
Seeking the User Interface
Steven P. Reiss

Department of Computer Science
Brown University

Providence, RI. 02912 USA
spr@cs.brown.edu

ABSTRACT
User interface design and coding can be complex and messy. We
describe a system that uses code search to simplify and automate
the generation of such code. We start with a simple sketch of the
desired interface along with a set of keywords describing the
application context. We then use existing code search engines to
find results based on the keywords. We look for potential Java-
based user interface solutions within those results and apply a
series of code transformations to the solutions to generate deriva-
tive solutions, aiming to get solutions that constitute only the user
interface and that will compile and run. We run the resultant solu-
tions and compare the generated interfaces to the user’s sketches.
Finally, we let programmers interact with the matched solutions
and return the running code for the solutions they choose. The
system can be used not only for generating initial user interface
code for an application, but also for exploring alternative inter-
faces and for looking at the user interfaces in a code repository.

Categories and Subject Descriptors
D.2.2 Design Tools and Techniques - user interfaces.

Keywords
Code search; user interfaces; user interface generation tools.

1. INTRODUCTION
User interfaces are always fun to design and create. The coding
involves understanding complex widget sets, building multiple
prototypes to try achieving the best user experience, convoluted,
inverted-control-based code, and a variety of layout strategies.
The resultant code is often complex, bug-ridden, difficult to main-
tain, and not particularly transparent. Testing user interfaces, espe-
cially during development, is difficult and time consuming; testing
interfaces aesthetics and usability even more so. Yet user inter-
faces are a critical part of today’s applications.

The goal of our research is to simplify and eventually automate the
process of building user interfaces by letting the programmer rely
on the growing repository of already developed and tested open
source applications. Essentially we eventually want to use code
search to generate the user interface. Programmers should simply
sketch the user interface they want and then our tool will search
the various repositories of open source applications, extract user
interfaces from these applications, and return working code that is
close to the programmer’s design.

Open source code repositories and systems are growing exponen-
tially. Ohloh now claims over half a million repositories with over
30 billion lines of code. (Last year it was 16 billion.) For many
applications, already developed, tested, and used interfaces in the
repository are similar to what a programmer is looking for and
could be used with minor modifications.

Our work lets the programmer start with a sketch of the user inter-
face along with some context information. We use the context
information to search open source repositories for appropriate
Java applications using existing search engines. We extract the
user interface code from these applications, get the code to
compile and run, check whether the generated interface matches
the given diagrams, and let the programmer check the result inter-
faces by interacting with and editing them. The actual source code
for the generated interfaces is returned to the programmer.

This approach can return interfaces that are fully developed, that
include interaction code, code to handle different window sizes,
and callback hooks. Such interfaces are more substantial than
those generated by the user interface builders common to today’s
programming environments. The approach can also be used to
explore the space of interfaces for an application domain, looking
at different alternatives and filling in the gap between a prelimi-
nary sketch and a usable interface. Finally, the approach has been
used to explore user interfaces as an aid to browsing code reposi-
tories.

The contributions of this work, in addition to showing the feasibil-
ity of using code search for user interface design, are:

• A means for translating user interface sketches into a form that
can be used to check if a given user interface is valid.
• Methods for gathering the appropriate code for a user interface
from the simple results returned by code search engines.
• Transformations that take the raw code returned from code
search, extract the user interfaces, and then make the code runna-
ble outside of the original context.
• Techniques for matching a user interface sketch with an actual
user interface.
• Tools that let the programmer see and interact with candidate
interfaces to choose which they want the code for.

2. OVERVIEW
Searching for user interfaces can be broken down into three
stages: specifying what to search for, generating candidate solu-
tion, and validating those solutions.

To specify a user interface, the user provides a sketch of what is
desired along with a set of keywords describing the application
context of the desired interface. Our tool is shown in Figure 1.

The user interface sketch is provided as an SVG file. While a free-
hand sketch might be more appropriate, we wanted to start with
something more structured and slightly easier to interpret. SVG is
a common standard, works well with the web, there are many
available tools for creating and editing such diagrams, and Apache
provides a suite of Java-based tools for SVG.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ASE '14, September 15 - 19 2014, Vasteras, Sweden
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3013-8/14/09...$15.00.
http://dx.doi.org/10.1145/2642937.2642976

When the user completes the specification and hits the search
button, we build a Java code search request for a modified version
of our S6 search engine [36]. To do this we transform the user’s
sketch into a hierarchical component description. This description
includes the components that should be in the user interface and
the relationships among those components. Components can be
nested. For each component, the description includes a set of Java
Swing/AWT widget types that can be used to implement this par-
ticular component. The component description from the example
shown in Figure 1 is shown in Figure 2.

Next, S6 uses the keywords to find candidate solutions from an
existing code search engine such as Ohloh, Krugle, or Github. S6

next looks for candidate user interfaces. A candidate solution can
be a class that implements a Swing/AWT component or a non-
private method that returns such a component. Next S6 applies
transformations to each solution in an attempt to create code that is
compilable, runnable, and only contains the user interface. The
result of each transformation is a new solution that can also be
transformed. The end result of these transformations is a set of
candidate user interfaces that might meet the user’s criteria.

We validate these solutions in several ways. First, we ensure the
code compiles and runs. Second, the user interface generated by
the code needs to match the hierarchical component specification.
Third, the interface needs to look and act correctly.

For the first two of these, S6 compiles and runs the code, and then
matches the user interface generated in the run against the compo-
nent specification. The various constraints and values included in

the specification are used to generate a matching score which is
used to rank the solutions.

The task of seeing whether the user interface is appropriate and
what the programmer was thinking of is left to the programmer.
Our tool presents the candidate solutions to the user first by
showing images of the interface as seen in Figure 3. The user can
accept or reject the solutions directly, based on their image. Alter-
natively, if a solution is clicked on, then the system will run the
user interface along with a viewer that lets the user investigate the
widget hierarchy and the various events generated by interaction.

Once the user has selected a set of acceptable solutions, they hit
the “Show the Code” button to get a display of the resultant code.
This is shown in Figure 4.

In the next section we describe S6 and other related work.
Section 4. describes how we generate the hierarchical component
description from the SVG diagram. Section 5. describes the
various transformations and other extensions to S6 that are needed
for handling user interfaces. Section 6. describes the matching
algorithm along with the tools and techniques for presenting the
solution to the user. Section 7. describes our experiences to date
and offers an evaluation of the work. Section 8. then concludes by
describing our on-going work.

3. RELATED WORK
Creating graphical user interfaces has been a difficult problem
since the 1980’s when such interfaces starting to become common.

Figure 1. The user interface for specifying what to search for. The specification includes keywords and an SVG-based sketch. Search
options include which code search engine to use and the scope of the search.

<COMPONENT HEIGHT=’416.7938537597656’ ID=’U_70’ TYPES=’java.awt.Container’ WIDTH=’574 X=’27’ Y=’1’’>
<COMPONENT DATA=’My Address Book’ HEIGHT=’51’ ID=’U_51’ LEFT=’U_70’ TOP=’U_70’ TYPES=’javax.swing.JLabel’ WIDTH=’386’ X=’27’ Y=’15’ />

<COMPONENT DATA=’E-mail’ HEIGHT=’10’ ID=’U_64’ TYPES=’javax.swing.JLabel’ WIDTH=’41’ X=’334’ Y=’233’ />
<COMPONENT DATA=’Contact Details’ HEIGHT=’20’ ID=’U_60’ TYPES=’javax.swing.JLabel’ WIDTH=’171’ X=’321’ Y=’114’ />
<COMPONENT HEIGHT=’32 ID=’U_62’ RIGHT=’U_70’ TYPES=’javax.swing.JTextField’ WIDTH=’207’ X=’393’ Y=’166’ />
<COMPONENT HEIGHT=’291’ ID=’U_52’ LEFT=’U_70’ TYPES=’javax.swing.JList,javax.swing.JTextArea,javax.swing.JEditorPane’ WIDTH=’245 X=’34’

Y=’97’ />
<COMPONENT DATA=’Name’ HEIGHT=’10’ ID=’U_61’ TYPES=’javax.swing.JLabel’ WIDTH=’39’ X=’337’ Y=’178’ />
<COMPONENT HEIGHT=’33’ ID=’U_67’ RIGHT=’U_70’ TYPES=’javax.swing.JTextField’ WIDTH=’207’ X=’392’ Y=’283’ />
<COMPONENT BOTTOM=’U_70’ DATA=’Create a New Contact’ HEIGHT=’29’ ID=’U_58’ LEFT=’U_70’

TYPES=’javax.swing.JButton,javax.swing.JMenuItem’ WIDTH=’250’ X=’32’ Y=’403’ />
<COMPONENT DATA=’Phone’ HEIGHT=’11’ ID=’U_69’ TYPES=’javax.swing.JLabel’ WIDTH=’41’ X=’333’ Y=’292’ />
<COMPONENT HEIGHT=’33 ID=’U_65’ RIGHT=’U_70’ TYPES=’javax.swing.JTextField’ WIDTH=’207’ X=’392’ Y=’222’ />

</COMPONENT>

Figure 2. Hierarchical component specification generated from the diagram shown in Figure 1. Each component includes a position
and size.

While most interfaces then and now are still hand-coded, there
have been a wide variety of tools developed to assist and even
attempt to automate the process. A good summary of the state of
the art in 2000 is provided by [29].

3.1 User Interface Generation
Modern development environments such as NetBeans, Visual
Studio, and Eclipse support user interface generation. They let the
developer drag and drop widgets into containers and to set the
various properties of the widgets. Once a user interface is
designed, the basic code for the interface can be generated. The
programmer can modify this code to interact correctly with other
portions of the application. These tools provide some simplifica-
tion of the process, but are not ideal in that a) they don’t handle
interaction, data validation, or other interface dynamics; b) they
often use absolute positions and it is complex to generate easily
resizable interfaces; c) they don’t handle dynamically generated
interfaces where the interface depends on external files or the state
of the application; d) the code that is generated may not be in a
style or form the programmer desires; and e) once the code is mod-
ified it becomes difficult to use the support to update or change the
user interface. The latter is a problem because user interface design
often involves the rapid iterative design, exploration and compari-
son of different interface implementations [16].

There are some tools that attempt to generate user interfaces
without actually writing code. Some of these involve using non-
procedural specifications such as Mozilla’s XUL [12]. Others
involve developing various models representing the underlying
data and the presentation and then generating the interface from

Figure 3. The resultant display showing potential solutions for the address book sketch of Figure 1. Each solution can be accepted or
rejected by the user. Moreover, the user can experiment with the solution by clicking on it.

Figure 4. Final display showing the code for the user interfaces
the user accepted.

these models [27,33,41]. The model driven tools have been more
successful when applied to specialized environments [14,30].
There has also been work on automatically adapting user interfaces
based on device or user constraints [11,31].

3.2 Basic Code Search
Code search technology has been developed mainly as an exten-
sion to the very effective uses of web search in general. A variety
of code search tools have been developed by researchers to help
the programmer find the particular code they might be interested in
out of the large available body of code [1-6,8,10,15,17-
22,24,25,28,32,39,40,42-48]. This is in addition to commercial
tools such as Ohloh (code.ohloh.net, formerly Koders at kod-
ers.com), Krugel (krugel.com), Github (www.github.com) and the
now-defunct Google code search.

While code search shows much promise, it has not caught on
extensively. To some extent, this is because the various code
search engines are not particularly effective. However, even with
an effective search, the programmer still has to do a significant
amount of work in order to use the result. This includes checking
whether the code actually does what is desired, adapting the code
to their particular project, possibly debugging the code, and con-
verting the code to their style and formatting standards.

3.3 Semantic Search with S6

Our prior work on code search is the semantic code search engine
S6. S6 attempts to address several of the problems with current
code search technology by effectively automating the multiple
tasks the programmer has to do manually in order to use the output
of a code search tool [36,37].

S6 can be used to search for either Java classes or methods. It pro-
vides a web-based interface that asks the user to first provide a
description of what is wanted in terms of keywords and the seman-
tics of the target code. The latter includes the signature for the
target class or method, one or more test cases, and optionally con-
tracts (preconditions and postconditions) and security specifica-
tions (e.g. the returned code should not do any file I/O).

Once this data is entered, S6 processes the request. It first uses the
keywords with an existing code search engine (Ohloh, Krugle,
Github, GrepCode, or Sourcerer [2]) to get a starting set. It gener-
ally takes the first 100-200 files from the search results to build an
initial set of solutions. The next step is to apply transformations to
each solution to generate new solutions. This is done repeatedly
until no more transformations are applicable and no new solutions
are generated. These transformations include relatively simply
ones such as change the name of the method to match the name in
the specified signature or reordering the parameters; moderately
complex ones such as replacing a parameter with an appropriate
assignment; and complex ones such as extracting functionality
from a method by finding a top-level statement computing a value
of the return type, doing a backward slice of the code until the only
free variables are of the parameter types, and then extracting the
resultant code into its own function.

The system next takes all the resultant candidate solutions and
does a dependency check. This check adds other code fragments
such as field declarations and auxiliary methods from the initial
file that might be needed to make the candidate compile. It
removes candidate solutions with unmet dependencies that will not
compile. For each passing candidate the system generates a test
program that tests that candidate against the user’s original test
cases, contracts, and security constraints. This test program is com-
piled and run using Apache Ant and JUnit. The system does an
additional pass looking at the output from the tests, and will try
additional transformations as appropriate, for example, transfor-
mations that handle off-by-one or uppercase/lowercase errors.

Finally, the system takes the candidate solutions that pass all the
test cases and passes the resultant code back to the user. It gives the
user the option of different formatting styles [35] and different
orderings for the results (e.g. fastest to slowest, smallest to largest,
least to most complex). It also provides license information for
each of the fragments. The user can then take the result, cut and
paste it into their program and use it with the confidence it actually
compiles and passes their test cases.

S6 provides a general framework for using code search for differ-
ent purposes. It starts with keywords to identify a set of initial can-
didate files. Next, it uses a set of transformations that convert these
candidate files into initial candidate solutions. Next it transforms
the candidate solutions so that they are likely to compile and run.
These transformations are limited by applying an intermediate
check as to whether the solution is feasible or not. Finally, it needs
to compile and validate the resultant solutions. Our search tool
implements and specializes this framework for user interfaces.

3.4 Other Search Tools
Other code search tools use test cases rather than keywords and are
closer to the approach taken by S6. A recent test-driven approach is
CodeGenie [22]. More recent code search work on test cases
includes [23]. Test cases and semantics have also been used in a
similar fashion for finding web services [9,34].

Most current research code search tools are based on information
retrieval techniques. Early work here demonstrated that keywords
from comments and variable names were often sufficient for
finding reusable routines [10,25]. Later work here did query
refinement either directly [43], by looking at what the programmer
was doing [48,49], using an appropriate ontology [47], using learn-
ing techniques [8], using natural language [7], or using collabora-
tive feedback [46]. Recent approaches, such as Assieme [18],
Sorcerer [2], Codifier [3], Exemplar [13] and Portfolio [26] incor-
porate program structure and semantics as a search basis.

4. SPECIFYING USER INTERFACES
Our goals in specifying a user interface for code search were three-
fold. First, we needed to provide an appropriate starting point for
the search process. Second, we wanted to use a natural metaphor,
starting with sketches as designers typically do. Third, we wanted
to be able to check the result against the specification so we could
test if a generated search solution was appropriate.

There are two aspects to identifying a starting point for the search.
The first is the set of keywords that will be used in conjunction
with an existing code search engine to find initial files. The second
specifies if the solution should be within a single file, within a
single package, or spanning multiple packages.

User interfaces can be implemented in a variety of ways. Simple
interfaces and interfaces developed using user interface builders
are often implemented within a single file. More complex inter-
faces, where the user creates custom components, uses custom
models for tables or lists, or implements complex internal func-
tionality, are often implemented in multiple classes within a single
package. Applications that have multiple user interfaces may use a
common user interface package for support code while implement-
ing the actual interface in a separate package within the system.

In order to accommodate these different user interface implemen-
tation styles, we support initial solutions that are either file-based,
package-based, or system-based. For package based solutions we
start with the initial file returned from the code search engine,
search for other classes in the same package, and merge the results
into a single virtual file for further processing. This merger yields a
single Java file containing multiple classes that would typically not
compile directly. However, we retain enough information to sepa-

rate this into multiple files when we need to compile it. The merger
also takes into account the different imports for the different files,
yielding a common set of imports by replacing simple names with
qualified names where necessary.

In the case where the user interface might span packages, we start
with the initial file, add the other files for the package as above,
and then use the import clauses and qualified names in the result to
identify packages that share a common prefix with the original
one. All the classes in these packages are merged with the original
file as well and the process is repeated until no new packages are
identified. The merging here moves all the files to a single pack-
age, updating names and import statements accordingly.

The remainder of the specification is a sketch of the desired inter-
face. While we would ideally allow free-form input, this seemed
overly complex for an initial system. Instead we assume that the
user creates the sketch using an SVG editor. SVG is web-friendly,
matching the current S6 web interface. Moreover, there are several
tools available for creating and editing SVG files such as Inkscape
and the web-based svg-edit. The edit image button on the bottom
of the interface will bring up an appropriate editor, either Inkscape
if it is installed on the system or GLIPS Graffiti. Finally, the search
button at the bottom right of the interface starts the whole user
interface search process.

The SVG-based user interface sketch addresses our second criteria,
letting the user start with a sketch.To make this usable by S6 we
analyze the sketch and translate it into a hierarchical component
description in stages.

The first stage finds potential components. We use Apache’s Batik
package to map the SVG diagram into drawable components,
either shapes (rectangles, rounded rectangles, ellipses or general
paths) or text. We further characterize shapes as either boxes, input
regions, lines, symbols, icons, rounded regions, or text. Input
regions are boxes that are either lightly filled or that have a thicker
than normal border. Lines are either lines or are boxes that have
essentially one dimension. Symbols are shapes that are small and
can represent either a simple button (e.g. a radio button), an icon,
or an arrow (for a scroll bar). Icons are larger two dimensional
symbols and can represent larger icons or general drawings. Squig-
gly paths that are long and narrow are taken to represent potential
text. Text regions are further characterized as containing single or
multiple lines.

The next stage creates a hierarchy of the candidate components.
This is done by looking at the bounding boxes of each component
and seeing what other components are nested inside. Here we use
an approximation to actual nesting to accommodate minor errors in
the sketch. For example, if a string happens to lie mostly inside a
rectangle, but extends outside slightly, we consider the string to be
nested. Once we determine all nestings, we build a hierarchy by
finding the innermost nesting for each component. Finally, if there
is no unique top-level component, we create one.

The next stage attempts to merge logical groups of components
and to characterize the components so that we can assign potential
widget types for checking. This is done with a series of hand-
coded checks that assign properties to the components and clean
up the hierarchy. The actual checks done here include:

• Looking for components containing only text subcomponents.
This characterizes components as buttons if the text is a simple
string and is generally centered or if the enclosing region is circu-
lar; or as single line or multiple line text (input) regions otherwise.
If text is present we check for asterisks to indicate a password or
hidden field and for only numbers to indicate a numeric field.
Where components are further characterized, the text subcompo-
nents are removed from the result hierarchy.

• Looking for combo boxes (buttons with a choice of options).
These are text boxes with a symbol on the right. If one is found, the
symbol and text are removed.
• Looking for toggle buttons such as radio buttons and check
boxes. These are buttons or text components with an adjacent sym-
bol. Where these are found, a new component is created spanning
both the original components which are removed.
• Looking for menu and tool bars. These are long, narrow
regions containing a one or more symbols, buttons or text strings.
• Looking for tables, trees and lists. Tables are characterized as
boxes containing both vertical and horizontal lines and possible
text elements. Lists can contain horizontal lines or multiple text
items. Trees can contain vertical lines and have text areas that are
properly offset. Any internal subcomponents are removed.
• Looking for scroll bars. These are either long or narrow
regions that contain symbols at the top and bottom and possibly a
box or symbols in the middle. Any internal symbols and boxes are
removed if a scroll bar is identified.
• Looking for spinners. These are numeric fields with one or two
symbols immediately to the right.
• Looking for sliders. We look for a long narrow component with
additional symbols on top of it and with potential text immediately
above or below. If a slider is identified, all the internal components
are replaced with a single slider component.
• Looking for drawing areas. These are characterized as a com-
ponent containing multiple symbols and shapes but no buttons.
The checks here are designed to be forgiving in order to accommo-
date minor errors in the original sketch. This comes first from the
fact that the hierarchy determination is not strict. Moreover, the
checks for aspect ratio accept an overly broad range of values;
checks for horizontal and vertical lines allow ease; and extra marks
or boxes that are small or seem irrelevant are ignored.

The fourth stage of component processing takes the resultant set of
components and computes a set of relative positional constraints
that can be used for checking. Each component can identify
another component that is immediately above it, one that is imme-
diately below, one to the left, and one to the right. Nested compo-
nents can also be assigned a position relative to their parent, for
example, a component that is at the top of its parent has the parent
identified as the component immediately above it.

The final stage assigns potential widget types to each component.
This uses the properties set by the above drawing analysis to create
a list of candidate AWT/Swing widgets for each component. This
is the only part of the specification stage that is dependent on the
user interface being generated for Java AWT/Swing.

The resultant component hierarchy for the input shown in Figure 1
is shown in Figure 2. The box on the left is identified as either a
JList, JTextArea or JEditorPane; the three boxes on the right are
identified as JTextFields, and the box at the bottom as a JButton or
JMenuItem. The remaining elements are either JLabels or the out-
ermost Container.

Our user interface for specifying what to search for can be seen in
Figure 1. The top three boxes define the starting point for search.
The top box contains the keywords; the second box identifies the
type of search; the third box selects the search engine to be used.
The sketch, selected from a file, is displayed below.

5. GENERATING SOLUTIONS
To do the actual work of searching for a user interface, we substan-
tially modified the S6 search engine. The modifications generally
fall into three categories. The first is handling packages and
systems rather than individual functions or classes. These were
described in the previous section. The second involves restricting
the code to that relevant to the user interface by eliminating unnec-

essary elements. The third involves getting the resultant code to
compile and run, effectively duplicating what a programmer might
do when extracting the interface from the code.

S6 for user interface search starts with the code generated from
either files, packages, or multiple packages based on the initial
code search. Each of these code files (with the latter ones being
considered single files after all the code has been merged), is con-
sidered a candidate solution.

The next step is to identify potential user interfaces in each solu-
tion and generate separate solutions for each. This is done using S6

code transforms. We first convert the package name to a standard
one for the user interface. Next we find all candidate interfaces.
These are non-private constructors for any class that extends
java.awt.Container and any non-private methods of a class that
return an object that extends Container. For each such candidate,
we create a new solution by creating a new class with a standard
name that either calls the appropriate constructor or first builds the
class and then calls the identified method. Where there are multiple
possible constructors, we generate separate solutions for each,
using logical default values for any parameters. Similarly, if the
identified methods take parameters, we will generate separate solu-
tions using different default values for those parameters.

Each potential user interface solution is restricted by a transforma-
tion that eliminates any code that cannot be reached from the class
added for the solution. The result of this is a set of candidate solu-
tions that implement a potentially relevant user interface and that
are restricted to the code needed for that interface.

The next step uses existing S6 transforms along with Swing-spe-
cific transforms to take these solutions and build new solutions that
have a greater possibility of compiling and meeting the user’s
needs. The transformations that we have added for handling multi-
ple classes, user interfaces and Swing include:

• Removing any code that references undefined types or vari-
ables. If the code can’t be directly removed (for example a return
statement at the end of a method), the undefined value is replaced
with a default value, with both null or 0 and a non-null or positive
value being tried. This transformation also removes empty state-
ments and private methods that have no remaining statements.
• Finding variables that are used before they are assigned to and
adding initial assignments to their declaration. Such instances
often arise because the assignment was previously removed.
• Cleaning up the class structure. This includes making inner
classes be standalone classes, adding additional fields and chang-
ing the constructor; removing unneeded implements clauses; and
merging a subclass with its superclass to form a standalone class.
• Mapping calls that use the ResourceBundle interface to use our
own version that returns reasonable default values for each call.
Also, handle calls to Properties.load appropriately. This handles
many of the cases where the code has been internationalized.
• Repairing calls to AWT/Swing methods that have undefined or
unusable parameters. This includes calls that set the text for vari-
ous types of text widgets and calls that reference external files, for
example calls that construct images and icons. The transform will
replace any undefined string parameter with a unique string, will
replace integer and Boolean parameters with a logical value, will
replace color parameters with a valid color, and will replace
images and icons with a known image or icon. Other parameters
are replaced with either null or with a new instance of an object of
the appropriate type. These transformations attempt to maintain the
original interface in the face of computed or external values.
• Replacing anonymous classes that inherit from or implement a
Swing or AWT interface that have undefined symbols in them with
versions that will compile.

• Replace list, tree, and table models offered by the user with
simple internal models. Many of the compilation and run time
problems we encountered in attempting to use external solutions
arose because the code attempted to use incomplete or unavailable
models since the models themselves are integrated with the appli-
cation and not the user interface, might not be present in the
selected files, or might need to be generated from other sources
such as a database or external file.
• Removing or replacing code that would cause the user inter-
face to hang or become untestable. For example, if the application
attempts to run a modal dialog, our test code will never have
access to the result and the test will fail because it took too long.
To keep the number of solutions reasonable, the system applies a
filter that eliminates solutions that cannot be transformed to match.
In the case of user interfaces, it checks to see if the code has a ref-
erence to one of each of the sets of types needed by each of the
user-specified components. This reference can either be direct or
indirect (i.e. might be to a subclass rather than the class itself). If
there is some user component that cannot possibly be implemented
by the solution, the solution is discarded. The check ignores labels
since these are not critical to the resultant interface.

The number of candidate solutions can vary considerably, but gen-
erally doesn’t become excessive. For example, the search involved
with Figure 1 considered 116 files derived from the Ohloh search
engine, generated 236 initial user interface solutions, and found
569 solutions to test out of a total of 4,122 that were generated by
the various transformations, and tested the first 500 of those to
produce the results shown in Figure 3. The ordering of solutions to
determine which to test is a part of S6 and is a function of the initial
rank returned by the search engine, the number of transforms done,
and a random value to encourage breadth.

6. VALIDATING SOLUTIONS
The next step involves testing whether the code that was extracted
as a potential user interface solution actually matches the user’s
sketch and meets their needs.

We take a two-step approach here. First, we match the generated
user interface against the user’s sketch. This match first checks that
all the components of the user’s sketch appear in the generated
interface. If they do, then the match computes a score describing
the quality of the match. The second step is to present the inter-
faces to the programmer, first by showing a screen shot of the
interface, and second by actually running the interface and letting
the programmer interact with it, explore its widget hierarchy and
callbacks, and do some simple editing.

To match the generated user interface against the user’s sketch, we
run the generated solution and investigate the widget hierarchy that
results. The code generated for each potential user interface solu-
tion returns a user interface object (instance of java.awt.Container)
from which we extract the hierarchy using the basic methods of
Container.

In addition to looking at the hierarchy, we ensure that the display is
runnable and supports interaction. This includes putting non-
window widgets inside a frame and ensuring that dialogs are non-
modal. It also involves determining and setting a reasonable size
for the resultant window, checking if the window can be resized
and making sure the top level user component is visible.

Both the generated widget hierarchy and the user’s hierarchy are
trees and we use a modified form of tree matching to compare the
two. The comparison is loose in that the generated hierarchy is
likely to have many additional components and hierarchy levels.
For example, it might be organized as multiple panels to effect a
better layout; a widget might be contained in a scrolled region
(which adds the scroll pane, the viewport, the scroll bars); or the

top level might be a root pane with all its associated components.
In addition, the actual implementation might include additional
widgets that the user’s sketch didn’t account for. For example, in
the address book example, there might be additional fields (e.g.
telephone or office address) that other implementations included
but the user hadn’t thought of (and might want). We also allow a
little leeway in the match by permitting a small set of original com-
ponents (one or two, depending on the total number of compo-
nents), to not be matched explicitly.

The tree matching we do effectively considers all logical assign-
ments of the user specified components to actual widgets in the
implementation. Matches need to satisfy four criteria:

• Each component has to be matched with a widget. This con-
straint can be relaxed to allow a small number of non-matched
components.
• The top-level component needs to match the top-level widget.
• The widget matched with the component must be an object of a
class that is either one of the types associated with that component
(in the last stage of the user interface specification), or must be a
subclass of that type. Java reflection is used to check subtypes.
• The hierarchy specified by the user’s components must be
reflected in the widgets. If component A is a child of component B
in the specification, then the widget associated with A must be a
child, either directly or indirectly, of the widget associated with B.
Because there can be an exponential number of matches (consider
20 user labels that can match 20 actual labels), the search is
designed to find a reasonable match fast and will stop once oa
maximum number of solutions (currently 1000) have been found.

Once a match is found, we compute a heuristic score for that
match. For each specified component this score takes into account

• Whether the component matched. The score is increased by
200 if so.
• How close the width and height of the component matches that
of the widget. For both the width and height, if the actual value is
within 100 of the user sketch value, the score is increased by 100
minus the delta.
• If text is associated with the component, the editing distance of
that text versus any text associated with the wizard. Here we use
reflection to call the getText method of the widget. The score is
increased by a value between 0 and 100 depending on the quality
of the match and the length of the text.
• If left, right, top, or bottom positional constraints are specified
for the component, the distance in the implementation between this
widget and the widget associated with the constraint. For each
specified relationship, if the actual widgets are within 10 pixels,
the score is increased by 50.
• Actual components that are not matched by a widget are penal-
ized. We subtract 20 from the score for each extra label, 40 for
each extra button or combo box, and 60 for each text field, list,
table or tree.
The scoring tries to take into account the relative importance of
each factor in assessing the match. It is designed so that obvious
matches will have the highest score and be shown to the user first.
Because the number of matches to date has not been excessive, the
particular values chosen for scoring are not that important.

The next step is to get the user’s opinion and validation for each of
the matched interfaces. For each solution that matches the specifi-
cation, S6 creates two results for further matching. The first is an
image of the widget as a PNG file and the second is a runnable
JAR file that can be used to explore the widget. These are passed
back to the front end along with a unique identifier and the score
for each solution.

The interface for asking the programmer about the interfaces is
shown in Figure 3. The programmer is shown the static images of

each of the candidate solutions along with an Accept and a Reject
button for each. The solutions are ordered according to their score.
In addition, by clicking on the solution itself, the programmer will
bring up two windows, one containing the solution that the user
can interact with, and a second one that displays a tree showing the
widget hierarchy of the solution at the top and a display of all the
events that occur when the user interacts with the window at the
bottom. An example can be seen in Figure 5. The interaction
window provides the user with the option of accepting or rejecting
the given solution.

The hierarchy display can be used to do simple editing of the solu-
tion in order to let the programmer explore the interface. This cur-
rently includes changing labels and making components visible or
invisible.

Once the user is done perusing the returned solutions, they can hit
the button at the bottom of the panel in Figure 3 to get correspond-
ing code for any accepted solutions. If no solutions are accepted,
then the back end will attempt to continue the search to find addi-
tional solutions. If solutions are accepted, the code will be returned
in a browsable window such as that shown in Figure 4. The user
can cut and paste the code from here into their application. Along
with the actual code, information is available about the license
under which the code is released.

7. EXPERIENCE
To test and evaluate our approach for generating user interfaces
using code search, we first obtained sketches of user interfaces. We
did this by doing a web search for images using “user interface
sketch”. We then culled the result for usable sketches that repre-
sented potential Java applications (as opposed to web pages or
phone applications) and manually converted those sketches into
SVG files. In addition to the address book example shown in
Figure 1, we used the sketches shown in Figure 6. The test cases
then were:

• Login: a sample login screen with a remember me button.
• Pizza: an interface for ordering a pizza with different options.
• Pizza1: similar to Pizza except we only have one list for ingre-
dients rather than two.
• Phone: an interface for making a phone call.
• Mail: a mail reader interface.
• Student: a front end to a student information system.
• Comment: an interface for entering comments in a guest book.
• Address: an interface for maintaining an address book
For each example we tried appropriate keywords. Finding the right
set of keywords required some trial and error and we eventually
developed a front end for code search that made this easier [38].

Figure 5. A sample solution in an interactive window on the
left and the exploration window showing the widget hierarchy

at the top and the events from interaction.

We also attempted to find the interface within a file where possi-
ble, but did some experiments with larger scopes. For each case we
looked at the results that were returned and verified that at least
one of the results was a relevant good match for the initial sketch.
A summary of the experiments is shown in Table 1.

The first column of the table indicates the test name. The second
column shows the keywords used in the test and the third and
fourth indicate the search engine and search scope respectively.

The fifth column (Potential Solutions) provides some indication of
the work done in the search. The first number is the number of
starting solutions derived from the returned search results. This is
generally the number of unique files found by the search engine.
The second number is the total number of solutions that were gen-
erated during the search. The third number is the number of solu-
tions that could be compiled and tested while the fourth is the
number of solutions that were judged acceptable. The sixth column
reports the number of distinct images that were generated and

hence the number of distinct passing tests. This is generally not the
same as the number of acceptable solutions since there are often
solutions that are variants of the same original source and that gen-
erate essentially the same user interface. In this case only one is
shown to the user initially (although if that is deemed acceptable,
the code for all solutions is returned).

The seventh column (Time) of the table indicates the wall time (in
minutes and seconds) that the search and testing took. The search
was run using eight cores of a sixteen core machine. The process is
highly parallelizable and these numbers are dependent on the
number of threads being used by the search. The time generally
does not include wait time in accessing the underlying search
engine since we are caching the initial search results in order to
lessen the load on the search engines.

The items which are starred in the sixth (Found) column indicate
that there might be additional solutions, but that S6 stopped
looking because an initial set of solutions were found. S6 orders

Figure 6. User interface sketches used for testing in addition to the address book of Figure 1. From left to right these are Login,
Pizza, Phone, Mail, Student, and Comment.

Table 1: Experimental Results

Test Keywords Engine Scope
Potential Solutions

Initial/Total/
Runnable/Tested

 Found Time

Login login jcheckbox jpassword OHLOH FILE 138/2014/453/101 45 3:00
Login login jcheckbox jpassword GITHUB FILE 89/977/231/44 18 1:42
Pizza jlist jbutton jtextfield

jcombobox restaurant
GITHUB+
OHLOH

FILE 15/1284/142/38 17 2:38

Pizza1 jlist jbutton jtextfield
jcombobox restaurant

GITHUB FILE 8/415/20/9 7 0:43

Mail tree text editor button mail GITHUB FILE 88/626/48/15 5 1:02
Mail tree text editor button mail GITHUB PACKAGE 96/46502/351/2 2* 226:33
Mail tree text editor button mail GITHUB SYSTEM 100/47415/340/2 2* 303:27
Phone phone jbutton OHLOH FILE 127/1077/184/9 8 1:15
Phone phone jbutton GITHUB FILE 109/1067/199/14 14 1:23
Student student jbutton jtext jtable OHLOH FILE 91/499/500/47 47* 3:52
Comment feedback jtextfield jtable OHLOH FILE 112/4977/500/178 114* 8:02
Address name email phone jlist OHLOH FILE 133/4122/500/79 131* 4:16
Address name email phone jlist GITHUB FILE 121/3902/500/154 66* 5:48
Address name email phone jlist GITHUB PACKAGE 115/24650/371/25 19* 69:15

solutions based on their initial ranking from the search engines, the
number of transforms used, and a random value, and limits the
number of solutions it considers at each stage using this ranking.
The unchecked solutions are held in abeyance to be checked later
if no other solutions are found. The limits include a maximum of
500 solutions to test and a maximum of 2000 active intermediate
solutions.

This can be seen most readily when doing searches at the
PACKAGE and SYSTEM levels where there are many more
potential solutions to consider. This is the reason that these
searches returned fewer solutions than the corresponding FILE
searches. These searches take considerable longer. This is due first
to the much large set of solutions considered and second to the fact
that each of these solutions is substantially larger and hence
requires more processing.

7.1 Strengths
While the approach has some problems, it also shows a lot of
promise. Using code search it is possible to return working code
for a user interface based solely on a sketch and a set of keywords.
We see three primary uses for a tool like this.

The first use is to produce an actual working interface similar to
the sketch. While this could be done using a user interface builder,
there are several advantages to using existing code as a starting
point. First, interfaces in the repository have typically been used
and tested. Second, such interfaces cover conditions that might not
have been anticipated by the original sketch. For example, a
sample sketch we did for addresses did not have a zip code field
while the generated ones did. Another example is that such inter-
faces often handle window resizing appropriately, something that
today’s user interface builders have difficulty with. Third, they
typically are more consistent with other interfaces and thus with
user expectations. Fourth, they can involve interactivity, both
between elements of the sketch and with other pieces of the user
interface, for example buttons that are only enabled when fields are
completed. Fifth, the code that is returned is often more sophisti-
cated and functional that which would be generated by a user inter-
face builder. In particular, the generated code often included proper
layout techniques, more sophisticated hierarchies, scrolling where
needed, correct adaptation to changing window sizes, etc. For
examples like the phone interface, pushing the buttons entered
digits into the display and in some cases the interface allowed
typing into the display area; and one of the returned Pizza1 exam-

ples automatically updated the prices as items were added to the
order. Other interfaces provided validation code that highlighted
missing or erroneous fields and that only activated buttons when
the inputs needed for them were correct.

A second use for a tool such as we have implemented is to explore
a range of user interfaces for an application. User interface
sketches, especially those done in the early stages of a project, are
usually explorative rather than definitive. Our tool lets user’s view
and take ideas from other interfaces that are similar or for similar
applications. The matching algorithm we use insures that most of
the functionality specified by the user is provided, but allows other
functionality to be included as well. This is seen in the simplified
Pizza interface example with some of the interfaces shown in
Figure 7. While these don’t match the original sketch, they all are
functional interfaces for ordering a pizza, include other compo-
nents beyond what was initially specified (e.g. thick or thin crust)
which the user might have overlooked and want in the final inter-
face.

Central to such exploration is the ability to interact with the user
interface to check whether it is appropriate or not. Not only does
this show some of the additional features that are included in the
code, it also lets the programmer get a better sense of how the
interface might be used. For example, one of the address book
examples looked at first hand to be unusable because it was a long
row of input fields. However, when its shape was changed to be
rectangular, it includes all the necessary buttons and functionality
— it just uses a simple flow layout rather than a positional one.

A third use for the tool is as a part of a front end for exploring code
repositories. In a related project, we developed a tool that uses a
programming environment as a front end for searching code repos-
itories [38]. We added a simple interface to this tool that invokes
our modified S6 implementation for a particular piece of code.
This lets the user point to a file that implements a user interface
and quickly view a diagram of what the interfaces generated by the
corresponding code look like.

7.2 Weaknesses
While the approach works in many cases, it still has weaknesses.
The first is that the results are very sensitive to the initial selection
of keywords. This is due to the fact that the search facilities pro-
vided by existing code search engines are primitive by modern
standards both because of the search techniques used and the diffi-
culty of mapping keywords to programs. Substantial work has

Figure 7. Different Pizza ordering interface found by code search for example Pizza1.

been and continues to be done on code search which should
address these problems in the future.

A second problem is the time taken to do the search, especially if
the search is at the PACKAGE or SYSTEM scope. The three cases
we considered here took hours to complete. There are several diffi-
culties here. First, they tend to yield a large number of potential
solutions that need to be explored. Second, the size of these solu-
tions (500k-5M characters), and the complexity of analyzing and
transforming solutions of this size, means that each solution takes
significantly longer to evaluated. Moreover, the large number of
candidates from each solution means that solutions returned early
by the initial search tend to dominate and solutions that are
returned later are not considered fully or sometimes at all. These
are problems that can be addressed by doing a better job of restrict-
ing the solutions initially and during the search.

A third problem involves the use of user interface libraries. Our
efforts to date have concentrated on code that uses Swing and
AWT directly. Complex applications often use a third party user
interface library, of which there are quite a few. Code that uses
such libraries generally can not be made to compile in a useful
manner. It would be relatively simple to extend our tool to let the
user indicate which if any third party libraries should be allowed
and to incorporate those into the search process.

A fourth problem is that more complex interfaces tend to be tightly
integrated with the rest of the application and the rest of the appli-
cation often depends on external packages or external systems
such as databases. For example, mail applications would typically
be built using a table model that is tied either to a database of mail
messages, to a cache front end, or to a sophisticated imap interface.
While we have developed a number of transformations to extract
user interface code, additional, more sophisticated transformations
would let us find and return more running examples.

A further problem is the quality and nature of the code that is
returned. The system returns compilable, running code. The code
can be copied and pasted into a user project and used directly.
However, the quality of user interface code in the repositories
varies widely and some of it should probably not be propagated.
Moreover, the code only includes the user interface and hence will
need to be modified in order to integrate it into the rest of the
system. Many programmers would prefer that code they will have
to work on be written in the style and with the conventions they are
used to. While some of this can be taken into account by our search
tools (they are able to reformat code in standard styles using [35])
or by the Eclipse or similar formatting commands, others should
probably be done by code transformation applied to accepted solu-
tions at the request of the user, or by regenerating the code com-
pletely from the resultant interfaces.

7.3 Threats To Validity
In addition to the weaknesses cited, there are several things we
should note that might affect the utility and efficacy of the
approach and the results of the study. These include:

• The set of sketches chosen might not be representative of what
programmers are actually interested in. Sketches available on the
web tend to be for sample applications, not for real world code.
• The results are dependent on the set of keywords chosen and it
is not clear that other users would be able to choose the proper key-
words to get appropriate results for a search.
• Our results only look at Java programs with Swing/AWT inter-
faces. For other languages and user interface libraries the reposito-
ries might not have enough samples to let the system find runnable
code. Moreover, different and additional transformations would be
needed in these cases.

• We have shown that we can return interfaces from code reposi-
tories, not that the interfaces that are returned are actually useful,
either as starting points or as runnable code. This would require a
very different and much more extensive study and is more appro-
priate after the tool has been further developed.

8. CONCLUSIONS
Our work demonstrates that it is possible to generate a complete,
working, interactive user interface from a sketch using code
search. We have developed the techniques needed to translate a
sketch into something checkable, to extract the proper code from
existing code search engines, to transform that code into a program
that compiles and runs and includes only the user interface, and
then to let the user interact with and select the results of interest.

Some of the lessons learned in the process that will be applicable
to future work in this area include:

• With existing code search engines, the results returned are very
dependent on the selection of search terms.
• The performance of these techniques is acceptable for inter-
faces that are contained in a single file; where the necessary code is
spread across multiple files, improved performance will be needed.
• Additional transforms would yield additional solutions.
• More flexibility in matching the specifications to the generated
user interface lets the technique be used for exploration.
• Similarly, it is often better to have the user under specify the
interface, both for finding solutions and to facilitate exploration.
• The code returned is interactive and generally does more than
the code that would be generated by a simple user interface
builder.
• Additional work is required to transform the resultant code into
something that programs would feel comfortable including directly
into their applications.
We view this work as a first step in a system that would produce
practical, complete working interfaces that programmers could
actually use. Further work in this area should include:

• Providing a front end that would translate an arbitrary sketch
into a usable SVG diagram.
• Additional transformation to handle more cases. Of particular
interest are transformations that separate the user interface from
the existing code in order to better handle complex cases and speed
up package and system search.
• Extending the techniques to other user interface libraries such
as those for Android phones.
• Better code search front ends to get around the sensitivity of
code search to the specific engine and the initial keywords.
• Providing additional facilities to let the user edit the resultant
display and then having those edits actually change the code.
• Extending the techniques to handle direct manipulation inter-
faces where the program does actual drawing (not just widgets)
and the drawing is based on internal objects.
• Developing the transformations and other techniques needed to
return code that programmers would be comfortable in working
with and modifying.
The code for our implementation of user interface generation by
code search is available as part of the S6 code search tool and can
be found at ftp://ftp.cs.brown.edu/u/spr/s6.tar.gz. The test cases
(SVG files) are available upon request.

9. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation grant
CCF1130822. Additional support has come from Microsoft and
Google.

10. REFERENCES
[1] Marat Akhin, Nikolai Tillmann, Manual Fahndrich, Jonathan

de Halleux, and Michal Moskal, “Search by example in touch
develop: code search made easy,” Proceedings SUITE 2013,
pp. 5-8 (June 2012).

[2] Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou,
Paul Rigor, Pierre Baldi, and Cristina Lopes, “Sourcerer: a
search engine for open source code supporting structure-
based search,” Proceedings ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications 2006, pp. 682-682 (October 2006).

[3] Andrew Begel, “Codifier: a programmer-centric search user
interface,” Workshop on Human-Coputer Interaction and
Information Retrieval, (October 2007).

[4] Bojana Bislimovska, Alessandro Bozzon, Marco Brambilla,
and Piero Fraternali, “Search upon UML repositories with
text matching techniques,” Proceedings SUITE 2013, pp. 9-
12 (June 2012).

[5]. Wing-Kwan Chan, Hong Cheng, and David Lo, “Searching
connected API subgraph via text phrases,” pp. 1-11 in
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering,
(2012).

[6] Shih-Chien Chou, Jen-Yen Chen, and Chyan-Goei Chung, “A
behavior-based classification and retrieval technique for
object-oriented specification reuse,” Software Practice and
Experience 26(7) pp. 815-832 (July 1996).

[7] Shih-Chien Chou and Yuan-Chien Chen, “Retrieving reusable
components with variation points from software product
lines,” Information Processing Letters 99 pp. 106-110 (2006).

[8] Christopher G. Drummond, Dan Ionescu, and Robert C.
Holte, “A learning agent that assists the browsing of software
libraries,” IEEE Transactions on Software Engineering
26(12) pp. 1179-1196 (December 2000).

[9] Michael D. Ernst, Raimondas Lencevisius, and Jeff H.
Perkins, “Detection of web service substitutability and
composability,” WS-MaTe 2006: International Workshop on
Web Services -- Modeling and Testing, pp. 123-135 (June
2006).

[10] William B. Frakes and Thomas P. Pole, “An empiracal study
of representation methods for reusable software components,”
IEEE Transactions on Software Engineering 20(8) pp. 617-
630 (August 1994).

[11] Krzysztof Z. Gajos, Daniel S. Weld, and Jacob O. Wobbrock,
“Decision-theoretic user interface generation,” In
Proceedings of the 22nd AAAI Conf. on Artificial Intelligence
(AAAI-08}, (2008).

[12] Ben Goodger, Ian Hickson, David Hyatt, and Chris Waterson,
“XML user interface language (XUL) 1.0 Specficiation,”
http://www.mozilla.org/projects/xul/xul.html (2003).

[13] Mark Grechanik, Chen Fu, Qing Xie, Collin McMillan,
Denys Poshyvanyk, and Chad Cumby, “A search engine for
finding highly relevant applications,” Proceedings of the
32nd ACM/IEEE International Conference on Software
Engineering, (May 2010).

[14] Saul Greenberg, “Toolkits and interface creativity,” Journal
on Multimedia Tools and Applications 32 pp. 139-159 (2007).

[15] Robert J. Hall, “Generalized behavior-based retrieval,”
Proceedings International Conference on Software
Engineering‚93, pp. 371-380 (May 1993).

[16] Bjorn Hartmann, Leith Abdulla, Manas Mittal, and Scott R.
Klemmer, “Authoring sensor based interactions through
direct manipulation and pattern matching,” Proceedings of
chi 2007: ACM Conference on Human Factors in Computing
Systems, pp. 145-154 (2007).

[17] David Hemer and Peter Lindsay, “Supporting component-
based reuse in CARE,” Australian Computer Science
Communications 24(1) pp. 95-104 (2002).

[18] Raphael Hoffmann and James Fogarty, “Assieme: finding and
leveraging implicit references in a web search interface for

programmers,” Proceedings UIST 2007, pp. 13-22 (October
2007).

[19] Werner Janjic, Dietmar Stoll, Philipp Bostan, and Colin
Atkinson, “Lowering the barrier to reuse through test- driven
search,” SUITE‚09, pp. 21-24 (May 2009).

[20] Werner Janjic and Colin Atkinson, “Leveraging software
search and reuse with automated software adaptation,”
Proceedings SUITE 2013, pp. 23-26 (June 2012).

[21] Jun-Jang Jeng and Betty H. C. Cheng, “Specification
matching for software reuse: a foundation,” Proceedings
ACM Symposium on Software Reuse, pp. 97-105 (April
1995).

[22] Otavio Lemos, Sushil Bajracharya, Joel Ossher, Ricardo
Morla, Paulo Masiero, Pierre Baldi, and Cristina Lopes,
“CodeGenie: using test-cases to search and reuse source
code,” ASE ‚07, pp. 525-526 (November 2007).

[23] Otavio Augusto Lazzarini Lemos, Sushil Bajracharya, Joel
Ossher, Paulo Cesar Masiero, and Cristina Lopes, “A test-
driven approach to code search and its application to the reuse
of auxiliary functionality,” Information and Software
Technology 53(4) pp. 294-306 (April 2011).

[24] Daniel Lucredio, Antonio Franciso do Prado, and Eduardo
Santana de Almeida, “A survey of software components
search and retrieval,” Proceedings EUROMICRO‚04, pp.
152-159 (2004).

[25] Yoelle S. Maarek, Daniel M. Berry, and Gail E. Kaiser, “An
information retrieval approach for automatically constructing
software libraries,” IEEE Transactions on Software
Engineering 17(8) pp. 800-813 (August 1991).

[26] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing
Xie, and Chen Fu, “Portfolio: finding relevant functions and
their usage,” Proceeding of the 33rd International Conference
on Software engineering, (May 2011).

[27] Gerrit Meixner, Fabio Patern, and Jean Vanderdonckt, “Past,
present, and future of model-based user interface
development,” i-com 10(3) pp. 2-11 (2011).

[28] Rym Mili, Ali Mili, and Roland T. Mittermeir, “Storing and
retrieving software components: a refinement based system,”
IEEE Transactions on Software Engineering 23(7)(July
1997).

[29] Brad Myers, Scott E. Hudson, and Randy Pausch, “Past,
present and future of user interface software tools,” ACM
Transactions on Computer-Human Interaction 7(1) pp. 3-28
(March 2000).

[30] Jeffrey Nichols and Andrew Faulring, “Automatic interface
generation and future user interface tools,” ACM CHI 2005
Workshop on The Future of User Interface Design Tools,
(2005).

[31] Stina Nylander, “Semi-automatic generation of device
adapted user interfaces,” UIST conference companion,
(October 2005).

[32] Andy Podgurski and Lynn Pierce, “Retrieving reusable
software by sampling behavior,” ACM Transactions on
Software Engineering and Methodology 2(3) pp. 286-303
(July 1993).

[33] David Raneburger, Roman Popp, and Jean Vanderdonckt,
“An automated layout approach for model-driven WIMP-UI
generation,” Proceedings of the 4th ACM SIGCHI symposium
on Engineering interactive computing systems (EICS ‚12), pp.
91-100 (2012).

[34] Steven P. Reiss, “A component model for Internet-scale
applications,” Proceedings ASE 2005, pp. 34-43 (November
2005).

[35] Steven P. Reiss, “Automatic code stylizing,” Proceedings
ASE ‚07, pp. 74-83 (November 2007).

[36] Steven P. Reiss, “Semantics-based code search,”
International Conference on Software Engineering 2009, pp.
243-253 (May 2009).

[37] Steven P. Reiss, “Specifying what to search for,” Proceedings
SUITE 2009, (May 2009).

[38] Steven P. Reiss, “Browsing software repositories,”
Unpublished manuscript submitted for publication, (2014).

[39] Eugene J. Rollins and Jeannette M. Wing, “Specifications as
search keys for software libraries,” Proceedings 8th
International Conference on Logic Programming, pp. 173-
187 (1991).

[40] Colin Runciman and Ian Toyn, “Retrieving re-usable software
components by polymorphic type,” Proceedings 4th
International Conference on Functional Programming
Languages and Computer Architecture, pp. 166-173 (1989).

[41] Paulo Pinheiro da Silva, “User interface declarative models
and development environments: a survey,” Proceeding of the
7th International Conference on Design, Specficiation, and
Verification of Interactive Systems, pp. 207-226 Springer-
Verlag, (2000).

[42] Jamie Starke, Chris Luce, and Jonathan Sillito, “Working
with search results,” SUITE‚09, pp. 53-56 (May 2009).

[43] Vijayan Sugumaran and Veda C. Storey, “A semantic-based
approach to component retrieval,” Advances in Information
Systems 34(3) pp. 8-24 (2003).

[44] Suresh Thummalapenta and Tao Xie, “PARSEWeb: a
programmer assistant for reusing open source code on the
web,” Proceedings ASE‚07, pp. 204-213 (November 2007).

[45] Thung, Ferdian, Wang, Shaowei, Lo, David, and Lawall,
Julia, “Automatic recommendation of api methods from
feature requests,” Proceedings of Automated Software
Engineering (ASE) 2013, pp. 290-300 (2013).

[46] Taciana A. Vanderlei, Frederico A. Durao, Alexandre C.
Martins, Vinicius C. Garcia, Eduardo S. Almeida, and Silvio
R. de L. Meira, “A cooperative classification mechanism for
search and retrieval software components,” Proceedings
SAC‚07, pp. 866-871 (March 2007).

[47] Haining Yao and Letha Etzkorn, “Towards a semantic- based
approach for software reusable component classification and
retrieval,” ACMSE‚04, pp. 110-115 (April 2004).

[48] Yunwen Ye and Gerhard Fischer, “Supporting reuse by
delivering task relevant and personalized information,”
Proceedings International Conference on Software
Engineering‚02, pp. 513-523 (May 2002).

[49] Yunwen Ye, “Programming with an intelligent agent,” IEEE
Intelligent Systems 18(3) pp. 43-47 (May 2003).

