
Designing Internet-Based Software
Steven P. Reiss

Department of Computer Science
Brown University

Providence, RI. 02912
spr@cs.brown.edu

Abstract
Next-generation software is going to be Internet-based. It will involve web services, peer-to-

peer data sharing, grid-based execution, and open-source components, and will have to meet the
continuously changing demands of a broad set of users. In such an environment software is out of
the control of the developer. The requirements for the software will be continuous changing to
meet user expectations and demands. Many of the components of a software system will devel-
oped independently and will change without notice during design, development and even after
deployment. The underlying infrastructure, based on the Internet and on independent grid-based
computers, will be inherently unreliable and out of the developer’s control. One essential issue
that faces software design and development is how to cope with this lack of control. We propose a
component-based mechanism which separates component interfaces and implementations,
includes semantics, in a broad sense, as part of the interface, checks these semantics dynamically
against the implementation, and allows for dynamic selection (and reselection) of implementa-
tions. In this paper we show how different aspects of the semantics including functional, recovery,
security, and economics can be encoded and checked, and argue how this approach can address
many of the problems that Internet-based software will face.

1. Introduction

Software design today is considered a difficult problem. Current trends in software development,
leading to the development and design of what will effectively be Internet-based software, will
make this significantly more difficult. To cope with software design both now and in the future
one needs to understand its unique problems and determine ways of addressing these problems.
This is the goal of this paper. We start by analyzing why software design is different and what the
future of software development will imply for software design. We then suggest a component-
based framework for software design and development that has the potential to deal with many of
these difficulties, both in current and in future software development. An overview of this frame-
work is given in Section 2. The key feature of the framework is that interfaces include semantic
information and that this semantic information is used to select and verify potential implementa-
tions. The subsequent sections detail how these semantics might be practically specified and
checked. We conclude by discussing our experiences and future work.

1.1 Why Software Design is Difficult

Design can be viewed as a combination of constraint satisfaction and value maximization (or
equivalently cost minimization). In doing design, one is attempting to find a solution to a particu-
lar problem that satisfies the set of constraints representing the various requirements while maxi-

mizing the value and minimizing the cost of the resultant product. For software design, this means
finding a solution that meets the requirements and specifications of the software system while
minimizing the cost of building the software and maximizing its quality.

So why is this so difficult. Many reasons have been offered in the past. One is the inherent com-
plexity of a software system. Today’s software systems consists of millions of lines of code, each
of which is non-standard and needs to be “designed” in some way or other. Other forms of engi-
neering typically have a limited repertoire of standard parts and relatively limited ways of con-
necting them. Software is much more flexible and hence has much greater potential complexity
and more sophisticated design problems. Yet software designers have developed a variety of tech-
niques such as modularization, object systems, components, and product lines, that deal directly
with this issue and should make software design practical.

Another proffered reason for the complexity of design is that software design involves many dif-
ferent dimensions that somehow have to be reflected in the final product. Such dimensions extend
beyond the basic functionality of the system to include security, privacy, efficiency, user interac-
tions, interactions with real-world devices, etc. All these dimensions, some more concrete than
others, need to be reflected in some way in the final product, the source code. Attempting to
capture these dimensions in the limiting abstraction of source code can be difficult. Yet here soft-
ware design is not much different from other forms of engineering design. An architect needs to
consider plumbing, electrical, human factors, costs, and other such constraints when designing a
house. Moreover, various techniques such as feature analysis, feature driven development, sepa-
ration of concerns, and aspect-oriented programming have been developed and used somewhat
successfully to address these issues.

We feel that the real differences in terms of the complexity of software design are best understood
by looking at the set of constraints that one is trying to solve when doing a design. As noted by
Manny Lehman [19], this set is infinite. But people are incapable of enumerating, evaluating, or
even comprehending an infinite set of constraints. Instead designers try to enumerate a finite
subset of the overall constraint set and design to meet those constraints. They typically select the
constraint subset through an appropriate process of prioritization, choosing those that they think
are the most important as the ones they will design against and then hoping this is sufficient.

Presuming designers can identify the most important constraints, they should be able to develop
software designs that work. So what is the actual problem? It is not that the set of important con-
straints is too large or that they have great difficulties in setting priorities. Good designers, those
with experience in the problem domain and experience with software systems, can relatively
easily identify a manageable set of constraints that are the essential ones for the success of a par-
ticular software system.

The real problem here is that the set of constraints and their priorities are constantly changing.
Moreover, while this is true in other fields of design as well, the change in the software area, espe-
cially today in the evolving information age, is so rapid that a year or two after a piece of software
is originally specified, there are often very different constraints (e.g that a system originally spec-
ified to only run on Windows now has to run on a Linux box, or that a client-server application
now needs to have a web interface), or the priorities of the various constraints change signifi-
cantly(e.g. where security was incidental before, it is now of primary importance). While build-
ings and other physical entities are seen as inflexible and are not assumed to be dynamically

changeable to meet the relatively slowly changing constraints of their fields, software is assumed
to be flexible and is supposed to adapt to the changes in real time. Software design is put in the
unenviable position of having to meet unknown and unspecified constraints and changing priori-
ties in order to be considered successful. In this sense software design is an attempt to design the
undesignable.

Despite these problems, software design has progressed substantially over the past half century.
The field has developed a variety of techniques and methodologies that are sufficient to deal with
a wide range of systems.

Software design has always been considered difficult. Decades ago, when a large program was a
hundred thousand lines of code, programmers struggled with the planning and development of
such systems. Today, with better programming languages, tried and proven modularity concepts,
various forms of data abstraction leading to object-oriented programming, powerful libraries and
COTS components, and the codification of various metaphors as design patterns, designing most
such systems is relatively simple, and can almost be considered a solved problem.

The problems we face today involve designing systems that consist of tens of millions of lines of
code. These systems are large enough so that they can’t be understood or even designed by a
single person. Moreover, there shear size and complexity overwhelms the abstraction power of
the various techniques that have been developed for smaller programs. However, we are well on
our way, out of necessity, to developing techniques that work for these programs as well. The
main approach that is being taken here is to raise the level of abstraction. This is evident in the
blossoming field of software architecture and in related areas such as architectural design patterns
and large-scale components such as web services.

1.2 Internet-Based Software

While these and similar advances are necessary and important efforts, they address the past and
not the future. Future programs are likely to be quite different and to face very different problems.
As such, they are going to require very different design techniques. Understanding and solving
yesterday’s or today’s design problems may be of little help when addressing future problems.
For example, one probable property prevalent in future programs will be that the programmers no
longer control the program. This violates a basic underlying assumption of all today’s design
techniques that we have the power to design what we want.

To understand this and understand what future programs will look like, we need to look at the
direction that programming is taking. The concept of a program is changing from a local, self-
contained object into an Internet-scale, pervasive, self-organizing, omnipresent entity. This can be
seen in a number of current trends that point to the future of programs and programming. These
include web services, grid computing, peer-to-peer computing, autonomic software [11], the open
source movement, and more-reliable networking.

Web services represent a loosely-coupled component framework using the Internet as the inter-
connection mechanism. The components have interfaces defined using a standard description lan-
guage (WSDL), and interact, either with a browser or with other programs, through a standard
wire protocol (SOAP). With Microsoft pushing .NET as a framework for web services, and Sun

offering similar capabilities using J2EE, it is only a matter of time before there will be large
numbers of available components that can and will be used in building new systems.

Grid computing utilizes either idle cycles or idle machines to handle the variable load of a
complex computation. Building on long-term experience with distributed processing frameworks,
it tries to offer substantial computing power on demand by splitting an application into loosely-
connected communicating components. With companies such as Oracle and IBM providing
frameworks for grid computing, a wider range of applications are starting to make use of this
approach.

Peer-to-peer computing involves loosely coupling large numbers of machines to share data, files,
or computations. While most widely known for its capability to do file-sharing for entertainment
purposes, the technology offers the promise of providing wide-ranging ad hoc networks where the
individual components can easily access data or otherwise communicate with each other without
needing to know all the other machines or the changing structure of the network.

Autonomic software is software that is effectively self-healing [11]. While fault tolerant hardware
and software has been around for a long time, only recently have the specialized techniques used
here been introduced into everyday machines and programs. As software become more and more
complex, the need for fault tolerance becomes much greater. Thus, IBM and others are attempting
to put together both hardware and software components so that the overall system can tolerate and
recover from failures of the individual components.

Open-source software is a social framework where programmers write software that is then made
available to and improved upon by other programmers. The end effect can be robust, powerful,
and reliable software that benefits not only the authors, but all potential users. The success of
open source in developing the widely used GNU tools, the Linux operating system, and the
Apache web server has and continues to lead to additional projects being done using this frame-
work. It is only natural that more and more software will be developed this way in the future.

These trends are converging. Programs are written using a multitude of web services some of
which use other web services. These web services are written by different, often anonymous pro-
grammers and change with little or no notice. Grid-based applications such as today’s database
systems run on any available machine and find new computational resources as needed. Data is
shared across the Internet both through web services and through peer-to-peer connections.
Instant messaging, SETI, Gnutella [4], Napster, and electric sheep [7] are examples of current
Internet-scale applications, with more to come.

Dealing with this new reality will require changing the way one thinks about programs and pro-
gramming. One cannot continue to think of a program as a self-contained entity with only local
effects that the programmers control. Instead, developers will need to work in terms of a global
system where they do not control most of the components or interactions. They need a means for
designing and programming in a world where software systems will be built mainly from compo-
nents designed, developed, maintained, and modified by different people, on machines that are
not under their control, and where the components themselves evolve outside of the control of the
software system.

Programmers have always had to deal with outside factors. However, most of these factors were
somewhat under their control. Compilers, loaders, operating systems, and tools all change over

time and systems need to adapt to these changes. However, programmers typically could choose
when to upgrade the operating system or when to change compilers.

Uncontrolled evolution is more difficult. The FIELD system integrated a variety of programming
tools including the debugger, editors,make, andrcsusing a message-passing mechanism and tool
wrappers [24,25]. Here we encountered one of our first examples of external evolution. The
wrapper for the debugger was the most problematic. It operated by parsing translating FIELD
commands into debugger (gdbor dbx) commands and then parsing the debugger output to deter-
mine what was going on. Unfortunately the debugger output syntax was not considered part of its
interface by its developers and hence changed frequently and significantly. The result was that
every time a new version of either debugger became available, we had to make significant
changes to the wrapper. Moreover, because we had to work on multiple platforms, these changes
tended to occur relatively frequently.

A more recent experience is even more telling. For one of our visualizations we needed to get the
OpenDirectory classification for a web page. The Google web service provides a programmatic
way of making Google web searches with the results returned as structures. Part of this structure
is the OpenDirectory category for the found page. By searching for the particular page we were
interested in, we were able to get a fast and accurate classification. However, Google changed
their underlying framework (but not the web service) so that the category was no longer computed
for recent pages and we suddenly found that pages that previously had a category, no longer did.
Our application ceased to work.

In terms of software design, this means we have to develop methodologies for designing systems
that are out of our control and that evolve in unspecified ways even as we are doing the design.
This is like building a house where the properties of the materials being used, such as the strength
and size of the lumber, can vary without our knowledge. We are faced with an impossible task:
designing such systems essentially involves designing the undesignable.

2. Semantics-Based Abstraction

Designing programs in the face of continuous change requires a flexible approach that can
provide the necessary abstractions in a safe and dynamic manner. Abstraction at all levels is
central to design; it is the basis for most of the current approaches to software design that are actu-
ally used. However, today’s abstractions are too rigid to deal with constantly changing constraints
or software fragments that are out of the control of the programmer.

Designing Internet-based software requires a new approach that can handle the issues of scale, the
notion of change and failure, the consequences of lack of control, and the effects of global sharing
of data and code. The primary requirement is a component model that can provide an appropriate
set of abstractions at all levels while dealing directly with these various new issues and their cor-
ollaries.

We have been developing and exploring such a component model [26,27]. This current model
separates interfaces from implementations while attempting to ensure:

• Existing web services, libraries, and other component implementations such as open-source
libraries can be used as components without modification;

• Interfaces can have multiple, independent implementations that the system can choose between
using an appropriate cost model.

• Implementations actually implement the interface as intended by the interface designer;

• Fault tolerance and recovery are defined as part of the interface and are inherent to the system.

• Versioning and evolution of interfaces and implementations is dynamic and built into the sys-
tem [31];

• Interfaces support classes and objects and can contain static methods, constructors, and con-
crete methods.

• Implementations can be bound and rebound dynamically.

2.1 Related Work

There are many different object-based component systems. Most of these take the approach of
CORBA or Microsoft’s ActiveX and utilize a separate interface definition language. This lan-
guage is then mapped into appropriate stub and skeleton code for passing and accessing remote
objects. These have the advantage of being relatively language independent, but the disadvantage
that the user has to define the interface as well as a corresponding implementation class with the
same name. Java RMI works only for Java, but uses the Java reflection mechanisms to work
directly from the implementation class, eliminating the need for a separate definition. More recent
work here is reflected in the notion of a web service defined by a separate interface definition lan-
guage, WSDL. The WSDL files are typically generated automatically from the particular imple-
mentation, are globally accessible, and can be used to build an appropriate programming interface
for an arbitrary client. JavaBeans takes a different approach. Here the component interface is
essentially the same for all components. This interface offers the ability to get and set properties,
to register event listeners, to generate events, and a reflection mechanism. A reflection mecha-
nism is provided so that beans can query the properties and events of other beans. Beans interact
with other beans by knowing the types of events to generate and listen for.

An approach that is more network oriented is illustrated by Jini [22]. Here the components are
services which can have multiple implementations. Servers register for a service with a lookup
server. Clients can then find a relevant server through the lookup mechanism. The abstract ser-
vices are effectively Java interfaces which are implemented by remote clients using Java RMI
with Jini providing the binding mechanism.

There are also a variety of techniques for combining these different component systems. Web ser-
vices based on SOAP are able to support .Net components directly and other components via
wrappers. Similarly, legacy systems or other components are often used as components in various
component models using appropriate wrappers [30]. Frameworks like the VCF [23] formalize this
process by automatically producing wrappers.

One problem with these approaches is the significant commonality required between the client
using an interface and the implementation. For CORBA and RMI, any objects that are being
shared usually require that appropriate stubs be loaded both in the implementation and in the
client. For a web service, the WSDL file defines the particular implementation of the web service
complete with the URL to be used, and not a generic specification. For JavaBeans, the clients and
implementations have to be implemented as beans and the different components need to under-

stand the properties and events used by the other components. For Jini, the clients and implemen-
tations need to agree beforehand on the service interface and its semantics.

These approaches do not work at Internet scales in a pervasive world. Servers cannot be expected
to load the stubs needed to support classes from all potential clients. Objects will often need to be
passed through multiple services, and the intervening services might not want or need to under-
stand the object. There will be no standard set of properties or events that can be created on the fly
to cover all potential developers. Binding of interfaces to implementations needs to be dynamic
and mutable to handle failure and recovery. All this is difficult with the technologies currently
used. A more flexible and less tightly-coupled approach is needed.

One approach to doing this decoupling is to change to a programming model based on decoupling
such as Linda [1]. Here a central tuple space is used for communication and coordination among
the various clients. Tuples in the tuple space follow a standard format and are easily shared. While
the original version was designed for local systems, extensions such as Javaspaces [9] and
TSpaces [34] provide scalable implementations. This approach has the advantage of being rela-
tively simple and isolating the distributed aspects of the computation. However, it is a different
programming model and is rather limiting for many types of applications.

Language support for components and component technologies has also been relatively common.
Modula 3 and Ada both allow the definition of package-based interfaces that effectively describe
the set of classes in a component. Java provides interfaces, but at the class level not the compo-
nent level. Language support makes using components easier for programmers by letting them
work with standard frameworks and programming models.

2.2 The TAIGA Foundation

We wanted our component model to be fully integrated into the base programming languages. It
is important that programmers be able to work with components using traditional programming
metaphors and styles, and that components be easily integrated into existing applications. A com-
ponent needs to represent the equivalent of a Java package, i.e. a set of classes, interfaces, and
exceptions that are related and actually share a single implementation. At the same time, we
wanted to remain language independent as much as possible and to be flexible in the way an
implementation can match an interface. There might be multiple web services that perform a
single function, each of which uses slightly different calling conventions. A single interface
should be usable for all such implementations. Moreover, the implementations themselves should
not have to be modified.

This component model is embodied in a prototype framework called TAIGA. TAIGA provides
the tools needed both to interpret component interfaces and implementations and to support Inter-
net-programming based on these components.

The underlying support mechanism of TAIGA is a peer-to-peer system that can work either on
top of JXTA [13] or on top of our own hierarchical DHT implementation. This peer-to-peer back-
bone supports the sharing of interfaces and implementations and, at the same time, provides a
global file system and shared data facilities. Interfaces and implementations are registered and
assigned unique version numbers. When an application first tries to use an interface, the peer-to-
peer system finds potential implementations and chooses the most appropriate one given the

application’s constraints. The binding occurs at run time and can be changed dynamically to
handle fault recovery, broken network connections, or even dynamic upgrades of the components.
This approach to dynamic binding is more general and broader-based than previous approaches
such as [20,28].

The prototype also provides an initial approach to global data sharing. It uses a global name space
where each computer has a unique hierarchical name. On top of this it supports a simple global
file system with file sharing and the ability to create and write files. It also supports shared tuple
spaces based on Linda [1] and shared SQL databases.

TAIGA uses a separate interface definition language to define what is essentially a Java package.
This language is designed to work in an open-source environment where implementations are
done and controlled independently of the interfaces. To differentiate our interfaces from Java
interfaces, we call ours anouterface. Our approach differs from other interface languages such as
that of Microsoft ActiveX or CORBA in thatouterfaces define both the syntax and the semantics
of the potential calls. By semantics here we mean not only what the calls do, but also how the
implementation addresses issues such as security, privacy, availability, economics, and reliability.

Once we have a way of checking implementations against an interface, we have a means for
ensuring that changes outside the software system can be controlled. TAIGA supports four differ-
ent operations. First, a user can register an outerface. This generates a jar file that can be pro-
grammed against and makes the outerface available for general use. Second, a user can register an
implementation. This associates a web service, a library, or a server component with a set of out-
erfaces. Here a set of jar files is generated containing the code for internal components and con-
taining the code needed to connect to external components. While implementations can be
registered arbitrarily, they will not be used by TAIGA until they are bound. This, the third opera-
tion, compares the semantics in the outerface with the code in the implementation, running any
test cases, doing static checking as appropriate, and generally matching the specifications. It is
only when the system is assured that the implementation is acceptable, that it enables it to be used
by applications. The fourth operation is internal to TAIGA. When the user first uses an outerface,
TAIGA will search for an appropriate working implementation and dynamically bind it into the
user’s program. If the component should fail for any reason, TAIGA can unbind the current
implementation, find another working implementation, and dynamically replace the old imple-
mentation with the new one.

Evolution of the design, software, or underlying systems can be handled in this framework in
various ways. As developers understand what functionality they want from a component, they can
create test cases for that functionality. TAIGA lets the programmer extend an outerface with addi-
tional test cases and then finds implementations that pass not only the original test cases, but the
new ones as well. This can be used to dynamically change the software requirements and then
find new components that meet the updated requirements. If the existing external components fail
the test cases, other implementations will be chosen. Implementations such as web services that
might change in hidden ways can be tested dynamically against their interfaces to ensure they
haven’t changed in significant ways. As outside components change, their developers can register
a new version of them with the system. TAIGA will detect this new version and, if it passes the
appropriate semantic tests, will use it.

As a test case and an example of how TAIGA can be used, we have developed an visualizer of
what people are looking at in their web browsers shown in Figure 1. This application has three
outerfaces, one for recording web pages as they are viewed, one for managing the data files that
retain the history, and one for finding the OpenDirectory category of a web page based solely on
its URL. We provided three different implementations of the latter outerface, one based on the
Google web service, one based on MeURLin [16], and a component we wrote that builds a deci-
sion tree from the OpenDirectory database. This latter outerface has shown both the lack of pro-
grammer’s control over next generation software and the ability of TAIGA to cope. When the
MeURLin server in Singapore is unavailable (which it regularly is), TAIGA would automatically
switch from that to an alternative implementation. When Google changed their web service
without announcing it so that the OpenDirectory category was no longer computed for new web
pages, the test cases failed for this implementation and TAIGA no longer allowed it. When Open-
Directory updated their database with invalid XML and our categorizer failed, TAIGA detected
the failure. When we wanted to modify our application so that specific web pages were catego-
rized a certain way, we simply added appropriate test cases and TAIGA rejected the implementa-
tions that were not particularly accurate.

A second example program using TAIGA, again shown in Figure 1, involves a visualization of
where news is currently occurring. Here we developed outerfaces to represent a map projection, a
client for managing multiple news sources, a crawler that periodically looks at all stories for a
particular news site such as cnn.com, a manager that keeps track of available crawlers, and a
parser that takes a URL and tells what country or state the news story is about. We have devel-
oped multiple implementations for the map projection, simple crawler and manager implementa-
tions, and two implementations of the country finder, the first based on finding by-lines and the
second on looking for the names of countries and principle cities. This system was designed to
demonstrate the grid computing and recovery aspects of TAIGA, with the different crawlers and
their URL parsers working on different grid nodes and the system able to readily recover as these
nodes go down and even when the news manager goes down.

FIGURE 1. Sample applications built using TAIGA. The left one shows what people are currently browsing on
the web while the right one shows where news is currently happening.

The key to TAIGA and the key in designing next generation, Internet-based software, is to
include the proper semantics as part of the interface. These semantics have to be comprehensive
enough to address the important issues that developers will address as the software evolves. They
have to be expressive enough to address real applications. They have to be flexible enough to
allow multiple implementations and evolving implementations. They have to be concrete enough
so that they can actually be checked. We feel that we have started toward this goal with the
current implementation of TAIGA. In the next few sections we detail what we have done and the
large amount of work that remains to be done.

3. Functional Semantics

The clearest form of semantics that we need to deal with are the functional semantics that describe
what the implementation for a particular outerface is supposed to do. What each method in the
outerface does needs to be expressed in a practical and checkable manner. One approach is to
express the semantics using a mathematical language such as Z [33] or Larch [14], or a high-level
specification language such as Alloy [15]. A more widely used approach is to use contracts as
introduced in Eiffel [21] or in JML [2,18]. Contracts attempt to constrain the behavior of a
process by defining what inputs are allowed and how the outputs are related. They are typically
expressed in the form of preconditions and postconditions on methods or as conditions on a class.

Another solution can be found in the agile or extreme programming approach to development
where test cases are developed first and the implementation is tested continually. The test cases
provide the developers with a good sense of what the implementation should do and ensure that
the resultant implementation works correctly, at least for the circumstances it was envisioned for.

Our approach to functional semantics uses a combination of these. The main semantics of the out-
erface are specified by a set of test cases defining the implementation’s behavior. The system
guarantees that any implementation passes all the test cases of the outerface. In addition, the out-
erface can include preconditions and postconditions on methods and general constraints on the
behavior of an outerface class.

Test cases have the advantage that they are easy to check dynamically. One merely has to run the
component see if the test case succeeds or fails. In practice, however, this has proven more diffi-
cult than anticipated. More formal approaches, such as contracts, are both much more difficult to
write and much difficult to check, generally being checkable statically only in limited circum-
stances. Test cases also have the advantage of offering a broader range of specifications. While it
is possible to specify test cases that check a method that purports to tell what country a particular
web page is about by providing sample web pages where the answer is known, it would be virtu-
ally impossible to specify the behavior of such a method formally for any particular input.

Test cases however, even combined with contracts where this is feasible, do not address all the
problems that designing next generation software will face. One problem is that, just as it is diffi-
cult to describe formally what a method should do, it is often just as difficult to specify a set of
test cases for a complex application. A second problem is that the test cases themselves can be
fairly complex and will tend to obscure the outerface definition. A third and potentially more
serious problem is that the test cases need to be run in a testing environment where they don’t
affect live data or active systems.

We have tried to use test cases to define the semantics of the two example applications described
above. While some of the items are easy to test, many others are quite difficult. For example, con-
sider testing for URL classification, which should be relatively easy. Our first test case here chose
a predefined set of reasonably well-known pages (e.g. www.ibm.com, www.nytimes.com,
www.cs.brown.edu, our home page), and had the classifier check whether these were classified
correctly. The first problem was what is “correct”. Should the Brown computer science home
page be listed as reference (which is the closest category for a top-level university page) or should
it be listed as computers since it contains a lot of computer-related material? Different categoriz-
ers labeled it differently. Another example was in the manager for the news visualizer. This com-
ponent is supposed to keep track of the different crawlers that are available and return instances of
those crawlers to the caller. Creating a test case for this, however, can only be done if one has the
crawlers working and even then, success might depend on the nature of the crawlers.

The crawler for the news visualizer and the implementation that determines the country for a
given news story pose other problems. In both cases, a full test requires accessing an unknown set
of web pages and doing the analysis. We could test the crawler by creating a snapshot of a news
site hierarchy and then crawling that, but this requires that the test cases have access to the sample
hierarchy. To be safe, this means that the sample hierarchy has to be packaged as part of the test
case and somehow made web-accessible from wherever the testing is being done. A second test
case for the URL classifier illustrates a related problem. Here we wanted to test the performance
of the classifier so the test case provided it with several thousand different URLs to check. These
URLs could be kept in a data file, but then the data file would have to be part of the test case.
Alternatively, the test case could be large enough to contain the necessary data internally. This,
however, makes it too large to be a convenient part of the outerface specification.

Testing an implementation should not be the same as running it. It should be possible to test a
banking application without removing all of ones money (or providing some account with large
sums). Current test cases achieve this by running on special accounts or in a simplified testing
environment. However, when one wants to test web services on other hosts and other components
that are outside of ones control, this is often not possible. Even in our simple applications, to test
the news crawler manager, one needs to actually run crawlers on various grid nodes and those
crawlers are actually going to go out and find web pages, record history, etc. To do testing cor-
rectly one needs to provide a distributed test environment that isolates testing an implementation
from actually running the application.

Our current work in TAIGA is attempting to address these issues. We have already provided
facilities that let the outerface reference external test case files. We have developed the mecha-
nism needed to support the inclusion of data files as part of test cases. These let us create more
sophisticated test cases that can be applied by remote users without cluttering or obscuring the
outerface definitions.

Next, we developed an underlying framework whereby TAIGA creates, maintains, and passes a
context for all calls. This context includes the notion of a test case and is designed to interface
with a sandbox implementation that will simulate external files and databases. We developed a
sample implementation of such a sandbox [3] using interposed libraries, and have been working
on developing a more realistic implementation based on virtual machines. This type of an
approach can provide a safe environment for testing applications that are self-contained and

TAIGA-based without requiring that the application be aware of the test cases of the fact that it is
being tested. It does not address the much more complex issues involved in testing black box,
remote web services in a safe manner.

The most important problem from a design point of view, that we have yet to deal with, is defin-
ing semantics for methods that are inherently untestable, for example, testing programs where the
output can not be prespecified or where determining the proper output can only be done by
running the implementation. For example, how would one check if a map service actually
returned a image or map of a specified region without knowing in advance exactly what map
should be returned. While we support dynamic (and eventually static) checking of contracts, these
often do not help in these difficult cases. The question here is what other forms of functional
semantic specification might be used and can these be made both practical to specify and practical
to check.

4. Recovery Semantics

Recovery will be an essential part of an Internet-based application. Designing such applications
requires understanding that components will fail and evolve, and that the application needs to
continue processing. Because of this, we felt it was important to include information on how to
recover from the failure of a component as part of the outerface definition. This lets TAIGA
throw away an implementation that violates its contract, detect and recover when remote web ser-
vices are inaccessible or change, and generally handle errors in components that are outside of the
control of the developers.

Because of the way that web services have typically been defined and used, we found it conve-
nient to distinguish between two types of recovery. The first occurs when the application can
think that it is dealing exclusively with a web service. Here the effect of calls to the web service
are only dependent on the actions of this application. Web services that provide information such
as the location of a zip code or a interest calculation or Internet search or a map visualization are
some examples here. This characterizes many of the current web services and affords a relatively
simple recovery model. The second occurs when the web service supports interactions among
multiple clients. This is a significantly more difficult problem.

To handle the first case, we allow outerfaces to provide a recovery model. This model is defined
as part of the outerface to reflect the state of the implementation. This state is represented as a set
of model variables. Each method call in the outerface is then accompanied by a description of
how the state is affected by the call through code that modifies these variables based on the
calling parameters if the call succeeds. In addition, we require that the outerface provide a “recov-
ery” method, that is, a method that can restart the outerface given the state of the model variables.

An example of such a model for the client outerface which supports weighting different news
sources is shown in Figure 2. Here the model is defined for the outerface class Client in the
clauses starting with “model”. The model consists of one variable, a map of source names to
weights. Creating a new Client object instantiates a model for that client by initializing the vari-
able. Adding a source, calls the implementation add function and updates the model by adding the
source and weight to the model. Removing a source similarly invokes the implementation method
and removes it from the model. The existence of the model implies that the implementation has to

provide a constructor for Client that takes a single argument which is the map representing the
model variable.

TAIGA implements such a model by compiling the model code as part of the bridge code that
maps calls to outerface routines into calls (either direct or indirect through a SOAP interface or
other mechanism) to the implementation. This bridge code also provides for a handler that is
called if any of these calls fail. This handler checks if the outerface supports the rebind trait
(which is also specified in the figure), and, if it does, will create a new object using the current
recovery model and repeat the call using the new object. Note that this technique also extends to
the simpler case where the implementation is stateless and it is sufficient to simply rebind the out-
erface to a new implementation. This is indicated by a rebind trait with no model specification.

This type of recovery has proved itself quite effective. We have been able to terminate implemen-
tations (either on purpose or because the machine there were running on rebooted) and not affect
the overall system. Unless we look at the logs, we don’t even notice that the implementation had
migrated or changed. Moreover, most web services and many other remote components are
written so that this type of a recovery model is appropriate.

outerface edu.brown.cs.newsview.taiga.NewsClient {

description {{
This outerface provides an interface between a client and the news
crawlers and parsers. The interface serves lets the particular
user select and weigh different news sources. It also handles the
manipulations needed to merge multiple sources into a single value
set.

}}

import java.util.*;
requires edu.brown.cs.newsview.taiga.NewsCrawler;
requires edu.brown.cs.newsview.taiga.NewsManager;

trait {
rebind=true;

}

class Client {
model {

Map<String,Number> source_set
}

public Client()
model {

source_set = new HashMap<String,Number>();
}
public void addSource(String name,double weight)

model {
source_set.put(name,weight);

 };

public void removeSource(String name)
model {

source_set.remove(name);
};

public ClientValueMap getValues();
}

interface class ClientValueMap {
public Map<String,Number> world_values;
public Map<String,Number> state_values;

}
}

FIGURE 2. An example of an outerface with a recover model.

The model is not complete, even for the single-user case. It currently does not take into account
calls that might throw declared exceptions where changes to the model are dependent on the
exception thrown. It does not allow the model code to make use of the return value from the call.
While it handles state-based recovery for classes such as Client where there is an explicit con-
structor, it only handles stateless recovery for static classes. All of these extensions would be rel-
atively easy to add, probably using a JML-like syntax and a non-constructor initialization method
with a standard name.

The model also assumes any data stored on the back end is recoverable either by restarting the
object or by the back end itself. This assumption is probably not the safest one to make, especially
when the application might change implementations associated with the outerface. What is actu-
ally needed here is a transactional model where transactions work across calls. This could be built
on top of something like the Java Transaction Service [5] in conjunction with Java-code based
transactions [8].

Finally, the model does not handle the more complex case where the component being imple-
mented maintains a state that is shared among multiple clients, for example if it is providing a
communications substrate between users or shared access to a resource. This requires a recovery
model that is kept as part of the implementation rather than being kept separately for each client.
Doing general purpose recovery in this framework is much more difficult and is another question
that has to be addressed before a system like TAIGA can be really practical.

5. Security Semantics

Another essential feature of Internet-based applications will have to be their attention to security
and privacy. Before web services and open source can be used on any scale, they have to offer a
high degree of trust. This can come from the service being provided by a trusted agent such as a
bank or other large company. However, in the long run, this trust is going to have to be built into
the components themselves.

Security and privacy relate to what an implementation, be it a web service, library, or other com-
ponent, can and should do for an application. In the simplest terms, security or access control
refers to restrictions that the component will make based on who the application can prove they
are, while privacy issues typically are restrictions that the user wants to impose on the implemen-
tation component.

TAIGA includes security and privacy specifications as part of both outerface and implementation
definitions. The security model is an extension of the Java security model [10,12,17]. There are a
set of permissions that include the various Java permissions such asFilePermssion, SocketPer-
mission, or SQLPermission. Each method in the outerface or implementation can either require or
ensure that certain permissions are available. In both cases, this can be done either globally for all
methods or can be specialized for a particular method.

An example of an outerface and implementation with security semantics is shown in Figure 3.
The outerface first says that the default access for the implementation is to have no access to any
files except those in/tmpand to have no network access. Then it qualifies this for thecheckBib-
Texmethod to allow the file designated by the first argument to be read, the file designated by the
second argument to be written, and sockets to be created to two specific sites. Finally, the check

reference method has a separate privacy constraint that the string passed in cannot be written to an
external device. These specifications try to ensure that any implementation of the outerface
respects the privacy of the caller by only reading and writing the appropriate files and by not
recording the incoming requests. The security specifications associated with the implementation
state what permissions the implementation needs from the caller. Here it says it needs to be able
to read and write appropriately the passed in files, and it needs to be able to connect to a particular
host to do its work. The specifications go on to state the privacy constraints that the implementa-
tion satisfies. In this case stating that it will never write the argument tocheckReferenceto and
external device, either explicitly or implicitly.

This security model is currently partially implemented in TAIGA using the Java security model.
Java maintains a current security policy and most operations that are security sensitive are
checked against the current security policy before they are permitted. TAIGA provides its own
Java security policy. This policy actively changes the sets of valid permissions on each outerface
call. Moreover, it creates protection domains that are passed along on remote calls so that remote
implementations can also enforce the security policy. Each call to an outerface method is exe-

outerface edu.brown.cs.taiga.examples.refs.ReferenceChecker {

description {{
This outerface is designed to check bibtex references for consistency
 and completeness, possibly using an external source such as CiteSeer.

}}

security ensures {
FilePermission("<<ALL FILES>>","none");
SocketPermission("*","none");
FilePermission("/tmp/-","read,write");

}

class ReferenceChecker {
static void checkBibTex(String file,String out)

security ensures {
FilePermission(file,"read");
FilePermission(out,"write");
SocketPermission("www.citeseer.org","connect");
SocketPermission("www.researchindex.com","connect");

};
static String checkReference(String ref)

security ensures {
DataPermission(ref,"nowrite");

};
} // end of class ReferenceChecker
} // end of outerface ReferenceChecker

implementation edu.brown.cs.taiga.examples.refs.SimpleChecker {

implements edu.brown.cs.taiga.examples.refs.ReferenceChecker {
using class ReferenceChecker = edu.brown.cs.taiga.examples.refs.SimpleCheckerImpl {
using checkBibtex = checkBibTex(String in,String out)

security requires {
FilePermission(in,"read");
FilePermission(out,"write");
SocketPermission("www.citeseer.org","connect");

};
using checkReference = checkReference(String ref)

security ensures {
DataPermission(ref,"read");

};
}

}
}

FIGURE 3. Outerface and implementation showing security specifications.

cuted explicitly in the appropriate TAIGA security context. Remote calls include information
about the caller’s security context and this information is used to build the actual security context
in which the remote call is executed.

This implementation works for permissions that are actually checked by Java, including file and
socket access, for implementations which are local, and for implementations that are remote and
implemented within the TAIGA framework. It currently does not handle data access permissions
or permission checking inside web services and other black box implementations.

Extending the security specification to handle data permissions requires that we actually check
that data access obeys the security specification. Our initial plan here is to match data access
limits in the outerface with data access specifications in the implementation. For the example in
Figure 3, the data access required by the outerface is NOWRITE, which is then satisfied by the
implementation specification of READ. This level of checking is already done in the current
implementation. However, to make this secure, we need to check that the implementation actually
obeys its specifications. This can be done using a conservative static analysis that looks at how
the particular data element flows from the called routine throughout the system and ensures that
the specifications are obeyed for all possible flows [6,29]. Such a check would be part of the
testing procedure for a potential implementation.

Handling security in black box applications is more difficult. Here we are investigating of requir-
ing validated implementations to run in virtual machine sandboxes that would be security-aware.
The socket interface to the application would be interpreted and validated by the virtual machine
which would take responsibility for ensuring the validity of any actions taken by the application
when processing the remote call. This type of approach could handle a limited set of security
issues, but would represent a step in the right direction. Moreover, it could be built on the same
type of sandbox that would be needed for safe testing.

6. Economic Semantics

When there are multiple implementations of an outerface available, the programmer will want to
choose the one that best fits the application. There are a lot of factors that go into “best fit” in this
situation. One might want to choose the least expensive implementation; one might choose the
implementation that is fastest for the particular types of inputs that the application is going to
provide it; one might want the implementation that has the strictest privacy policy; one might
prefer an implementation that is downloadable rather than one that only exists as a web service.
The choice here needs to be made in an open-source world where the programmer might not
know of all the potential implementations or their characteristics. Moreover, the choice might
have to be made dynamically, for example if different users running the same application are in
different locations or if the primary implementation fails or becomes unavailable.

To accommodate all these options, we include an economic model as part of the outerface defini-
tions. This model describes the factors that are important in selecting an appropriate implementa-
tion and gives weights to those factors. Currently these factors include the cost of the
implementation which can be specified in the implementation definition, costs associated with
different types of bindings (library, component, grid, web service), costs associated with traits
that the implementation may have, and costs associated with resources used by the implementa-
tion.

While most of these are straightforward, one interesting aspect is determining the resources
needed by the implementation. Here we rely on the fact that outerfaces include standard test cases
which are run for each implementation and we can record resource utilization when the test cases
are run. Currently we track the run time and the memory usage associated with each test case. The
economic model can then provide weights for different test cases and for the different resources.
This lets developers create a new outerface with a suite of test cases that are typical of the use of
the component they are interested in, and then state that the run time (or memory) used by the
component in running these particular test cases should be the dominant factor in choosing the
implementation.

This cost model demonstrates that it is possible to include an economic framework for choosing
implementations as part of the semantics of a component. It is not a completely workable solution
at this point. There are several difficulties. The first is that the current implementation forces the
outerface to specify how to value what are basically incomparable costs, for example the cost of a
the licence to use a particular implementation versus the resources used by that implementation.
The second is that some costs, for example, the cost of using a grid node of some outside user,
will not be known at the time the implementation is being chosen and might affect the choice.
Finally, the costs right now are just numbers and these need to be tied to real economic values, i.e.
money, in order to ground the model in a reasonable way.

7. Future Work

TAIGA was developed to demonstrate that it is possible to design and implement dynamic and
Internet-based programs in a disciplined manner even in the face of all the difficulties that such
programs face, that they are inherently undesignable. Changes to the constraints for an application
can in many cases be translated into changes to the outerface that do not affect the caller but rather
cause a different implementation to be used. If one assumes a vast library of open source compo-
nents that can be used, and one can rely on the components working the way they should as
defined in the outerface, then it should be possible for many applications to adapt without major
rewrites. Whether this is actually possible depends to a large part on how well the application is
designed to make use of outerface-based components. What can be done here is something that
won’t really be understood until we have substantial experience designing and developing such
systems.

Where TAIGA provides a better footing is in handling the difficulties inherent to Internet-based
programs, particularly the lack of control over the component implementations and how and
where they run. TAIGA has demonstrated that it can handle components that change without the
user’s knowledge, that it can handle component failures due to network outages, bad data files, or
just the failure of the remote machine. It has demonstrated that one can dynamically choose
among different implementations without affecting the original application. It has demonstrated
that one can specify ones security and privacy needs and use these as constraints in choosing an
appropriate component implementation.

Beyond the many problems already described, there is much that can be done along these lines.
First, the notion of semantics, while quite broad, still does not encompass everything that one
would like to take into account when choosing applications. Other things that one could conceive
of including as part of an outerface definition might include accuracy or error ranges on floating

point computations, a composable performance model to provide predictable performance for a
complex system [32], mathematically checkable and composable specifications, authentication
and access control, and monitoring and debugging aids.

One also needs to consider practical issues such as when and how should testing be done, how to
define and test assemblies of components that themselves should be viewed as a component, and
how to build up a repository of interfaces and implementations. The first question involves bal-
ancing attempting to continually detect when web services or outside components might have
changed so that they can be retested with having to do what might involve expensive testing very
frequently. The second involves developing strategies for building more complex abstractions on
top of the abstractions that TAIGA currently provides. The third involves combining something
like Google’s code search facility with some social process for specifying interfaces and imple-
mentations such as that provided by RentACoder or similar sites.

The problems of designing software for dynamic, uncontrolled environments are real and are
going to become increasingly more important as we move toward Internet-based software in the
next decade. We have to address these problems or we will not be able to design and develop the
applications that users demand and need. TAIGA and the approach it emphasizes shows one way
that this might be done. The challenge is finding ways to extend this approach to make it practical
or finding other approaches that accomplish the same ends.

8. Acknowledgements

This work is supported by the National Science Foundation through grant CCR0613162.

9. References

1. Sudhir Ahuja, Nicholas Carriero, and David Gelernter, “Linda and friends,”IEEE ComputerVol. 19(8) pp. 26-34
(August 1986).

2. Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T. Leavens, K. Rustan, M. Leino, and
Erik Poll, “An overview of JML tools and applications,”Intl. Journal on Software Tools for Technology Transfer
Vol. 7(3) pp. 212-232 (June 2005).

3. G. Sebastien Chan-Tin, “Sandboxing programs,” Brown University Master’s Thesis (April 2004).

4. Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker, “Making Gnutella-like P2P
systems scalable,”Proc. ACM SIGCOMM 2003, (Aug 2003).

5. Susan Cheung, “Java Transaction Service (JTS),”Sun Microsystems, (December 1999).

6. Dorothy E. Denning, “A lattice model of secure information flow,”Communications of the ACM Vol. 19(5) pp.
236-243 (May 1976).

7. Scott Draves, “Electric Sheep,”http://electricsheep.org, ().

8. Guy Eddon and Steven P. Reiss, “Myrhh: a transaction-based model for autonomic recovery,”Proc. 2nd Intl Conf
on Autonomic Computing, pp. 315-325 (June 2005).

9. Eric Freeman, Susanne Hupfer, and Ken Arnold,Javaspaces Principles, Patterns, and Practice, Addison-Wesley
(1999).

10. J. Steven Fritzinger and Marianne Mueller, “Java Security,”Sun Microsystems, (1996).

11. A. Ganek and T. Corbi, “The dawning of the autonomic computing era,”IBM Systems Journal Vol. 42(1) pp. 5-
18 (2002).

12. Li Gong, “Java 2 platform security architecture,”Sun Microsystems (http://java.sun.com/j2se/1.4.2/docs/guide/
security/spec/security- spec.doc.html), (2002).

13. L. Gong, “JXTA: a network programming environment,”IEEE Internet Computing Vol. 5 pp. 88-95 (2001).

14. J. V. Guttag, J. J. Horning, and J. M. Wing, “The Larch family of specification languages,”IEEE Software Vol.
2(5) pp. 24-36 (March 1985).

15. Daniel Jackson, “Alloy: A lightweight object modeling notation,”ACM Trans. Software Engineering and
Methodology Vol. 11(2) pp. 256-290 (April 2002).

16. Min-Yen Kan, “Web page classification without the web page,”Proc 13th WWW Conference, (2004).

17. Charlie Lai, Li Gong, Larry Koved, Anthony Nadalin, and Roland Schemers, “User authentication and
authoriztaion in the Java platform,”Proc. 15th Annual Computer Security Applications Conference, (December
1999).

18. Gary T. Leavens, Albert L. Baker, and Clyde Ruby, “JML: A notation for detailed design,” pp. 175-188 in
Behavioral Specifications of Businesses and Systems, ed. Haim Kilov, Bernhard Rumpe, and Ian
Simmonds,Kluwer (1999).

19. Meir M Lehman, “Approach to a Theory of Software Evolution,”8th Intl Workshop on the Principles of Software
Evolution, p. 135 (September 2005).

20. Nenad Medvidovic, “On the role of middleware in architecture-based software development,”SEKE ’02, pp.
299-306 (July 2002).

21. Bertrand Meyer,Object-Oriented Software Construction, Prentice-Hall (1988).

22. Sun Microsystems, “The Jini Architechture Specification,”http://www.sun.com/software/jini /specs/index.xml,
(June 2003).

23. Johann Oberleitner, Thomas Gschwind, and Mehdi Jazayeri, “The Vienna component framework: enabling
composition across component models,”Proc. 25th ICSE, pp. 25-35 (May 2003).

24. Steven P. Reiss, “Interacting with the FIELD environment,”Software Practice and Experience Vol. 20(S1) pp.
89-115 (June 1990).

25. Steven P. Reiss, “Connecting tools using message passing in the FIELD environment,”IEEE Software Vol. 7(4)
pp. 57-67 (July 1990).

26. Steven P. Reiss, “A component model for Internet-scale applications,”Proc. ASE 2005, pp. 34-43 (November
2005).

27. Steven P. Reiss, “Evolving Evolution,”8th Intl Workshop on the Principles of Software Evolution, pp. 136-139
(September 2005).

28. Ran Rinat and Scott Smith, “Modular Internet programming with cells,”Proc. ECOOP 2002, Springer-Verlag
LCNS 2374, (2002).

29. A. Sabelfeld and A. C. Myers, “Language-based information-flow security,”IEEE Journal on Selected Areas of
Communications Vol. 21(1)(January 2003).

30. Ashish Shah and Dennis Kafura, “Symphony: a Java-based composition and maniuplation framework for
distributed legacy resources,”Proc. International Symposium on Software Engineering for Parallel and
Distributed Systems, pp. 2-12 (May 1999).

31. Clemens Szyperski, “Component technology - what, where, and how?,”Proc 25th ICSE, pp. 684-693 (May
2003).

32. Eno Thereska, Dushyanth Narayanan, and Gregory R. Granger, “Towards self- predicting systems: What if you
could ask ’what if’?,”3rd International Workshop on Self-Adaptive and Autonomic Computing Systems, (August
2005).

33. J. B. Wordsworth,Software Development with Z, Addison-Wesley (1992).

34. P. Wyckoff, “T Spaces,”IBM Systems Journal Vol. 37(3)(1998).

