xrefscan -- C scanner
$PRO/bin/field/$ARCH/xrefcpscan -- C++ scanner
$PRO/bin/field/$ARCH/xrefpscan -- Pascal scanner

SSEEEE AALLSSOO
field(1), xref(1), flowview(1), cbrowse(1), cpp(1)

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

September 8, 1992 (28 September 1990) Page 6

���� ����

XREFSERVER(1) Eighth Edition XREFSERVER(1)

NNAAMMEE
xrefserver − FIELD cross reference server

SSYYNNOOPPSSIISS
xrefserver

DDEESSCCRRIIPPTTIIOONN
xrefserver is the background process that serves as a clearing house for cross reference database requests
for the FIELD programming environment. It handles the various messages requesting databases to be
loaded or reloaded and requesting information from a cross reference database (via a QUERY message). It
can run multiple xrefdb databases simultaneously.

SSEEEE AALLSSOO
field(1), xrefdb(1)

CCOOPPYYRRIIGGHHTT
Copyright 1985, 1986, 1987, 1988, 1989, 1990 by Brown University

Permission to use and modify this software and its documentation by individual end users for any purpose
other than its incorporation into a commercial product is hereby granted without fee. Permission to copy
this software and its documentation only for the recipient’s internal non-commercial use and not for redis-
tribution to any third party, including but not limited to any subsidiary or any affiliated entities of such reci-
pient, is also granted without fee, provided, however, that the above copyright notice appear in all copies,
that both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Brown University not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Brown University makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

BBUUGGSS
Too numerous to mention. Please report any found to spr@cs.brown.edu so that they can be fixed.

Page 1 (28 September 1990) September 8, 1992

