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Abstract—Testing and test cases are critical to maintain-
ing modern, evolving systems. Yet generating a good set of rel-
evant test cases that covers what is important remains a
difficult task. We propose a new approach to generating test
cases through the use of code search. Open source repositories
have made an enormous amount of code available. This code
contains unit tests for a wide variety of programs where the
programmer has often given substantial thought to what
should be tested, what is important to test, and how to test it.
Our approach is to extract the relevant tests from on-line
repositories and adapt these for testing user code. We evaluate
the approach against existing user-generated tests in the
repository.

Keywords—Code search, test case generation, black box
testing.

I INTRODUCTION
Testing is an essential part of software maintenance. Yet

writing good test cases remains difficult and error-prone.
The goal of this research is to simplify that process by
building on the extensive libraries of test cases that have
been developed for open source software.

Searchable code repositories have grown exponentially
over the last few years. OpenHub (formerly Ohloh) claims
to have indexed about 31 billion lines of source code and
GitHub is larger. The code that is stored in these repositories
includes the test cases. In fact, searching for “junit” and
“Test” in Java files shows that GitHub has about four
million Java test files and OpenHub another million. With
this many tests, and more to come, it is becoming increas-
ingly likely that a test case for existing or new code either
already exists in the repository or there is code in the repos-
itory that can be adapted to form a test case.

The test cases in the repository are typically generated
by programmers and often are designed to cover realistic
and important cases. Combining test cases from multiple
programmers can provide a better and more extensive test
suite. Moreover, taking test cases from the repositories is a
classic example of code reuse.

The contribution of our work is that it introduces a set of
techniques for extracting and using test cases from search-
able code repositories that are both practical and useful and
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demonstrates these techniques in a tool called TGEN that
uses our existing S6 semantic code search framework.

II RELATED WORK
Because test case generation is both difficult and tedious

for programmers, a wide variety of tools have been devel-
oped to automate the process. These tend to fall into two
categories, white box testing and black box testing. 

White-box test case generation uses the code to be tested
as a basis. Automated techniques typically look at each
function in a class and attempt to find inputs to that function
to achieve a desired level of coverage, for example path
coverage or statement coverage. The techniques often use
symbolic execution along with heuristics and a framework
such as genetic programming, to explore the input spaces to
find appropriate values. Examples of such systems include
PET [2] and KLEE [6]. While automated white-box test
generation is useful, it can be time consuming and the test
cases it generates are incomplete in that they can not specify
what the desired output or effect of the code should be. 

Automatically generated black-box tests consider the
specification rather than the code as the basis for generating
test cases. They assume that some model of the code has
been defined and generate test cases based on that model.
Models can come from specification languages such as JML
[7,43] or UML sequence diagrams [44]. This however,
assumes that programmers have defined specifications or
models of their code which is often not the case. Black box
test cases have also been generated for special cases, for
example by monitoring program execution [31]. 

One problem with automatically generated tests is that
the code being tested can require significant and complex
data structures and set up. MSeqGen mines the source
repository of the code being tested to find potential setup
and calling sequences for such tests generated using random
testing or dynamic symbolic execution [52]. 

There has been significant work done on code search.
Early work in this area demonstrated that keywords from
comments and variable names were often sufficient for
finding reusable routines [14,30]. Later work did query
refinement either directly [48], by looking at what the pro-
grammer was doing [58,59], using class signatures [22],
using an appropriate ontology [57], using the surrounding
context [20,56], using learning techniques [10], using
natural language [9], using an execution trace [29], using
topic graphs [55], using associations [49], using typestates



[36], or using collaborative feedback [53]. Recent
approaches, such as Assieme [21], Sorcerer [3,4], Codifier
[5], Exemplar [16] and Portfolio [35] expand basic keyword
search to consider program structure and semantics. Other
recent work has looked at more sophisticated IR techniques
[50] and on automatic query reformulation [17,18,45]. More
sophisticated search techniques use theorem proving tech-
niques [46,47]. 

Another semantic approach involved defining the
behavior to searched for. This was originally given as input-
output pairs [38], and then generalized to allow slightly
more flexible specifications [8,19]. More recent work in this
area includes PARSEWeb that does static analysis on code
fragments found by a text-based code search engine and
then looks at input-output types [51]. Other techniques such
as program patterns [37,54] and keyword programming [28]
are designed to work at the level of a code fragment.

Several search-based systems use test cases as input.
CodeGenie [25,26] lets the user define tests as part of the
development process in Eclipse and then uses the method
names and signatures from the test to build a query. It uses
an internal search engine that understands program structure
to find code to test and then presents the result to the user.
Other recent code search work on test cases includes
[1,23,27] and our S6. Test cases and semantics have also
been used in a similar fashion for finding web services
[12,39], but have the problem that the user must know
exactly what is being searched for [24].

This work has been driven in recent years by the growth
in available, open-source repositories such as GitHub and
SourceForge. While a variety of techniques for doing the
search have been proposed, most of the search engines
available today are keyword-based and return files.

Our prior work in code search includes the S6 semantic
code search tool. S6 concentrates on producing results that
are of immediate value to the programmer [40,41]. It takes
as input a set of keywords along with a method (or class)
signature and a set of test cases. It uses existing search
engines to find candidate solutions based on the keywords.
Then it undertakes a series of program transformations that
attempt to map these solutions to other solutions that match
the given signature, that can compile, and that might pass
the test cases. Next, it runs the solutions that do compile on
the given test cases. The solutions that compile, run, and
pass the test cases are then returned to the programmer. We
have also developed an extension of S6 that uses code
search techniques to find implementations of user interfaces
based on a user-provided sketch of the interface along with
a set of keywords [42].

One of the problems other researchers have noted with
code search is that a large fraction of the results are often
test cases for the code rather than the code itself. This was
recognized, for example, by the Sourcerer project where
they added heuristics to explicitly remove such results [3,4].
Rather than discarding these results, our research attempts
to make use of them, effectively extracting relevant test
cases from open source repositories.

III METHODOLOGY 
Our approach, embodied in the TGEN tool, is a major

extension of S6 that generates JUnit test cases for Java Pro-
grams using code search. TGEN starts with an input specifi-
cation that describes the class and methods to be tested
along with a set of keywords describing that class. It then
uses external search engines (GitHub and OpenHub) to find
candidate testing files. For each returned file, it finds the test
cases, and attempts to transform each to call the target code,
This yields a set of candidate solutions.

For each candidate solution TGEN next applies addi-
tional transformations to restrict the solution to just the
appropriate testing code and to ensure that the solution com-
piles. For each non-trivial transformed result, it runs the
solution as a JUnit test, and marks it as acceptable if a rea-
sonable number of the tests actually pass. Finally, the
system merges all the acceptable solutions into a single test
file for the user’s original code. The result can then be
vetted, validated, and edited by the programmer.

The new elements added to S6 are a) mapping tests
retrieved from the repository so that they call user code, b)
restricting the solutions to only include the appropriate test
cases, c) determining whether the code is actually a test case
for the user’s code, and d) merging all the solutions.

A  Input Specification
In order to locate and validate test cases from the various

open source repositories, our tool requires 
• The class and methods to be tested.
• The name and package for the resultant test class.
• Keywords to extract code from the repositories.
• Access to the user’s code in a runnable format.
TGEN includes a simple user interface, shown in the left

of Fig. 1 to provide this information. The top part of the
interface lets the user define the appropriate class path for
the code being tested. Once the path is defined, the system
constructs a list of potential testable classes and lets the user
choose the class to test. Once the class is chosen, the system
determines the set of testable methods and lets the user
select which of these should be tested. Finally, the user
needs to provide keywords for the search. Once the user hits
the “Find Test Cases” button, the system creates a jar file
containing the contents of the class path and an input file for
our modified S6. The input file is sent to the S6 server
through a web interface. Once the search is done, the inter-
face displays the resultant code as shown in the figure. 

The user interface generates an XML specification to
provide this information to TGEN. Such a specification
could also be generated directly by a programming environ-
ment or other tool that wanted to generate test cases. An
example specification for testing a routine that converts an
integer into a roman numeral is shown in Fig. 2. The SIG-
NATURE part of the specification describes both the result
class (S6TestRoman) and the class and method(s) to test
(Roman.convertToRoman in this case). The KEYWORDS
fields provide the user-specified keywords that will be used



in the initial search. Finally, the CONTEXT element speci-
fies a S6 context file that is essentially a jar file of all the
elements on the required class path that will be needed to
compile and run the code to be tested. 

B  Getting Candidate Test Cases
Given such an input file, TGEN starts by searching both

GitHub and OpenHub (as specified in the XML input) using
the given keywords along with the keywords “org.junit” and
“test”. It looks at up to 200 returned files (100 files from
each). Each file returned is considered as a potential solu-
tion and the combined result is the initial solution set. For
example, in searching for the example from Fig. 2, it might
get a result file such as that shown in Fig. 3. 

The results returned from the repository cannot be used
directly: the code being tested by the class is different from
the code that the user wants to test; the code might be
testing multiple methods in multiple classes; it might
contain code that is not relevant to testing or to the particu-
lar test cases; it might be using an older version of JUnit
(i.e. without @Test annotations); it might be dependent on
other parts of the system or other libraries that are not avail-
able; it might do testing by human inspection (e.g. by print-
ing rather than assertions); or it might not do any testing. 

TGEN is implemented using the S6 framework. It oper-
ates by applying code transformations to each solution in
the solution to find new solutions that are then added to the
solution set. Once all transformations are applied to a given
solution, the solution is checked and discarded if it is not a
valid potential candidate. This process is repeated until no
new solutions can be added and all resultant solutions are
potentially relevant. For test case generation, the check for
relevance ensures there is at least one test case.

C  Transforming Candidates
TGEN includes a set of specialized transformations to

handle test case generation. The first attempts to integrate
the returned candidate solution with the code the user wants
to test, transforming the tests from the repository into code
that calls the targeted user code. A sketch of the transforma-
tion algorithm is shown in Fig. 4.

This transform finds all calls in the solution that could
potentially be calls to the code to be tested. It first identifies
all calls in the test code to external methods. It then matches
these calls to the methods the user wanted to test based on
method compatibility. For each match, it creates a MapCan-
didate data structure that includes the method in the
user’s code being tested, the external method that was
invoked by the call, and a mapping of class names from the
testing code to classes in the code being tested. Comparabil-
ity implies the parameter counts are the same, the various
parameters are type compatible, and the method being
invoked does have a void return type in a context that
requires a value. Ideally, one would want to check consis-
tency of the return type, but there is not enough information
available to do so at this point. Currently, the only class

Fig. 1. User Interface for Test Case Generation. The input is specified in the window on the left. The result of the search is displayed in a separate window 
shown on the right.

<SEARCH WHAT=’TESTCASES’ FORMAT=’NONE’ LOCAL=’FALSE’ 
REMOTE=’TRUE’ OPENHUB=’TRUE’ GITHUB=’TRUE’ 
>

<SIGNATURE>
   <TESTING PACKAGE=’spr.roman’ NAME=’S6TestRoman’>
      <TESTEE PACKAGE=’spr.roman’>

 <CLASS NAME=’Roman’>
    <METHOD NAME=’convertToRoman’ SIGNATURE=’(I)Ljava/

lang/String;’ STATIC=’TRUE’ />
 </CLASS>

      </TESTEE>
   </TESTING>
</SIGNATURE>
<KEYWORDS>
   <KEYWORD>roman</KEYWORD>
   <KEYWORD>numeral</KEYWORD>
</KEYWORDS>
<CONTEXT FILE=’/pro/s6/tmp/files/romantest.s6ctx’ />
</SEARCH>

Fig. 2. Sample input file for test case searching

public class Test89 {
@Test public void testToInteger(){

assertEquals(8,RomanNumeral.toInteger("VIII"));
assertEquals(9,RomanNumeral.toInteger("IX"));

}
@Test public void testToRoman(){

assertEquals("VIII",RomanNumeral.toRoman(8));
assertEquals("IX",RomanNumeral.toRoman(9));

}
@Test public void testIllegal() {

try {
RomanNumeral.toRoman(-1);
fail();

}
catch (RomanException ex) { }

}
}

Fig. 3. Example of code retrieved from the repository.



mapping we use is between the class of the method being
called and the class of the code being tested. The underlying
data structure allows for more complex mappings to handle
cases where we might want to map parameter types to user
types.

The transformation next tries to prune this set by check-
ing for cases where the user’s method and the call in the test
code have the same name. Assuming that the original code
being tested is doing something similar to the user code
(which is required for the tests to be relevant), this will typi-
cally mean that the two functions have a similar purpose and
thus that the matching with the same name is the most
logical one. If such mapping occur, the transformation elim-
inates any mappings that involve the same classes but map a
function to one with a different name where there is an
existing mapping that involves the same name.

The transformation next finds all consistent sets Map-
Candidates using a simple recursive approach. Consistency
here means that method being tested should only be mapped
to by one call function, that a particular call function should
only map to one method being tested, and that the class
mappings of all the candidates are consistent.

If there are multiple functions being tested that have
similar signatures and multiple potential candidates in the
original solution, this set of mappings can be large. To limit
this to a realistic subset, we ignore cases where the number
of viable MapCandidates (after checking for equality) is too
large (currently > 64), or where there are too many consis-
tent mappings (currently > 512). While it would be possible
to continue, the system has no way currently of ranking
these large numbers of candidates. Rather than taking a long
time to find the proper mapping, the system assumes that it
will probably find other, simpler solutions that can be used
to generate test cases.

For each resultant consistent mapping set, the transfor-
mation generates a new solution that replaces the original
calls with the matched calls and replaces all instances of the
original types with their mapped matching user types. The
result is a candidate solution that invokes the user’s code.
For example, a transformation of the example in Fig. 3 can
be seen in Fig. 5. Note that the result can make calls to
methods that don’t exist (e.g. Roman.toInteger) and is not
guaranteed to compile. In particular, the return types of the
original and matched methods are not checked and may be
incompatible since the information to check this (i.e. a full
compilation) is not available to the transform.

Other transformations handle JUnit issues. They take
into account the different versions of JUnit, and map the
code to use JUnit 4.x. This means adding @Test, @Before,
@BeforeClass, @After, and @AfterClass annotations where
appropriate, making all JUnit references be fully qualified
names, replacing undefined exceptions in @Test clauses
with the generic java.lang.Exception, removing TestCase as
a superclass, replacing assert statements with JUnit assert
calls, and generally normalizing the testing code. These
transformations also ensure that the class is public and has
an appropriate public, no-argument constructor as JUnit
requires. 

Standard S6 transformations are then used to clean up
and simplify the code. These remove code that has unde-
fined elements and hence won’t compile, change names to
match the user’s target class, fix import statements, take
care of try-catch blocks and throws clauses that are no
longer needed or that use unknown exceptions, add return
statements that might be needed after code removal, fix
code from older versions of Java (e.g. using enum as a vari-
able), and remove unnecessary annotations.

Two other testing-specific transformation remove
unneeded code. The first assumes that all testing code (now
marked with appropriate annotations), along with the class
constructor, are needed. It does a dependency analysis to
find everything else that is relevant and then discards all
code that is not needed. It also removes test cases that do no
testing which might have been generated by the prior trans-
formations. The second transformation starts with calls to
the user’s routines, does a separate dependency analysis,
and removes all code that is not relevant. This removes test
cases that do not invoke the user code.

struct MapCandidate {
to: The class/method in the code to test
from: The class/method references in the testing code
map: A mapping of classes from the testing code to the code to test

{

function TransformSetupTesting:
foreach call C in the testing code invoking method CM’

If class(CM) != the class of the testing code 
foreach method TM being test

if the call Cis compatible with the method M then
Create a new MapCandidate with TM,CM and

class(CM) -> class(TM)

Let same = all MapCandidates where method(from) = method(to)
Remove all MapCandidates that invoke a method with a different

name where there is a MapCandidate that maps one with the
same name for the given class.

Find all consistent sets of MapCandidates
Create new solution for each such set

A call C is compatible with a method M if
The arguments are compatible types or are in the class mapping
The method doesn’t return void in a context that requires a value

Two MapCandidates are consistent with one another if
Their class mappings are consistent 
They do not map different methods to the same method to test
They do not map different test methods from the same method

Fig. 4. Mapping calls in the testing code to calls in the code being tested

public class Test89 {
@Test public void testToInteger(){

assertEquals(8,Roman.toInteger("VIII"));
assertEquals(9,Roman.toInteger("IX"));

}
@Test public void testToRoman(){

assertEquals("VIII",Roman.convertToRoman(8));
assertEquals("IX",Roman.convertToRoman(9));

}
@Test public void testIllegal() {

try {
Roman.convertToRoman(-1);
fail();

}
catch (RomanException ex) { }

}
}

Fig. 5. Solution transformed to call user code. Differences from the original 
code are italicized.



The result of this process is a set of potential solutions
that should compile, that invoke the code to be tested, and
that include JUnit test cases. For example, the code from
Fig. 5 might be transformed into that shown in Fig. 6 by
changing the package, eliminating uncompilable code, and
then removing unused tests.

D  Checking Potential Solutions
The next step involves running each of these solutions to

determine if it is actually a test case for the user’s code. This
can be difficult since TGEN does not know the semantics of
the user’s or the testing code. However, it can use the results
of running the tests to get a heuristic approximation.

The system first applies a set of transformations to get
the code ready to test. The replaces all the calls to the
various JUnit assert routines (e.g. assertEquals), as well as
to fail, with calls to an S6 module that records test results
without actually failing. A second test-preparation transfor-
mation handles tests that are passed by just returning, for
example where the user checks the result explicitly, calls
fail if there is a problem, and just returns if the test was
okay. In order to know that a test was done and to distin-
guish it from code that doesn’t do any testing, we added a
new function, success, that can be invoked explicitly when a
test would otherwise exit without calling one of the routines
in the S6 module that records test cases. This transformation
adds calls to success in the appropriate contexts. A third
transformation detects tests where the expected return is an
exception and adds a call to fail at the end of such tests to
record the fact that an exception was not thrown. For exam-
ple, these transformations would map the code from Fig. 6
into that shown in Fig. 7.

Next we run the solution using JUnit along with the
user’s code (from the input context file), and record the
results in terms of the number of assertions recorded, the

number that passed, the number that failed, and the number
of tests that aborted. In order to be relevant, the solution has
to meet several criteria. First it has to invoke at least one
test. If nothing is being tested, the solution can’t be relevant.
Second, at least one assertion has to succeed. If no assertion
succeeds, then the test code is probably not testing the func-
tion the user has written, but is rather testing something
else. Finally, the number of failing assertions should not be
excessive compared to the number of passing ones. If there
are too many failing assertions and compared to succeeding
ones, then the test case is probably testing the wrong func-
tion. 

Currently, TGEN discards solutions if more than 20% of
the assertions fail. A test case that aborts with an unex-
pected exception counts as a failing assertion in this context.
The 20% value was chosen heuristically to try to avoid
accepting tests that aren’t testing the user’s code while at the
same time including useful tests that just happen to fail on
the user’s code. The main difficulty occurs when there are
multiple routines in the testing code and the system has
identified some subset of these correctly, but has misidenti-
fied some others. In this case, the correct ones will generally
pass, while the incorrect ones will fail. As long as the vast
majority of the tests pass, we wanted to accept such solu-
tions and then let the programmer determine if they are
completely relevant, completely irrelevant, or, if partially
relevant, what should be kept and what should be discarded.

E  Generating a Final Solution
A final test-specific transformation is then done on all

the solutions that run and pass the above criteria. This first
looks at the individual solutions and eliminates duplicates.
Duplicates can arise because tests might be in the open
source repository more than once or just because two pro-
grammers used the same test. It also chooses a single solu-
tion for each original source file if there are multiple
solutions. Multiple solutions can be generated because of
different original mappings of calls to user code or because
of different sequences of transformations. For each original
source, it chooses what it considers the best solution. What
is the best solution is open to interpretation. Generally,
having more passing tests is better, but this has to be bal-
anced by the number of failing tests. In the cases where the
different solutions represent different mappings, this pro-
vides a way of comparing the mappings. Moreover, for two
results with the same numbers, the simpler result is gener-
ally better. Based on our initial experiments, we develop a
heuristic formula based on the number of tests passed P, the
number of tests failed F, and the size of the code C (the
number of AST nodes) using the formula

 which reflects these concerns.
This weights passing tests as twice as important as failing
tests. The code complexity factor is then small enough to
only be involved if the number of passing and failing tests
yield the same scores.

This transformation next restores the original JUnit
calls, removes the extra calls to success and fail, and merges
all the individual test classes into a single test class using
the name and package specified by the user. It handles name
mapping to avoid conflicts from different solutions. It also

public class S6TestRoman {
@Test public void testToRoman(){

assertEquals("VIII",Roman.convertToRoman(8));
assertEquals("IX",Roman.convertToRoman(9));

}
@Test public void testIllegal() {

try {
Roman.convertToRoman(-1);
fail();

}
catch (Exception ex) { }

}
}

Fig. 6. Potential solution generated from the code. Non-compiling and 
irrelevant code has been eliminated.

public class S6TestRoman {
public S6convertToRomanTest() { }
@Test public void testToRoman(){

edu.brown.cs.s6.runner.RunnerAssert.assertEquals("VIII",
Roman.convertToRoman(8));

edu.brown.cs.s6.runner.RunnerAssert.assertEquals("IX",
Roman.convertToRoman(9));

}
@Test public void testIllegal() {

try {
Roman.convertToRoman(-1);
edu.brown.cs.s6.runner.RunnerAssert.fail();

}
catch (Exception ex) { }
edu.brown.cs.s6.runner.RunnerAssert.success();

}
}

Fig. 7. Code that is ready to test..

P 1024⋅ F 512⋅( )– C 64⁄( )–



handles merging constructors as well as the @Before and
@After methods from the different solutions into common
routines. The resultant file is then returned to the user. For
example, the final code from Fig. 7 can be seen in Fig. 8.

The final filtering of which test cases are actually rele-
vant and which are not, is left to the user. The returned file
can be run with JUnit in the user’s environment and the user
can then look at the tests that pass and fail. They can then
discard any that are irrelevant or effectively duplicates. The
result, after this, is a set of black box test cases for the user’s
code that other programmers, writing similar code, have
designated as relevant or useful. 

IV INITIAL EVALUATION
Once the system was working, we used it to generate

test cases for some easy example and for pieces of our own
systems. Then we attempted to generate test cases for a set
of suite of 27 textbook examples used in a study on fault
localization [15] The examples of our own code where we
used it ranged between 100 and 1800 lines. 

A summary of results on the text book examples is
shown in Table 1. We were able to generate test cases in
about half of the examples. Moreover, the run times were

generally under 40 seconds, especially where no test cases
were generated. 

This experiment illustrated several problems. The first is
that it is difficult to generate test cases for code that was not
designed for testing. For example, one of the examples was
a program for the tower of Hanoi problem that simply
printed the steps involved but had no testable return values.
Others, such as NodePool had no functions that returned
values; others such as Coin, returned random values.

A second problem that makes it difficult to test is when
the code uses non-standard interfaces. This occurred in
several of the text book examples. For example one of the
text book examples created an array iterator but required
being passed the size of the array while most similar code in
the repository is just passed in the array; two others sorted
part of an array, but required the index of the first and the
last element as opposed to the more common first and one
beyond the last or the first and a length. 

A third problem arises when the code is very specific
and not likely to appear in the repository. For example, the
Huffman text book example creates a Huffman tree for a
particular input string rather than a general one.

A fourth problem is that the whole process is quite sensi-
tive to keyword selection. While our original work on S6

showed that keyword sensitivity is a problem, the issue is
acerbated when searching for test cases since programmers
will typically put less work into documentation and using
appropriate variable and method names when creating test
cases, and the actual testing code may have little to do with
what is being tested. However, code search is improving:
Code Exchange at UCI, for example, can give very good
results initially [32-34]. We expect that there results will
find their way into repository search engines over time and
that code search will improve significantly. Since our tool is
built on top of existing search engines, we can easily piggy
back on these improvements. Moreover, the time our tool
takes is small enough so that a programmer can afford to run
it multiple times with different keywords.

V EXPERIMENTAL EVALUATION
Despite the problems identified above, our initial efforts

demonstrated that there were a variety of situations in which
a code search-driven approach to test generation seems to
work. To better understand the quality of the resultant test
cases and validate our approach, we performed an experi-
ment to compare existing test cases in open source reposito-
ries with test cases that are generated by our tool. 

We restricted ourselves to code in the repository that
already has test cases so that the existing test cases give us a
basis for comparing the quality of our generated tests with
those that were saved in the repository. We also restricted
ourselves to code that was easy to compile since we needed
to run not only the original test cases, but also the new cases
we generate and collect relevant coverage information.

A  Methodology
We first obtained a set of programs that had known test

cases using the OpenHub search engine. We started with a
search using the keywords “test”, “org.junit”, and “assertE-

public class S6TestRoman {
public S6convertToRomanTest() { }
@Test public void testToRoman(){

assertEquals("VIII",Roman.convertToRoman(8));
assertEquals("IX",Roman.convertToRoman(9));

}
@Test public void testIllegal() {

try {
Roman.convertToRoman(-1);
fail();

}
catch (Exception ex) { }

}
<< Other tests >>

}

Fig. 8. Final test cases generated.

.

Table 1: Tests Generate for Textbook Examples

Test # Tests Found Time (s)
ArrayIterator 0 38
ArrayStack 20 43
Coin 2 46
Deck 38 134
DictionaryElement 4 12
Die 33 42
DifferentEquals 4 12
DisjointSetCluster 0 16
Employee 0 29
GeneralizedSelectionSort 0 11
Hanoi 0 10
Heap 0 11
Huffman 0 22
LetterCollection 0 15
LinkedQueue 33 92
MaxHeap 10 160
MedianQuick 4 41
Memory 0 32
MergeSort 0 14
NodePool 0 8
Pair 26 37
Pet 1 35
QuickSort 0 14
RabinKarpStringMatcher 0 12
SelectionSort 2 14
Stack 8 23
TwoTypePair 29 36



quals”. This provided us with candidate test files that had
actual tests in them. We looked at the first 1000 pages of
results from this search. For each file that was returned, we
checked that a) the file was in a named package (this made
it easier to work with); b) the file included a @Test annota-
tion (this excluded older versions of JUnit, but again made it
easier to interpret and run the tests); c) the file referenced
(i.e tested) exactly one external, non-library class; and d)
there was at least one call to a JUnit assertion method. The
restriction to one external class was meant to guarantee that
the test was only testing one class in the system and thus we
could run it standalone and could reasonably generate test
cases for it without having to understand the whole system.
It also let us understand coverage results since we could
restrict ourselves to coverage of that class. It excluded a
large number of relevant cases, however, where a logging
class, a specialized test framework, or something simple
like an external exception was used. 

If all of these conditions were true, we then attempted to
find the class that was tested by the candidate test file in the
same package as the test in the repository. If we located this
class, we then checked if it was worth testing by seeing a) if
it was at least 60 lines long; b) if it contained at least one
loop; and c) was not a duplicate of a previous accepted file.
The first restriction eliminated trivial or empty classes that
did provide something interesting to test; the second
ensured the class wasn’t just an object with getter and setter
methods. Finally, if the file to test seemed worth testing, we
checked if the two files would compile together without
external resources. This made sure that the class being
tested was also a standalone class, which was necessary
since we did not have access to the whole project and its
libraries from the repository and hence could not easily
compile something more complex. 

If the test code and code to test got this far, we next
checked that tests were actually performed. To do this, we
created a test directory for those files, and changed the
package name on both to reflect that directory. Within the
directory, we used ant to compile and run the tests. We
checked the output to ensure that tests were actually run and
that all tests passed. If no tests were run or if a test failed,
we discarded the program. This eliminated tests that
required external resource files that we did not have.

If the tests and code would compile and run success-
fully, we created an input file for S6 test case generation for
the code to be tested in the test directory. This file included
the code to be tested as an S6 context in binary form, the set
of public methods in that code as methods that could be
tested, and an initial set of keywords generated by using the
class name, the method names, and the parameter names.

This process created a set of 52 programs that we used
for our experiment. ,For each we could create test cases
through code search using our tool, and compare the test
cases that were thus created to the original test cases from
the repository. We ran TGEN on each of the programs using
only GitHub. The idea of using only GitHub was that our
initial studies showed little overlap between GitHub and
OpenHub and hence it was not that likely that the exact test
file and test cases would exist in both. Note that TGEN will

always attempt to look up to 200 source files, so in these
cases it was looking at the top 200 results from GitHub as
opposed to the top 100 from GitHub and 100 from Open-
Hub. 

For each test program we generated an appropriate set of
keywords. We first tried the keywords that were automati-
cally generated, although we didn’t put much effort into
choosing these. If no test cases were generated or if the test
results were trivial, we looked at the code that was being
tested and replaced the keywords with our own set of key-
words. If no test results were generated with the keywords
we created, we tried a second time with different keywords.
If no test were created the second time, then we stopped
trying. 

Finally, we ran the modified S6 on each test with the
derived keywords to generate a result test file. For each pro-
gram, we created a working directory that included the code
to test, the original test cases, the generated test cases, and
appropriate ant build files. We then ran JUnit on both the
original test and the generated test using ant and jacoco [11]
to get coverage information for both cases. Finally, we
created a CSV file with information from each test includ-
ing the test results, coverage information, and the amount of
time spent by S6 generating the test cases. The results are
summarized in Table 2 and Table 3.

B  Summary of Tests
Table 2 describes the different test cases that were

retrieved from OpenHub. It shows the class that was tested,
the keywords used in the test, and with the number of meth-
ods, lines, branches and instructions that could be used for
coverage in each case. Test names marked with an asterisk
used the original keywords rather than manually selected
keywords. While the table contains duplicate class names
(StringUtil and Tokenizer), it should be noted that these are
actually different classes with a common name.

The time column indicates the amount of time in
seconds TGEN needed to generate the test cases. The times
ranged from about four seconds to a little under three min-
utes. The average time was about 41 seconds for these tests.
while the median is under 27. The cases that took longer are
generally those where more tests were generated, with the
system returning relatively quickly if it couldn’t find any-
thing. The timings were somewhat keyword dependent
since they varied with the number of results returned from
the repository and the relevance of those results.

C  Summary of Results 
Table 3 shows the test quality results of the experiment.

The first column provides the name of the test. The next
three columns describe the tests that were retrieved from
OpenHub, providing the number of tests, the number that
passed and the number that failed. Note that all the tests
should pass based on our selection criteria. 

The next three columns describe the tests generated. The
first is the number of tests that were generated, then the
number that succeed and the number that fail. The number
of tests generated is generally reasonable, with most being
in the range of 1 to 20. One, WeightedQuickUnion, repre-



sented a common program, and yielded 100 separate tests.
While the latter might be excessive for human evaluation,
most of the results are reasonable in size. The system could
easily be changed to restrict the number of test cases gener-
ated as part of the final transformation.

Of the 52 examples, there were eleven cases where no
test cases were generated. Analyzing these cases showed
that the causes were pretty much as expected. For example
CreatToken creates tokens that are defined in the class to
test for a particular parser. It is unlikely that another class in
the repository will create the same tokens. FizzBuzz does its
work mainly by writing output and its return value is mean-
ingless. CRC16 seems to compute a nonstandard checksum
value. DuplicatePartSearcher has a non-standard interface,
requiring a constructor call, a set call, and then an evalua-
tion call. EncodingStyle and OGCServiceType return inter-
nal enumeration values. HuffmanTree creates trees over
integer arrays while most programs in the repository that

create such trees do it over strings. For others, such as Axis,
the keywords we used did not find any relevant tests.

For some of the other tests, a significant number of the
generated tests failed. For example, in DescriptionHolder
only 4 of the 9 tests passed. This seemed to be due to one of
the test functions being mapped incorrectly. Most of the test
cases did multiple tests. In the failing tests, some of the
actual tests passed and one failed. Another case, IntHash-
Map, had 7 tests where, in addition to checking valid values,
they tested for null and the actual code had a different
behavior for this case. MathUtil was similar, but in this case
the culprit was negative numbers.

The next four columns of the table provide coverage
information for the original tests as reported by jacoco, first
in terms of methods, then in terms of lines, branches, and
instructions. These are given as percentages of the total
number of methods, lines, branches, or instructions as noted
in Table 2. 

Table 2: The Tests Used in Evaluating Test Case Generation

Class Keywords Time #method #line #branch #inst
ArrayTools byte array indexOf 13.2 3 25 26 110
ArrayUtilities reverse array 16.61 5 20 10 118
ArrayUtils array concat 12.16 4 24 12 103
AtomicPositiveInteger atomicpositiveinteger 8.50 22 73 50 365
Axis orientation pixel tick 8.04 11 43 16 233
BaseConverter base62 106.41 13 26 6 118
Board* height board width 111.56 6 26 30 137
ByteUtilsArt toByte toInt 34.72 8 12 4 151
CamelCaseConverter camecase words 37.47 4 19 22 136
Capitalizer* capitalize words 163.57 3 17 10 72
Chunker* reader word next 27.89 3 43 32 179
ConsoleData color row column 42.42 9 48 8 219
CRC16 crc16 checksum junit 15.81 9 26 8 134
CreatToken token 7.06 9 229 261 931
DateNormalizer date parse format 27.24 4 62 28 302
DeployerUtils version filename junit 19.68 4 41 34 187
DescriptionHolder escape html string 24.07 7 32 18 104
DuplicatePartSearcher duplicate substring 18.47 9 48 24 215
EncodingStyle* encoding style content 98.16 7 23 12 116
EquationUtil* equation reference 25.97 5 28 24 132
ExpressionTokenizer tokenize regex 43.18 8 41 16 190
FailInfo* info value fail 30.60 7 15 4 106
FizzBuzz* number 23.52 3 18 10 70
HangupCause* cause code 27.67 8 73 6 708
HtmlSanitizer html sanitize 24.77 2 82 10 546
HuffmanTree weight input code 18.46 6 39 22 222
IntArray* positive negative first 83.60 10 27 26 161
IntHashMap inthashmap 51.10 26 152 74 662
IOUtil relative path 25.53 3 17 8 68
IpAddress ipaddress 91.48 10 28 8 169
MathUtil ’sum of digits’ 21.57 13 42 36 222
Matrix matrix translate multiply 53.32 9 55 4 644
NumberOfInversions inversions array 65.2 5 38 22 218
NumSetBits bits number offset 16.18 4 22 18 168
ObjectId* hex machine increment 41.49 17 114 50 555
OGCServiceType identifier identify lean 3.53 11 43 76 438
ParseUtil quote split parse 22.72 2 30 24 137
PeriodFormat* seconds period format 25.51 4 36 20 166
RUtil escape ‘R string’ quoted 33.41 3 29 12 166
SipHash sip hash code 13.95 5 80 4 814
SizzleCasts stringToBoolean junit 54.46 13 45 30 258
Status status code http 16.79 5 49 6 532
StringUtil count lines 43.43 4 14 6 55
StringUtil string indexof 13.83 4 24 24 125
StringUtilities camel space 25.08 2 8 14 61
TheOnes ones count number 22.3 5 18 8 86
Tokenizer tokenizer next 105.34 57 181 198 1097
Tokenizer tokenizer next 129.34 55 175 186 1066
UploadParameters username password placeholder 84.90 10 22 8 68
WeightedQuickUnion* union weighted connected 30.07 5 25 12 146
WhatTime bracket tokenize 77.34 9 59 38 256
XmlUtils* escape xml 30.79 3 23 16 77



The final four columns provide the equivalent coverage
information for the generated tests. Comparing, for exam-
ple, instruction coverage, shows that the generated tests
improved coverage for 18 of the 52 tests (35%), had the
same coverage for 11 of the tests (21%), and had worse cov-
erage for 23 of the tests (44%). Note that these numbers
include the 11 cases where no tests were generated, so in
essence, only12 of the 41 generated tests (29%) had lower
instruction coverage than the original tests. 

Most of the cases of lower coverage occurred in situa-
tions where the code to be tested included multiple func-
tions. Our keyword search generally only targeted one of
these functions for coverage and hence only tried to gener-
ate test cases for a portion of the code. In these cases it
might be possible to change the keywords to test the other
functions in the original source and then combine both gen-
erated test cases as the result. 

D  Threats to Validity
There are several potential problems and threats to the

accuracy and validity of this experiment. First there is some
bias in the way the samples were selected. Because we only
looked at files that could compile on their own, the code that
is being tested is relatively simple. The methodology we
use, unlike some test generation strategies, is not affected by
the complexity of the code being tested. The fact that the
code is simple might also make it more likely that there is
similar code elsewhere in the repository and thus that test
cases for the are easier to find. While this might be true, we
expect that the repositories will keep growing and this will
become less of a problem.

Second, because we only looked at code that already had
test cases, the code is both testable and possibly designed to
be tested. As noted with the text book examples, it is possi-
ble to write code that is difficult or impossible to test. Our

Table 3: Experimental Resuls

Class Orig 
#test

Orig 
#succ

Orig 
#fail

Gen 
#test

Gen 
#succ

Gen 
#fail

Orig % 
method

Orig 
% line

Orig % 
branch

Orig 
% inst

Gen % 
method

Gen % 
line

Gen % 
branch

Gen 
% inst

ArrayTools 1 1 0 4 4 0 33 48 65 65 67 76 77 85
ArrayUtilities 3 3 0 13 11 2 80 95 80 97 80 95 80 97
ArrayUtils 1 1 0 11 10 1 25 29 0 26 75 92 83 95
AtomicPositiveInteger 9 9 0 7 7 0 50 55 48 56 41 45 40 44
Axis 1 1 0 0 0 0 9 37 31 42 0 0 0 0
BaseConverter 1 1 0 7 6 1 31 65 83 67 54 77 100 79
Board 7 7 0 13 12 1 83 81 100 88 100 96 93 97
ByteUtilsArt 1 1 0 7 6 1 13 8 0 11 25 50 50 27
CamelCaseConverter 7 7 0 21 18 3 50 89 91 95 100 100 95 100
Capitalizer 1 1 0 19 13 6 67 82 80 90 100 88 80 94
Chunker 9 9 0 20 20 0 100 79 81 77 100 79 81 77
ConsoleData 2 2 0 0 0 0 56 65 75 58 0 0 0 0
CRC16 1 1 0 0 0 0 67 77 100 75 0 0 0 0
CreatToken 1 1 0 0 0 0 89 41 38 58 0 0 0 0
DateNormalizer 1 1 0 0 0 0 50 45 0 40 0 0 0 0
DeployerUtils 1 1 0 2 2 0 50 54 18 55 50 12 3 17
DescriptionHolder 2 2 0 9 4 5 71 75 61 82 57 53 44 56
DuplicatePartSearcher 1 1 0 0 0 0 100 100 100 100 0 0 0 0
EncodingStyle 1 1 0 0 0 0 57 48 17 60 0 0 0 0
EquationUtil 6 6 0 9 7 2 80 93 83 96 80 96 92 98
ExpressionTokenizer 1 1 0 0 0 0 50 83 81 88 0 0 0 0
FailInfo 2 2 0 6 6 0 71 93 100 92 71 93 100 92
FizzBuzz 1 1 0 0 0 0 100 100 100 100 0 0 0 0
HangupCause 1 1 0 2 2 0 63 95 50 97 63 95 67 97
HtmlSanitizer 1 1 0 2 1 1 100 95 40 96 100 99 80 100
HuffmanTree 1 1 0 0 0 0 100 100 100 100 0 0 0 0
IntArray 6 6 0 6 6 0 80 67 65 64 80 67 65 64
IntHashMap 1 1 0 25 18 7 19 28 16 27 46 55 51 54
IOUtil 1 1 0 5 4 1 33 59 50 50 67 76 75 76
IpAddress 3 3 0 2 2 0 50 64 75 74 30 50 63 34
MathUtil 3 3 0 13 10 3 31 48 25 32 23 24 8 15
Matrix 1 1 0 9 4 5 44 55 25 61 89 98 100 99
NumberOfInversions 1 1 0 2 2 0 100 100 82 99 100 100 95 100
NumSetBits 4 4 0 4 4 0 75 91 72 88 75 91 72 88
ObjectId 5 5 0 4 4 0 82 78 76 81 71 64 76 58
OGCServiceType 2 2 0 0 0 0 45 65 11 61 0 0 0 0
ParseUtil 1 1 0 3 3 0 50 90 79 88 50 90 88 88
PeriodFormat 2 2 0 3 2 1 75 97 100 98 75 97 100 98
RUtil 1 1 0 12 11 1 67 90 75 83 67 83 58 73
SipHash 1 1 0 1 1 0 60 95 100 98 60 95 100 98
SizzleCasts 1 1 0 1 1 0 15 9 0 8 8 2 0 1
Status 1 1 0 4 3 1 80 98 67 99 80 98 83 99
StringUtil 1 1 0 5 5 0 25 43 33 35 75 71 67 60
StringUtil 2 2 0 1 1 0 75 96 100 98 50 67 46 58
StringUtilities 1 1 0 5 4 1 50 88 71 93 50 88 79 93
TheOnes 2 2 0 2 1 1 100 100 100 100 60 44 38 29
Tokenizer 6 6 0 6 5 1 61 48 30 53 61 49 33 55
Tokenizer 6 6 0 22 19 3 58 46 27 52 69 62 41 63
UploadParameters 1 1 0 6 4 2 50 73 75 76 80 59 25 51
WeightedQuickUnion 1 1 0 104 100 4 80 92 75 91 100 100 100 100
WhatTime 4 4 0 2 2 0 100 90 84 95 33 27 0 27
XmlUtils 1 1 0 4 3 1 67 87 88 92 100 96 94 99



tool is not designed to address these situations. However,
the text book examples, which were not designed with
testing in mind, do show that our method can work for arbi-
trary code.

Third, in doing the experiment, we did find a little
overlap between GitHub and OpenHub. A small number of
the tests therefore included something like the original tests
in their output. 

Fourth, there is some randomness involved in the way
S6 handles choosing which solutions to transform if the set
of viable solutions grows larger at any point grows larger
2000 elements. This could cause slightly different results on
different runs and slightly different timings between runs.
Similarly, the results returned by GitHub (and OpenHub)
tend to change over time both because the underlying repos-
itories are updated and because the search engines may give
slight different results at different times. This is ameliorated
somewhat by the fact that we cached the results from the
search engines for the experiment. 

Fifth, the whole system is sensitive to the initial selec-
tion of keywords describing the tests to be found; using dif-
ferent keywords could result in better or worse results and
different timings. As noted, we experimented with different
keywords on many of the examples. Note that the time
involved is small enough so that such experiments by the
end programmer are quite feasible.

Finally, we note that measuring the number of test cases
and the coverage provided by the test cases is only one way
of assessing the quality of tests. Another measure, for exam-
ple, would be whether the test cases can actually find bugs.
Since we are assuming that the repository code we retrieved
is working, this would be more difficult to assess and would
require a very different experiment. We do note that some of
the examples where our test cases failed, for example in the
handling or null or negative numbers, could indicate possi-
ble bugs in the original code.

E  Evaluation Conclusion
The experiment shows that finding test cases for testable

code using code search is feasible and can match the test
numbers and coverage of existing human-written tests. We
are able to generate tests in 79% (41/52) of the tests and to
generate test coverage that is as good or better than the orig-
inal tests in 56% (29./52) of the tests. Moreover, the time
involved in generating the test cases is generally under a
minute, with a median time of under 30 seconds. Even the
longest runs took only several minutes, and these generated
a significant number of tests.

One conclusion is that this type of facility can be an aid
to test generation, but not a replacement for it. The tech-
nique can be used to generate an initial set of tests for exist-
ing code with little cost. It can also be used to augment an
existing test suite with additional tests that others have
thought of. 

VI FUTURE WORK
So far we have developed the basic framework for gen-

erating test cases using code search and demonstrated that it
can be done and can be done practically. One difficulty is

properly translating tests in the repository to testing the user
code. There are several ways our work could be extended to
address this. For example, one could extend the transforma-
tion that handles matching calls in the found solutions with
calls to the routines to be tested by taking into account dif-
ferent parameter orders, missing or extra parameters and
parameter type conversions. This could be done, for exam-
ple, using the type-directed synthesis techniques of [13].
Similarly, one could look at the results of the tests and take
into account simple consistent errors such as off-by-one or
wrong case string results.

Another problem is that it is difficult to test code that is
part of a complex system. All of the cases cited above were
for what we call leaf classes, that is classes that can be com-
piled and run without reference to the rest of the system. It
is generally much easier to find external test cases for these
since one does not have to find supporting classes in the
repository code that are equivalent to the supporting classes
in the code to be tested and since testing the class does not
involve creating and initializing the overall system into a
state where the class can be tested. We are considering
several approaches to dealing with this. One is to extend the
initial transformations to map classes and methods in the
retrieved code to appropriate user classes and methods. The
problem here is that the number of potential mappings can
be very large and some semantic information or program-
mer guidance will be needed to make the checking tractable.
A second alternative would be for the user to provide appro-
priate initialization code and sample values for the test and
then doing the search. A third alternative is to search the
project being tested for appropriate initialization code and
potential parameters as is done in MSeqGen [52]. 

VII CONCLUSION
We have demonstrated a system that can quickly and

effectively generate test code for a set of user function in a
class by searching for and adapting test cases from open
source repositories. This is a new approach that has the
potential to make it easy to build or augment a relevant set
of test cases for arbitrary code with little work on the part of
the programmer. While work remains, we feel that this
approach will eventually yield a practical system for test
code generation.

S6 source code is available from our ftp site (ftp://
ftp.cs.brown.edu/u/spr). This includes the code used in test
case generation as well as the code that scans OpenHub to
generate the set of test cases. Code for our test cases and the
scripts we used in generating the output are available upon
request.
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