
Evolving Evolution

Steven P. Reiss
Brown University

Providence, RI 02912
401-863-7641, spr@cs.brown.edu

Abstract

Software is changing and software evolution is
going to change with it. In considering software and
the problems of software evolution today we make the
tacit assumption that we control the software and
hence can control its evolution. Current trends point to
a world where we only control a small fraction of our
own software and the remainder evolves in unpredict-
able and uncontrolled ways. Current work in address-
ing evolution is addressing yesterday’s problems. What
we need to prepare ourselves for the coming problems
are techniques that can cope with uncontrolled evolu-
tion. In this position paper we point out several of the
problems that need to be addressed and hint at possible
techniques for addressing them.

1. Introduction

Software evolution deals with the changes in a soft-
ware system over time. Today our software systems are
composed of potentially large numbers of different
types of artifacts. The artifacts represent different por-
tions of the software, ranging from requirements, speci-
fications and design at the front end to source code, test
cases, and documentation on the implementation side.
As software systems grow and change, all of these arti-
facts evolve at different rates and in different ways.

Such evolution is one of the primary causes for the
many problems associated with software systems. The
lack of understandable design, incoherent source code,
poor internal documentation, and incomplete test cases,
all resulting from the differing evolution, lead to unreli-
able and untrustworthy software. Incomplete or inaccu-
rate external document leads to user confusion and
frustration. Designs and implementations that don’t
anticipate evolution are difficult to change and adapt to
changing environments and platforms. Inconsistent arti-
facts yield more and more complex software, software
that eventually becomes so complex it has to be
scrapped and completely rewritten to remain viable.

These problems have led us as a community to
develop a variety of solutions aimed at addressing and
managing software evolution. We as a community
attempt to understand the process of software evolution

so we can anticipate and adapt to it rather than forcing it
to adapt to us. This is seen in agile programming, in
production-line environments, and in feature-based or
aspect-oriented programming. We try to provide ways
of controlling software evolution by developing tools
that can check the evolving software and ensure it
remains consistent. Here we have developed regression
testing, tools for statically or dynamically checking
software for common errors such as memory usage, and
more recently tools for statically checking software
against its specifications. We also develop tools and
techniques for physically doing software evolution.
This can be seen in the various refactoring tools that
have become part of today’s programming environ-
ments such as those found in Eclipse. We have also
worked on high-level languages that let us work in
simpler terms in terms of specifications or designs and
have the code automatically generated, thereby simpli-
fying the artifacts that need to evolve.

Our own work in recent times has taken a different
tact. In addition to all the above work, we felt that one
needed to address the problem of inconsistent evolu-
tion, where the different artifacts composing the soft-
ware system evolve at different rates and in different
ways. Rather than attempting to enforce consistency or
even a methodology, we provided a tool, CLIME, that
simply checked that the artifacts were and remained
consistent with one another as they evolved and identi-
fied inconsistencies to the programmer as they arose
[11].

However, almost all this work, ours included, is
already out of date before we complete it. We are
solving yesterday’s problems on yesterday’s software
for yesterday’s systems. Tomorrow’s software will be
different and have a very different evolutionary frame-
work. We need to start working on how we deal with
the new problems that will arise now, not ten years from
now when they overwhelm us. We need to evolve our
thinking on evolution.

2. Uncontrollable Evolution

Most of the research involving software evolution
and most of the frameworks that have been built to deal
with it make the tacit assumption that the programmers
control the software and the software artifacts and

hence have control over the evolution of the software.
This is what makes these techniques viable — there is
hope that they can provide solutions and tools that will
successfully harness evolution. Unfortunately, while
this assumption is mostly true today, it will no longer
be true in the future.

The concept of a program is changing from a
local, self-contained object into an Internet-scale, per-
vasive, self-organizing, omnipresent entity. This can be
seen in a number of current trends including web ser-
vices, grid computing, peer-to-peer computing, auto-
nomic software [4], the open source movement, and
faster, pervasive, more-reliable networking.

These trends are converging. Programs are written
using a multitude of web services some of which use
other web services. These web services are written by
different, often anonymous programmers and change
with little or no notice. Grid-based applications such as
today’s database systems run on any available machine
and find new computational resources as needed. Data
is shared across the Internet both through web services
and through peer-to-peer connections. Instant messag-
ing, SETI, Gnutella [2], Napster, and electric sheep
[3] are examples of current Internet-scale applications,
with more to come.

Dealing with this new reality will require us to
change the way we think about programs and program-
ming. We can’t continue to think of a program as a
self-contained entity with only local effects that we
control. Instead, we need to work in terms of a global
system where we do not control most of the compo-
nents or interactions. We need a means for program-
ming in a world where software systems will be built
mainly from components designed, developed, main-
tained, and modified by different people, on machines
that are not under the control of the software develop-
ers or designers, and where the components themselves
evolve outside of the control of the software system.

Programmers have always had to deal with outside
factors. However, most of these factors were somewhat
under their control. Compilers, loaders, operating sys-
tems, and tools all change over time and systems need
to adapt to these changes. However, programmers typi-
cally could choose when to upgrade the operating
system or when to change compilers.

Uncontrolled evolution is more difficult. The
FIELD system integrated a variety of programming
tools including the debugger, editors, make, and rcs
using a message-passing mechanism and tool wrappers
[9,10]. Here we encountered one of our first examples
of external evolution. The wrapper for the debugger
was the most problematic. It operated by parsing trans-
lating FIELD commands into debugger (gdb or dbx)
commands and then parsing the debugger output to
determine what was going on. Unfortunately the
debugger output syntax was not considered part of its
interface by its developers and hence changed fre-

quently and significantly. The result was that every
time a new version of either debugger became avail-
able, we had to make significant changes to the wrap-
per. Moreover, because we had to work on multiple
platforms, these changes tended to occur relatively fre-
quently.

A more recent experience is even more telling. For
one of our visualizations we needed to get the OpenDi-
rectory classification for a web page. The Google web
service provides a programmatic way of making
Google web searches with the results returned as struc-
tures. Part of this structure is the OpenDirectory cate-
gory for the found page. By searching for the particular
page we were interested in, we were able to get a fast
and accurate classification. However, Google changed
their underlying framework (but not the web service)
so that the category was no longer computed for recent
pages and hence, suddenly we found that pages that
previously had a category, no longer did. Our applica-
tion ceased to work.

These simple examples are harbingers of what is
coming as we move to a world where we are dependent
on web services, libraries, shared data and databases,
and global computing.

3. TAIGA

In order to deal with these new realities, we need
to develop new approaches to software and to software
evolution. As an example of an approach that might
work, we are currently developing a prototype frame-
work, TAIGA. This framework is designed to provide
programming support for a world where web services
and other external components abound, where shared
data is the rule rather than the exception, and where
programs run wherever there are available resources.

The prototype is based on a unique and compre-
hensive component model. This model is a metapro-
gramming model where we provide a language for
defining the interface to which users will code and a
separate language for defining how a particular piece of
code, be it a web service, a library, a JavaBean, or a
CORBA object, matches that interface. We then
provide facilities for automatically and dynamically
binding an interface to an appropriate implementation.
The metaprogramming approach ensures us portability
and allows the system to use existing components such
as web services without modification. The model
allows the definition of security, privacy, and recovery
properties. Finally, the semantics of an interface is
defined primarily by a set of test cases that is included
as part of the interface. While the current prototype
works only with Java, there is no inherent reason why
the technology would not extend to be language inde-
pendent.

To support this model, we use have implemented a
peer-to-peer system on top of JXTA [5]. This peer-to-
- 2 -

peer backbone supports the sharing of interfaces and
implementations and, at the same time, provides a
global file system and shared data facilities. Interfaces
and implementations are registered and assigned
unique version numbers. When an application first tries
to use an interface, the peer-to-peer system finds poten-
tial implementations and chooses the most appropriate
one given the application’s constraints. The binding
occurs at run time and can be changed dynamically to
handle fault recovery, broken network connections, or
even dynamic upgrades of the components. This
approach to dynamic binding is more general and
broader-based than previous approaches such as [7,12].

The prototype also provides an initial approach to
global data sharing. It uses a global name space where
each computer has a unique hierarchical name. On top
of this it supports a simple global file system with file
sharing and the ability to create and write files. It also
supports shared tuple spaces based on Linda [1] and
shared SQL databases.

4. Component Semantics

Our work on TAIGA points out one way that we
might be able to get a handle on software evolution
where much of the software is out of our control. The
key here is to have a component model where the
semantics of the component are included in its inter-
face.

TAIGA uses a separate interface definition lan-
guage to define what is essentially a Java package. This
language is designed to work in an open-source envi-
ronment where implementations are done and con-
trolled independently of the interfaces. To differentiate
our interfaces from Java interfaces, we call ours an out-
erface. Our approach differs from other interface lan-
guages such as that of Microsoft ActiveX or CORBA
in that outerfaces define both the syntax and the seman-
tics of the potential calls. By semantics here we mean
not only what the calls do, but also how the implemen-
tation addresses issues such as security, privacy, avail-
ability, and reliability.

What each call does needs to be expressed in a
checkable manner to make the approach practical. One
approach is to express the semantics using a mathemat-
ical language such as Z [13] or Larch [6] or a high-
level specification language. A more widely used
approach is to use contracts as introduced in Eiffel [8].
Contracts attempt to constrain the behavior of a
process by defining what inputs are allowed and how
the outputs are related. They are typically expressed in
the form of preconditions and postconditions on
methods or as conditions on a class. Another solution
can be found in the agile or extreme programming
approach to development where test cases are devel-
oped first and the implementation is tested continually.
The test cases provide the developers with a good sense
of what the implementation should do and ensure that

the resultant implementation works correctly, at least
for the circumstances it was envisioned for.

Our approach uses a combination of these. The
main semantics of the outerface are specified by a set
of test cases defining the implementation’s behavior.
The system guarantees that any implementation passes
all the test cases of the outerface. In addition, the outer-
face can include preconditions and postconditions on
methods and general constraints on the behavior of an
outerface class. Going beyond this, TAIGA will
provide the means for expressing security and privacy
properties required from the implementation, an eco-
nomic model that can be used to choose among com-
peting implementations, a domain of accessibility, and
a fault recovery model that allows dynamic switching
of implementations.

Once we have a way of checking implementations
against an interface, we have a means for ensuring that
changes outside the software system can be controlled.
TAIGA supports three different operations. First, a user
can register an outerface. This generates a jar file that
can be programmed against and makes the outerface
available for general use. Second, a user can register an
implementation. This associates a web service, a
library, or a server component with a set of outerfaces.
Here a set of jar files is generated containing the code
for internal components and containing the code
needed to connect to external components. While
implementations can be registered arbitrarily, they will
not be used by TAIGA until they are bound. This, the
third operation, compares the semantics in the outer-
face with the code in the implementation, running any
test cases, doing static checking as appropriate, and
generally matching the specifications. It is only when
the system is assured that the implementation is accept-
able, that it enables it to be used by applications.

Evolution can be handled in this framework in
various ways. As we understand what functionality we
want from a web service or other component, we can
create test cases for that functionality. TAIGA lets the
programmer extend an outerface with additional test
cases and then finds implementations that pass not only
the original test cases, but the new ones as well. If the
existing external components fail the test cases, other
implementations will be chosen. As outside compo-
nents change, their developers will register a new
version of them with the system. TAIGA will detect
this new version and, if it passes the appropriate
semantic tests, will use it.

We have been using TAIGA to develop a visual-
izer of what people are looking at in their web brows-
ers. This application has three outerfaces, one for
recording web pages as they are viewed, one for man-
aging the data files that retain the history, and one for
finding the OpenDirectory category of a web page
based solely on its URL. We have experienced both
types of evolution with the last outerface. First, as our
- 3 -

visualizer changed, we found that we wanted to make
sure that certain pages mapped to certain categories
and we augmented the test cases for the outerface
accordingly. Second, we created several different ver-
sions of our own open-directory decision tree imple-
mentation and let the application choose the one that
was most appropriate.

5. Hidden Evolution

The TAIGA approach doesn’t cover everything
however. Because we lack control of the external com-
ponents, they can evolve in ways that are hidden to the
rest of the system. The implementation of a web
service can change even through its external represen-
tation, a WSDL file, stays the same. Alternatively,
some aspect of the information provided by the web
service can change without affecting the semantics of
the service as perceived by the provider. This was the
case, for example, when Google started not returning
categories on updated pages.

This is a more complex problem that we haven’t
complete determined how to deal with. One possibility
is to have the bindings time out for external services
after a given period. The problem here is defining the
period so that we don’t have to do excessive testing but
so that changes can be detected in a timely fashion.
Another approach is to do random retesting of bindings
where the random interval is chosen to approximate the
time-out period. This suffers many of the same prob-
lems, but allows the time-out to be changed internally
to reflect the past stability of the implementation. A
third possibility is to augment the set of preconditions
and postconditions associated with the outerface and to
use failures of these conditions to trigger retesting.

Such problems, however, are only a small and
simple sampling of the many problems we are going to
face as we move toward a world of outside compo-
nents. Imagine these problems when our application
calls a web service which calls a web service which
calls a web service which calls a web service that has
changed in some subtle way. Imagine what happens
when the database that one of these web services is
using is changed so that the data that is returned is
slightly different or so that your requests suddenly take
significantly longer than they used to.

Software evolution is evolving away from what we
are currently doing toward a world where the software
is outside of our control. The challenge of understand-
ing and providing for software evolution today is to
provide the tools and techniques that can and will work
in the future, not those that would have worked in the
past.

Acknowledgements. This work was done with support
from the National Science Foundation through grants
CCR9988141 and CCR0086057.

6. References

1. Sudhir Ahuja, Nicholas Carriero, and David Gelernter,
“Linda and friends,” IEEE Computer Vol. 19(8) pp. 26-34
(August 1986).

2. Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick
Lanham, and Scott Shenker, “Making Gnutella-like P2P
systems scalable,” Proc. ACM SIGCOMM 2003, (Aug 2003).

3. Scott Draves, “Electric Sheep,” http://electricsheep.org,
().

4. A. Ganek and T. Corbi, “The dawning of the autonomic
computing era,” IBM Systems Journal Vol. 42(1) pp. 5-18
(2002).

5. L. Gong, “JXTA: a network programming environment,”
IEEE Internet Computing Vol. 5 pp. 88-95 (2001).

6. J. V. Guttag, J. J. Horning, and J. M. Wing, “The Larch
family of specification languages,” IEEE Software Vol. 2(5)
pp. 24-36 (March 1985).

7. Nenad Medvidovic, “On the role of middleware in
architecture-based software development,” SEKE ’02, pp.
299-306 (July 2002).

8. Bertrand Meyer, Object-Oriented Software Construction,
Prentice-Hall (1988).

9. Steven P. Reiss, “Interacting with the FIELD
environment,” Software Practice and Experience Vol. 20(S1)
pp. 89-115 (June 1990).

10. Steven P. Reiss, “Connecting tools using message
passing in the FIELD environment,” IEEE Software Vol. 7(4)
pp. 57-67 (July 1990).

11. Steven P. Reiss, “Constraining software evolution,”
International Conference on Software Management, pp. 162-
171 (October 2002).

12. Ran Rinat and Scott Smith, “Modular Internet
programming with cells,” Proc. ECOOP 2002, Springer-
Verlag LCNS 2374, (2002).

13. J. B. Wordsworth, Software Development with Z,
Addison-Wesley (1992).
- 4 -

	Evolving Evolution
	Steven P. Reiss
	Brown University
	Providence, RI 02912
	401-863-7641, spr@cs.brown.edu
	Abstract
	1. Introduction
	2. Uncontrollable Evolution
	3. TAIGA
	4. Component Semantics
	5. Hidden Evolution
	Acknowledgements

	6. References

