
FIELD User Reference Manual

Steven P� Reiss
Brown University

Department of Computer Science
Box ���� Providence� RI �����

�����	
��	��� spr�cs�brown�edu

September �� ����



Abstract

FIELD �Friendly Integrated Environment for Learning and Develop�
ment� is an integrated programming environment for UNIX� It is based
on a simple but powerful integration mechanism that allows a wide variety
of tools to interact to assist the user in constructing and debuging UNIX
programs� The tools include editors� debuggers� cross�referencing� pro�l�
ing� con�guration management� data structure display� call�graph display�
and informative viewers� This document describes how to use FIELD� both
for casual users and for sophisticated users who want to tailor it to their
speci�cations�



Chapter �

Introduction

��� What is FIELD

FIELD is an integrated programming environment for UNIX programming�
It has been developed at Brown University as part of an ongoing research
project into programming environments and workstations� Its development
has been directed for three uses� as the principal programming environ�
ment for teaching undergraduates� as a programming environment for re�
search� and as a testbed for developing new tools for programming envi�
ronments� The �rst use requires that the environment be easy to use and
�user�friendly�� The second requires that the environment handle moderate�
sized �	

�


�line� systems that span multiple �les in multiple directories�
The third requires that the environment be �exible and easily extensible�

These goals are achieved by o�ering a rich set of tools based on the UNIX
programming environment� by providing a common graphics�oriented front
end to all these tools� and by developing an integration mechanism that
allows these tools to cooperate and makes it easy to add new tools to the
system� In developing the tools� we used existing tools wherever possible
and integrated them into our framework by providing a reasonable front end
and an interface to the rest of the environment� The front ends are based
on the current version of the Brown Workstation Environment�

��� FIELD Tools

The tools chosen to be part of the initial version of FIELD come both from
existing UNIX tools and from software developed at Brown for other research

	



projects� Below we describe the current set of FIELD tools�

Annotation Editor This is a complete mouse�oriented� extensible editor
with knowledge of C and Pascal syntax for program and other edit�
ing� It is augmented with an annotation window that allows arbitrary
annotations to be associated with each line of the �le� The user can
create� remove and query annotations through the editor� Annotations
are the integration mechanism that FIELD uses to relate the program
source to all other aspects of the programming environment� FIELD
allows multiple annotation editors to be active at one time�

Cross�Referencer This program collects a relational database of infor�
mation about a system� The system can be speci�ed either as a
set of source �les� a binary �le� or as a directory hierarchy� Access
to the database is provided through a relational calculus query lan�
guage� Current relations include references� de�nitions� calls� func�
tions� macros� and scopes�

Cross�Reference Interface This o�ers a menu�oriented interface to the
cross�referencer� allowing most simple queries to be made by �lling in
a dialog box� It also integrates the cross�referencer into the remainder
of the system by allowing the user to select a listed reference to look
at in an editor and by handling cross�reference queries from other
tools� Editors can use this facility to provide commands based on
the program contents such as �nd and display the declaration of this
procedure� The debugger can use this to provide high�level commands
such as set breakpoints at all assignments to this variable�

Data Structure Display The data structure display facilities of the GAR�
DEN environment � have been incorporated into FIELD as a pair of
tools� The �rst tool displays an arbitrary user data structure graph�
ically� allowing the user to pan and zoom over the display and to
selectively show more or less detail� The second tool allows users to
quickly describe how the data structure should be displayed by the
�rst tool� These two tools allow natural�looking displays of complex
user data structures�

DDT Debugger This is an interface to the system debugger �e�g� dbx
on a Sun�� It provides an extended dbx�like user interface as well
as an internal� message�based interface for other tools in the environ�
ment� The use of a separate debugger interface allows FIELD to be

�



more easily ported to other systems� to provide a consistent debug�
ger language across systems� and to allow new commands to be more
easily incorporated into the debugger� The use of a message interface
allows di�erent� machine�independent debugging languages to be in�
corporated into the system at a later date� Multiple DDT debuggers
can be run on separate user processes simultaneously using FIELD�

Debugger Interface This is a graphical� button�oriented front end to the
DDT debugger� It allows new buttons to be easily created and used�
It provides a full transcript of the debugging session� Program input
and output can be displayed here or in a separate window�

Flowview This is a tool that displays a hierarchical call graph� allowing
the user to interactively select the areas of interest and to setup the
display accordingly� It interacts with the rest of the system to allow the
�owgraph to be used to identify routines and to highlight execution�

Make Interface This is a menu�oriented interface to the UNIX make pro�
gram� � By building it on top of make� it is possible to o�er many
of the extensions that exist in di�erent versions of make as well as
incorporating tools such as automatic dependency analysis� This in�
terface is responsible for performing compilations when requested and
for informing editors of errors�

Pro�ler Interface This is a graphical interface to a slightly extended ver�
sion of the Berkeley UNIX gprof command� � The extensions to gprof
include making it interactive and providing timing information about
�les and lines as well as about functions� The graphical interface al�
lows the user to selectively view the large amount of information that
the pro�ler normally produces�

Viewer This is a general facility that allows viewing di�erent aspects of
a system� Currently� viewers exist for the run�time stack� for vari�
ables and expressions being traced� and for debugger events such as
breakpoints�

��� An Example

An example view of the FIELD environment is shown in �gure 	� The
window in the upper left is the control panel� It contains icons �currently

�



Figure 	�	� A view of the FIELD environment�

�



old English letters� for the various views and windows that can be de�ned�
Below this is the debugger interface window� The bulk of this window is
a transcript of the debugging session� Below this transcript are buttons
for debugger commands� Underneath the debugger interface window is an
annotation editor displaying the source �le� There are three annotations
displayed for the one line of text� an arrow indicating the currently executing
line� eyeglasses representing the current debugger focus� and a stop sign
indicating a breakpoint� The window in the upper right of the display
shows a view of the program�s data structure� The sample program here
does tree insertion� and the tree is displayed in its current state� The dark
triangles represent empty subtrees� Below this on the left is a stack viewer�
This displays the current function and line being executed as well as the
contents of the local variables at this point� The window next to this is a
cross�reference viewer� It is displaying the result of a query asking for all
calls to the function insert tree� Finally� the window at the bottom right is
the make interface� This is currently displaying information about building
the system being run�

�



Chapter �

Running FIELD

FIELD is a �exible system composed of a variety of tools� Each tool is
designed to run in a separate window that is created by a higher�level in�
terface� Moreover� each tool communicates and interacts with all the other
tools running on a single workstation as a single user� This modular design
provides a great deal of �exibility in con�guring the FIELD environment�
with the actual con�guration for each run determined by the command name
and arguments�

��� Command Parameters

There are two principal means for running FIELD� as a set of independent
tools each of which has its own process and each of which is invoked from a
UNIX shell by the programmer� or as a single system with a control panel
listing all the available tools where the programmer invokes tools by making
appropriate selections from the icons displayed on the control panel� Com�
binations of these� i�e� using a single system for some tools and invoking
others from a shell� will also work� In addition� it is possible to con�gure
�through programming� not as a user� various combinations of tools� Sev�
eral tool pairs� such as the debugger along with a debugger�sensitive editor
�dbgview�� are built�in con�gurations� The command meadow is used to in�
voke the version of FIELD used with introductory courses at Brown� This
is a single system version with simpli�ed options chosen throughtout and
with some default window management strategies built in�

All of these con�gurations of FIELD are invoked as standard UNIX
commands� The valid commands are summarized in table 	�

�



Command Description

aedit Simple editor without annotations

annotddt Debugger�sensitive annotation editor

annotedit Standard annotation editor

annotview Sensitive annotation editor

build Make interface

dbg Debugger interface

dbgview dbg and annotddt in a single tool

display Data structure display

disptype Data structure display with a type editor

�eld Full environment with a control panel

�owview Call graph display

fprof Pro�ling interface

transcript Make transcript viewer

typeedit Type editor for data structure display

userio Window for program input and output

viewevent Breakpoint viewer

viewstack Run time stack viewer

viewtrace Traced variable viewer

xref Cross reference interface

xrefview Cross reference interface with an editor

Table ��	� Summary of commands

�



Option Meaning

�help Provide short summary of options

�THREADS Use lightweight processes

�window Run in a single window �full screen�

�demo Run in a single window �user�de�nable�

�to �le Save transcript of run in given �le

�from �le Use previously saved transcript

�stack size Set stack size for threads

�prior priority Set priority for threads

�DEBUG Create a msg�trace debugging �le

Table ���� FIELD�speci�c options

The command format is

command �options� �name �altname��

where the name and the alternate name are interpreted accorting to the
command and where the options are either FIELD�speci�c or X		�related�
The FIELD�speci�c options are shown in table �� The X		�related options
are shown in table ��

When invoking one of the FIELD editors� aedit� annotddt� annotedit� or
annotview� the name is interpreted as the �le to edit� When invoking one
of the debugger tools� dbg or dbgview the name is the system to debug and
the alternate name is the core �le to debug with� The second name here
is optional� For the system�oriented tools� build� �owview� fprof� xref and
xrefview� the name is the system to work with� For the data structure display
tools display and disptype the name is the name of the data structure to
display� For the data structure type editor� the name is the name of the type
to edit� Finally� for general tools including userio� viewevent� viewstack� and
viewtrace� the name is ignored� For the complete system command �eld� if
the �rst name is a source �le then an initial annotation editor tool is opened
on that source �le� Otherwise� if one or two names are given they are
interpreted as a system and core �le name and an initial debugger interface
and debugger�sensitive annotation editor are started� This is summarized
in table ��

�



Option Meaning

�background color Background color

�bd color Border color

�bg color Background color

�display name Set display to run on

�fg color Foreground color

�fn font Default font

�font font Default font

�foreground color Foreground color

�geometry speci�cation Specify default geometry

�query Don�t query user for position

�rv Run in reverse video

�synchronous Run X		 in debugging mode

Table ���� X		�speci�c options

��� Resource Files

FIELD allows users to tailor the environment to suit their needs� This
is generally done through a combination of environment variables� an X		
database �le� and AUXD �les� AUXD is a Brown Workstation Environment
package that provides hierarchical resource management� Many of the pack�
ages of FIELD use an AUXD �le to describe their default behavior� While
standard �les exist for each package� users are free to rede�ne these for their
own purposes� The environment variables use by FIELD are summarized
in table �� The X		 resource database can contain any of the X		�related
options de�ned in table �� Separate de�nitions for each tool are de�ned as

toolname�option� value

De�nitions with a toolname of �eld will apply to all tools unless otherwise
overriden if the full environment is run� The de�nition of the various AUXD
�les is given in the appropriate chapter of this manual for the various tools�

�



Command Name Alternate Name

aedit File to edit �

annotddt File to edit �

annotedit File to edit �

annotview File to edit �

build System to make �

dbg System to debug Core image

dbgview System to debug Core image

display Variable to display �

disptype Variable to display �

�eld Source �le to edit �
System to debug Core image

�owview System to display �

fprof System to pro�le �

transcript System to make �

typeedit Type to edit �

userio � �

viewevent � �

viewstack � �

viewtrace � �

xref System to cross�reference �

xrefview System to cross�reference �

Table ���� Use of name arguments by command

	




Variable Contents Default Function

ANNOT AUXD �lename Annotation editor AUXD �le

ANNOT EDIT string annotedit Default annotation editor

ARCH name Architecture name �i�e� sun��

BUILD RULES �lename Default make de�nitions

DBG AUXD �lename Debugger interface AUXD �le

DDT INIT �lename Initial debugger commands

DDT DEBUG Produce ddt�trace if set

FIELD DIR �lename Directory containing FIELD

FIELDRC �lename X		 resource �le

HOME �lename User�s home directory

PRO �lename Directory containing FIELD

SHELL name �bin�csh User�s preferred shell

Table ���� Environment variables used by FIELD

		



Chapter �

Control Panel

The normal way of running the FIELD environment is to run the full envi�
ronment with a control panel and then to select the desired tools� This is
the command �eld� When FIELD is run in this manner� it uses the WIND
window manager from the Brown Workstation Environment� This causes
all windows to be surrounded by a title bar and set of buttons� These can
be used to control the placement of the window in conjunction with the
underlying X		 window manager� They can also be used in place of an X		
window manager�

The control panel window allows users to select the FIELD tools they
want to view� An example control panel is shown in �gure �� This window
consists of several parts� The top and bottom line represent the window
manager aspect �WIND� and can be used to control the placement of the
window in conjunction with the underlying X		 window manager� The
second line at the top represents a pull�down menu� Finally the large central
portion contains icons representing the di�erent available tools� These are
all described below�

The upper�left hand corner of the window contains a move icon� This
region can be used to reposition the window on the display� It is activated by
pushing down any mouse button in the region� dragging to establish the new
position� and then releasing the mouse button� A skeleton of the window
�i�e� a rectangle representing its border�� will be drawn during the dragging
process to show the resultant location� Moving a window has the side e�ect
of raising it to the top of the viewing stack� A tap of any mouse button in
this region �i�e� a quick down�up without moving the mouse� will cause the
window to be raised to the top without being moved�

	�



Figure ��	� Sample Control Panel�

The other three corners of the window contain a size icon� The corre�
sponding regions can be used to resize the window� changing the position of
the selected corner while holding the position of the directly opposite corner
�xed� These are activated by clicking down in the appropriate region� drag�
ging the mouse until the window is sized appropriately� and then releasing
the mouse button� Any mouse button can be used� A window skeleton is
again drawn during the dragging process to show the resultant size� If the
window is resized too small� then the resize command is ignored� Resizing
a window has the side e�ect of raising it to the top of the viewing stack� A
tap of any mouse button in a size region will cause the window to be raised
to the top without being resized�

The central area at the top of the window is the title bar� It contains the
window name and will di�er from tool to tool� Tapping the mouse in this
area will raise the window� clicking the mouse and dragging it will move the
window� The region at the bottom between the two size icons contains other
window buttons� The button labeled Remove is used to remove the window�
If it is clicked on with a normal mouse button� the window is made iconic�
with the icon being placed on the control panel� If it is clicked on with a
shifted mouse button� then the window is completely removed� The button
labeled Push in this region lowers the window to the botton of thefvisibility

	�



stack� Finally� clicking in the region between these two buttons is equivalent
to popping the window�

The middle of the control panel window contains icons both for new tools
and for tools that have been iconi�ed� Clicking on a generic icon here will
initiate a request for a new window for the corresponding tool� With most
window managers� this will result in the user being asked to locate and size
the new window� Once the window has been created� the tool will be run
within it� If a window is made iconic using its Remove button� then its icon
will be placed in this panel with the title of the window as the underlying
text� Clicking on such an icon will cause the window to be made visible in
its previous location at its previous size�

In addition to this panel area� the control panel contains two pull�down
menus� labeled Commands and UNIX respectively� The commands menu
contains �ve buttons� Help� Mouse Help� Refresh� Directory� and Quit� The
Help button causes a help window to be created� Such a window will also be
created automatically if none exists and the user asks for help using the help
key� The Mouse Help button creates a mouse help window� This window
will dynamically display the function of the mouse buttons depending on the
current locator position� The Refresh button executes an xrefresh command
in background� causing all the windows on the display to be refreshed� The
Directory command causes a dialog box to be popped up to allow the user to
view or change the current working directory� Note that the current working
directory is the same for all �eld tools� changing it in any one tool �such
as here� will change it for all tools currently talking to the same message
server� Finally� the Quit command will cause FIELD to exit�

	�



Chapter �

DBG� Debugger Interface

Here we describe the debugger� etc�

	�


